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Abstract 
Artificial Intelligence (AI) is becoming more and more involved in human life day by day. Healthcare is one of the areas where 
AI is widely used, such as in the diagnosis prediction, and/or classification of diseases. Techniques such as machine learning 
provide high-accuracy results, but many algorithms have black-box structures, where the reasoning behind the predictions is 
not known. Explainable AI emerges to address this by providing explanations for complex models. While interpretable ("glass-
box") models are desirable, they may have lower accuracy than complex ("black-box") models. Finding the right balance is 
crucial, especially in critical areas such as healthcare. It is also important to provide individual explanations for the predictions. 
This study uses patient data to explore a model to predict heart attack risk. Therefore, we compare glass-box models (logistic 
regression, Naïve Bayes, decision tree, and explainable boosting) with black-box models (random forest, support vector 
machine, multi-layer perceptron, gradient boosting, and stochastic gradient boosting). The results show that explainable 
boosting achieves the highest accuracy. To delve into individual explanations on a patient basis, the explainable boosting 
algorithm is compared with the random forest algorithm, which gives the best results among the black-box models. Here, 
LIME and SHAP are used to provide interpretability of random forest algorithm. As a result, it is concluded that the random 
forest algorithm has differences in the importance weights of the variables compared to the explainable boosting algorithm. 
Both results provide valuable tools for healthcare stakeholders to choose the most appropriate model. 
Keywords: Artificial Learning, Explainable Artificial Intelligence, Classification, Healthcare Industry, Heart Attack 
 

I. INTRODUCTION  
Artificial Intelligence (AI) and AI-focused applications have increased frequently in recent years. This growth 
continues to be seen in AI's supporting applications that assist daily life, as well as its supporting role at critical 
decision points. At these points, AI's only result-oriented support to the decision maker can lead to problems 
explaining the reasons for the decision. With current studies in AI, complex models with improved prediction 
accuracy are being used, making explanations even more difficult. Such problems have led to the emergence of 
terms such as understandability, comprehensibility, interpretability, explainability, and transparency in AI [1]. 
The expected starting point of these terms is the need to explain how machine learning (ML) models make their 
outputs or decisions, which are becoming increasingly complex and cannot be explained by themselves. With the 
increase in this need, the study of eXplainable Artificial Intelligence (XAI) has increased significantly in recent 
years [2]. 
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XAI emphasizes the explainability of what features 
may result from decisions while preserving the 
predictive accuracy of the methods used. Therefore, 
decision-makers need to choose a model that ensures 
prediction accuracy in the field under study but is also 
high in interpretability of the decision made [3]. In this 
context, ML models can be examined under two main 
headings: glass-box and black-box models. While 
glass-box (or white-box) models include self-
interpretable methods, black-box models represent 
methods that cannot be interpreted automatically due to 
the high number of layers and parameters but can be 
provided with local explanations using different XAI 
techniques [4]. Although the prediction accuracy of 
black-box models is relatively high through their 
complex structure, they require additional techniques to 
explain the decisions made. Rudin [5] discusses using 
glass-box models instead of black-box models in the 
first stage to avoid spending too much effort explaining 
the black-box models. 
 
The increasing use of AI applications in areas that 
directly affect social and human life increases the 
importance of using the suitable model in the right area. 
Although the accuracy of the decision is of utmost 
importance, especially in health-related studies, 
healthcare professionals who are decision-makers need 
to explain the circumstances under which this decision 
was made [6-7]. As a result of models used in areas 
such as disease detection, when deciding whether an 
individual has a disease, an explanation needs to be 
given to the individual, such as what factors caused the 
disease. For this reason, XAI studies in the healthcare 
sector have increased in recent years [8]. 
 
One of the areas where AI applications are frequently 
used in the healthcare sector is in detecting patients' 
heart attack risk [9]. Many studies have been made in 
this field, and models that increase prediction accuracy 
to the highest level have been proposed. However, the 
number of studies examining the explainability of the 
proposed models is quite limited. In this study, we 
compare the glass-box methods and black-box 
methods. In predicting heart attack risk, the differences 
between using a complex model that is difficult to 
explain due to its structure and a model that may not 
have deficient performance but is easily explainable are 
being discussed. 
  
The rest of the paper is organized as follows: The 
literature review section presents related studies in this 
field. Then, the methodology is given in section 3. 
Section 4 addresses the application and its results. Last, 
we conclude in Section 5. 
 
II. LITERATURE REVIEW 
For many years, ML algorithms have been used in a 
wide range of applications in various fields, such as 
recommendation systems, cybersecurity, image 
processing, industrial applications, education, and 

healthcare. The literature section of this study provides 
an overview of studies on ML applications in 
healthcare. ML applications in the healthcare sector can 
be found in many areas, from disease diagnosis to 
personalized treatment, drug discovery to radiology, 
etc. The article reviews the applications of ML and AI 
algorithms in healthcare [10]. It states that support 
vector machines (SVM), decision trees (DT), random 
forests (RF), and artificial neural networks (ANNs) are 
widely used algorithms in this field [11-15].  
 
Heart attack/stroke is one of the most critical and 
focused problems in healthcare, and it causes many 
deaths all over the world. The latest advances in the 
application of ML have shown that it is possible to 
detect heart disease at an early stage using 
electrocardiograms and patient data [16]. By analyzing 
large amounts of patient data, ML algorithms can more 
accurately and quickly identify risk factors for heart 
attack. In contrast to traditional methods, ML 
algorithms can use a patient's medical history, genetic 
information, and lifestyle to build more complex and 
predictive models. This enables physicians to monitor 
patients more effectively, identify high-risk individuals 
in advance, and take the necessary preventive 
measures.  
 
Sahu et al. [17] compare conventional ML algorithms 
(SVM, Naïve Bayes (NB), DT, RF, Logistic 
Regression (LR), k-nearest neighborhood (KNN)) and 
deep learning algorithms for using two different data 
sets (taken from the UC Irvine (UCI) and Kaggle 
repositories) to predict the heart attack and death rates 
related to heart attack [17]. They conclude that the one-
dimensional convolutional neural network (1D-CNN) 
algorithm predicts heart attack and death rates with 
99% accuracy, outperforming conventional methods. 
Rao et al. [18] attempt to predict whether a patient will 
have a heart disease. LR and ANN models are used to 
classify them. They compare the accuracy rates of the 
two models, and LR outperforms ANN by 90%. 
Mahmud et al. [19] try to predict heart failure in 
patients based on clinical data. They use one of the 
well-known data sets (taken from Kaggle repositories), 
which combines five different cardiac datasets, making 
it the most comprehensive resource available for heart 
disease research. RF, NB, KNN, and DT methods are 
used to build a combined meta-model—the results of 
the evaluation show that the meta-model outperforms 
other state-of-the-art models. The accuracy of the meta-
model is 87%. Mamun and Elfouly [20] introduce a 
hybrid 1D-CNN model utilizing features selected by 
feature selection algorithms as well as a substantial data 
set derived from online survey data. The 1D-CNN has 
shown superior accuracy compared to contemporary 
ML algorithms and ANNs. The model's performance is 
compared with ANN, RF, AdaBoost, and SVM, and 
1D-CNN outperforms these methods in terms of 
accuracy, false negative rates, and false positive rates. 
Ozcan and Peker [21] introduce a classification and 
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regression tree chart, a supervised ML method to 
predict whether a patient will have a heart disease. They 
try to explain the relationship between the input 
variables and the response, so they rank the features 
that affect heart disease by importance. The accuracy of 
the proposed algorithm, which is 87%, shows the 
reliability of the model. Yu [22] uses ML algorithms to 
predict the likelihood of occurrence of heart diseases in 
patients. The data set taken from the UCI repository is 
used to analyze eight different ML classifiers. LR, 
SVM, KNN, NB, DT, RF, gradient boosting, and 
AdaBoost algorithms are compared. As a result, the 
gradient boosting classifier achieves the highest 
accuracy with 95.08%.  
 
XAI studies have increased in recent years due to the 
need to learn which inputs result from the decisions 
obtained from increasingly complex ML models [2,15]. 
Although the studies in this field use different terms 
representing similar needs, each term does not have the 
same meaning. Although there is no clear definition for 
XAI due to different terminologies, to provide a 
consensus, Barredo Arrieta et al. [1] define XAI as "a 
set of practices that produce details or reasons to make 
its functioning clear or understandable, given an 
audience.". The authors state that this definition 
indirectly includes causality, transferability, 
informativeness, fairness, and reliability, which are 
seen as missing in other definitions but are covered by 
XAI. As can be understood from this definition and the 
topics it should include, XAI provides explanations for 
AI applications that serve many purposes and enable us 
to understand AI models better. 
 
AI models can be divided into two categories in terms 
of explainability. The former is models that can be 
explained independently without using additional 
techniques. These models can be found in the literature 
under “transparent models, glass-box models, intrinsic 
explainability, ante-hoc approaches, and inherently 
interpretable ML models” [4]. This study uses the term 
"glass-box models" for self-explanatory models. 
Although their explainability is at different levels, 
linear regression/LR, DT, KNN, rule-based methods, 
general additive models, and Bayesian models are 
considered glass-box models [1]. These models can be 
explained after the prediction without any post-hoc 
analysis. On the other hand, models that cannot be 
explained by themselves due to their complex 
structures and where the obtained predictions can only 
be explained by post-hoc analyses are called "black-
box models" in the literature. RF, SVM, multi-layer 
perceptron (MLP), and ANNs are examples of black-
box models. It is crucial to be able to explain these 
models that provide high prediction accuracy. 
Therefore, new techniques have been developed to 
explain black-box models, and they can be divided into 
two categories: (i) model-agnostic and (ii) model-
specific. The most well-known of these techniques are 
SHapley Additive exPlanations (SHAP) [24] and Local 

Interpretable Model-Agnostic Explanations (LIME) 
[25], which are classified as model-agnostic. 
 
Literature reviews conducted in recent years clearly 
reveal how popular XAI is. In addition to providing 
information about the current terminology in the field, 
these studies also present newly developed methods 
and application areas in detail [1-3], [23], [26]. 
Although it has applications in many fields, such as 
finance, education, environmental science, and 
agriculture, XAI stands out, especially with its uses in 
healthcare. 
 
III. METHODOLOGY 
This part of the study presents information on the glass-
box and black-box models used in the analysis. LIME 
and SHAP, which allow local interpretation of black-
box models, are examined. Then, performance metrics 
that allow the evaluation of the built models are 
discussed. 
 
3.1. Artificial Learning Algorithms 
The ML and ANN models used in the analyses are 
presented in this section. In this context, the glass-box 
and black-box methods are first considered, and then 
the methods that enable the black-box models to be 
explained locally are mentioned. This section also 
provides information about the performance metrics 
used to compare the models created. 
 
ML techniques are divided into two categories: 
supervised learning and unsupervised learning [27]. 
This distinction is related to the presence or absence of 
the output value in the data set: (i) if the dependent 
variable (response), 𝑦𝑦, is present in the data set, it is 
called supervised learning, and (ii) if there is no 
dependent variable in the data set, it is called 
unsupervised learning. Furthermore, supervised 
learning is divided into prediction and classification 
according to the structure of the dependent variable in 
the data set. While regression is used to predict the 
dependent variable, which has a continuous structure, 
classification involves classifying data using the 
output, which has a discrete structure. Unsupervised 
learning algorithms, on the other hand, are preferred for 
purposes such as making inferences about the data or 
organizing the data set (such as dimensionality 
reduction), and the well-known applied methods in this 
field are clustering algorithms. Clustering, which falls 
under unsupervised learning, involves grouping 
processes by bringing together independent variables 
with similar characteristics [27]. In this study, the aim 
is to evaluate whether patients are at risk of having a 
heart attack. The response value has a binary structure 
(0: lower heart attack risk and 1: higher heart attack 
risk), i.e., the response is a discrete variable. In this 
context, the glass-box and black-box classification 
methods are examined below. 
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LR measures the statistical significance of each 
independent variable relative to probability. It is highly 
probabilistic and a powerful ML method that models 
binomial output [28]. The NB method is one of the 
methods based on Bayes theorem and is called the 
probabilistic classification method [29]. The naïve 
assumption is an assumption of conditional 
independence between each pair of features given the 
value of the class variable. Moreover, it is a preferred 
algorithm because it is easier to use and understandable 
and gives faster results than other complex methods 
[30]. In the DT classification, each node represents a 
feature, each branch illustrates a rule, and each leaf 
gives a result [31]. DTs have a hierarchical structure 
developed by dividing the data set into smaller 
structures. The Explainable boosting machine (EBM) 
classifier is a cyclic gradient boosting generalized 
additive model, and similar to the DTs, it is also a tree-
based method. Furthermore, these models have as high 
prediction accuracy as black-box models, but their 
interpretation is inherently easier than black-box 
models. 
 
Many DTs work together to create an RF algorithm, 
and then the average of all these trees is used [28]. This 
structure allows more consistent results to be obtained 
compared to DT algorithm results [27]. SVM 
classification creates hyper-planes to separate data into 
multiple classes [32]. Unlike other classification 
algorithms, it tries to maximize the distance between 
the created clusters. It considers the separation of points 
by a line or plane and the resulting distance. MLP is one 
of the well-known ANN algorithms that can indirectly 
detect complex nonlinear relationships between 
dependent and independent variables [33]. This method 
is inspired by the working structure of the human brain; 
inputs pass through layers respectively, and output is 
created. Each layer consists of neurons, and the values 
obtained from here are obtained by passing through the 
activation function. Gradient boosting is one of the ML 
ensemble methods that create more than one model and 
then combine them to produce improved results. These 
well-known ML models reunite several weak learners 
into strong learners, in which each new model is trained 
to minimize the loss function appropriate to the 
structure of the problem. At each step, the algorithm 
calculates the direction of improvement for the 
ensemble's predictions and then trains a new weak 
model to move in that direction. The new model's 
predictions are then added to the ensemble, and this 
process is repeated until a stopping condition is met. As 
in the gradient descent method, the stochastic gradient 
descent model tries to minimize the loss function value 
defined iteratively. The reason for using the concept of 
stochastic in its name is based on using structures such 
as applying mini-batches of differentiation in iterations 
and creating random subsets. In this way, while trying 
to reach the highest efficiency value in calculations, the 
randomness value also increases. 
 

The local interpretation of the black-box models given 
above is not straightforward due to the complex 
structure of the models. Therefore, intermediary stages 
are needed to evaluate these models with respect to 
observations. In this context, LIME and SHAP are used 
in this study. These methods are visualization 
techniques applied to ML algorithms and are 
recommended to explain the model by bringing the 
model predictions closer to an interpretable model. To 
explain individual predictions, LIME creates new data 
points that resemble the instance of interest. These 
points are generated based on a statistical model 
learned from the features of the dataset, treating them 
as independent variables. Note that it is considered that 
the features are independent of the other and follow a 
normal distribution, whose parameters are inferred 
from the data set [34]. SHAP combines game theory 
concepts with local explanation techniques [24]. SHAP 
transforms the original input data into a more 
straightforward form using a specific function. In this 
model, using a reduced data set, the original model can 
be approximated with a linear function of binary 
variables [35]. 
 
3.2. Evaluation of the Models: Performance Metrics 
The explanation of the algorithms used in the analyses 
provides information about the output of whether a 
heart attack has occurred. The output value in the data 
set is considered as a 0 – 1 binary structure, and 
classification algorithms are used to select the model. 
Similarly, the definition of the performance metrics 
used to compare algorithms should also be 
appropriately chosen for the output structure. In this 
context, the performance metrics are accuracy, 
precision, recall, and f1-score. Moreover, the receiver 
operating characteristic (ROC) curve and the area under 
the ROC curve value (AUC) are also reported. 
 
A confusion matrix must be created to use the above 
performance metrics in classification problems. The 
values in the confusion matrix are used to visualize and 
summarize the results. In this context, the confusion 
matrix is created for problems with binary output 
values, as shown in Table 1. 

Table 1. Confusion matrix for a problem which has a 
binary structure 

 Predicted Values 

Positive (1) Negative (0) 

Actual Values 
Positive (1) True Positive (TP) False Negative (FN) 

Negative (0) False Positive (FP) True Negative (TN) 

 

Accuracy, one of the performance metrics, shows the 
percentage of samples classified correctly and is 
mathematically expressed as 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇
. Precision, 

another performance metrics, is used to calculate how 
many of the values predicted as positive are actually 
true positives. Its mathematical expression is presented 
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as 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

. The recall metric, like precision, deals with 
positive values, but unlike the previous one, recall is a 
performance metric that shows how much of the 
operations that should be predicted as positive are 
predicted as positive (Mathematically, 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
). The f1-

score value is calculated as the harmonic average of 
recall and precision values, i.e., 2 × 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
.  

ROC curve is a metric that allows visual evaluation, 
unlike the performance metrics given above. True 
positive rate and false positive rate are used to obtain 
this curve. While the false positive rate value on the x-
axis is calculated using 𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇
, the true positive rate 

corresponds to the recall value explained above. AUC 
is obtained by calculating the area under the ROC 
curve. Their expressions are shown in Figure 1. In 
Figure 1, the dark blue line corresponds to the ROC 
curve, while the gray area corresponds to the AUC 
value. 
 

 
Figure 1. Representation of the ROC curve and AUC 

value in a graph 
 
 

IV. APPLICATION AND RESULTS: 
PREDICTION OF HEART ATTACK 
RISK  
In this part of the study, the methods specified are 
analyzed using the selected data set, and the results are 
presented. First, information about the data set is given, 
and then the application details are addressed. 
 
4.1. Data Set 
The data set "heart attack" to be used in the analysis has 
been shared with researchers and users as open access 
[36]. The data set contains information about whether 
the individuals whose information is included have had 
a heart attack. Moreover, it consists of a total of 303 
observation values, 13 features, and one output value. 
Definitions of the features are included in Table 2. 
 
4.2. Application and Results 
This section provides information on the application 
and the results obtained. AI algorithms classified as 
glass-box and black-box in the Methodology section 
are used to select the model to be created to determine 
the risk of a heart attack. The created models are run 
using a computer with an Intel(R) Core(TM) i5-
10210U CPU @ 1.60GHz 2.11 GHz processor and 8 
GB RAM. Python programming language and existing 
libraries are preferred when creating the models. 
Accordingly, the libraries used for artificial learning are 
LR (LogisticRegression), NB (GaussianNB), DT 
classifier (DecisionTreeClassifier), SVM classifier 
(SVC), MLP (MLPClassifier), gradient boosting 
(GradientBoostingClassifier), stochastic gradient 
boosting (SGDClassifier) and explainable gradient 
boosting (ExplainableBoostingClassifier), whereas the 
libraries used to explain the black box models are LIME 
(LimeTabular) and SHAP (shap).

Table 2. Explanation of the features 
Feature  Explanation Structure 
age (years) The age of individuals Integer 

sex The gender of individuals 
Categories: 0: female, 1: male Categorical 

cp The chest pain type 
Categories: 1: typical angina, 2: atypical angina,3: non-anginal pain, 4: asymptomatic Categorical 

trestbps (mm 
Hg) 

The resting blood pressure (on admission to the hospital) Integer 

chol (mg/dl)  The serum cholesterol level fetched via BMI sensor Integer 

fbs The fasting blood sugar > 120 mg/dl 
Categories: 1: true, 0: false Categorical 

restecg 
The resting electrocardiographic results 
Categories: 0: normal, 1: having ST-T wave abnormality, 2: definite left ventricular 
hypertrophy by Estes' criteria 

Categorical 

thalach The maximum heart rate achieved Integer 

exang The exercise induced angina 
Categories: 1: yes, 0: no Categorical 

oldpeak The ST depression induced by exercise relative to rest, previous peak Integer 

slope The slope of the peak exercise ST segment 
Categories: 1: unsloping, 2: flat, 3: downsloping Categorical 

caa The number of major vessels (0-3) colored by flourosopy Integer 
thal Categories: 3: normal; 6: fixed defect; 7: reversable defect Categorical 
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According to the specified information, the data set is 
first analyzed, and then models are established. After 
the model-building phase is completed, the best model 
must be selected. Then, the results must be explained 
so that decision-makers can understand; for example, in 
this problem, the decision-makers are physicians. 
However, as mentioned, the artificial learning 
algorithms used in this study are presented as two 
pillars: (i) glass-box and (ii) black-box. Due to their 
structure, the models referred to as glass-box can be 
understood and interpreted by experts in the field who 

do not know ML. On the other hand, suppose a model 
under the black-box heading is chosen. In that case, it 
becomes difficult for field experts to interpret the 
results and interpret the data from an individual 
perspective. For this reason, explanatory methods are 
used to help explain black-box models. The models 
obtained afterward are the best among the established 
models so that the outputs can be easily interpreted. 
This process to be followed during the implementation 
phase is visualized in Figure 2.  

 
Figure 2. Flow diagram to be followed for obtaining and interpreting the results 

 
A fine-tuned process is carried out to prepare the 
models for use and select the best among them. 
Through this process, the hyper-parameters, which are 
parameter values that are given externally to the model, 
of the models are determined. For this process, more 
than one value is tried for the relevant parameter in each 
model. The fine-tuned parameters for each model are 
summarized in Table 3. The established artificial 
learning model is included in the "Models" column in 
the table. Under the heading "Hyper-Parameters," 
hyper-parameters are differentiated in creating the 
established models. "Best Model Parameters" 
illustrates the hyper-parameters used to prepare the best 
model obtained due to the different hyper-parameter 
values run for the relevant model. Moreover, while 
giving the information in this column, hyper-parameter 
definitions are presented precisely the same as the name 

in the library included in the package used. Thus, it is 
aimed to create a clear table for users who want to use 
the same models. Besides, the grid search algorithm is 
used to fine-tune the models. After completing this 
process, the parameters that yield the best results are 
reported for each model created using the specified 
method. Thus, models to be compared are obtained to 
select the best model. The last column, "Time (sec)," 
presents the time to determine the best parameters 
among the existing ones during the fine-tuned process. 
No duration has been defined since existing models are 
used for LR, NB, and explainable boosting methods. In 
other models, it is seen that the method that requires the 
most time in the parameter definition phase is the 
gradient boosting method, and the method that requires 
the least time is the MLP method. 

 
Table 3. Artificial learning models with hyper-parameters tuned by grid search in the inner loop 

Models Hyper-Parameters Best Model Parameters Time (sec) 
LR -   
NB -   

DT 
Classifier 

• Criterion: Measure the split quality and is a measure of impurity. 
• Splitter: Define the strategy which is used to choose split at each node. 
• Maximum Depth: Give the tree’s maximum depth. 
• Maximum Features: The number of features to consider when looking 

for the best split. 
• Complexity Parameter: Used for minimal cost-complexity pruning. 

criterion: gini 
splitter: best 
max_depth: 1 
max_features: None 
ccp_alpha: 0  

20.0325 

RF 
Classifier 

• Criterion: Measure the split quality and is a measure of impurity. 
• Number of Estimator: The number of trees in the forest. 
• Maximum Depth: Give the tree’s maximum depth. 
• Weights associated with classes 

criterion: gini  
n_estimators: 200 
max_depth: 4 
class_weight:  
balanced_subsample  

605.7901 
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Table 3. Artificial learning models with hyper-parameters tuned by grid search in the inner loop (cont.) 
Models Hyper-Parameters Best Model Parameters Time (sec) 

SVM 
Classifier 

• Kernel: The kernel type to be used in the algorithm 
• Gamma: Kernel coefficient:  
• Regularization parameter 

kernel: rbf 
gamma: auto  
C: 3.0 

1.6822 

MLP 
Classifier 

• Activation: The hidden layer activation function 
• Solver: The solver for weight optimization 
• Alpha: Strength of the L2 regularization term 
• Learning rate 
• Maximum number of iterations 

activation: logistic  
solver: adam 
alpha: 0.0  
learning_rate: constant  
max_iter: 300  

2703.402 

Gradient 
Boosting 
Classifier  

• Loss: Type of the loss function 
• Learning Rate: Learning rate shrinks the contribution of each tree 
• Criterion: Measure the split quality 
• Maximum Depth: Maximum depth of the individual regression 

estimators 
• Max Features: The number of features to consider when looking for the 

best split. 

loss: log_loss 
learning_rate: 0.9 
criterion: squared_error  
max_depth: 8  
max_features: sqrt 

820.8958 

Stochastic 
Gradient 
Descent 
Classifier 

• Loss: Loss function type 
• Penalty: Regularization term 
• Alpha: Coefficient of the regularization term 
• Learning Rate 

loss: log_loss 
penalty: l2 
alpha: 0.003  
learning_rate: optimal  

23.3565 

Explainable 
Boosting 
Classifier 

-   

After the fine-tuning process with grid search, the best 
models are compared. A run is taken using the hyper-
parameters determined to compare different models. As 
a result of these runs, the models' performance metrics 
calculated using the training data are shown in Table 4. 
Different performance metrics are listed in this 
resulting table. The headings in the table provide 
information regarding the classification of the models 
operated in the first column as glass-box or black-box. 
The model number and the name of the model are 
shared in the following two columns. Furthermore, 
there are four subheadings under the heading 
"Performance Metrics": "Accuracy," "Recall," 
"Precision," and "F1-Score". The results for each 
model are presented for these performance metrics 
specified under subheadings. 
 
When the results in Table 4 are examined, it is seen that 
the best results among the models called glass-box are 
obtained with the explainable boosting method. Black-
box models are examined; on the other hand, it is 
observed that the best results are obtained 100% with 
the gradient-boosting classifier algorithm. Moreover, 
these results should be evaluated in terms of over-
fitting. Thus, the performance metrics obtained for the 

test data set are considered to determine whether the 
models are usable. In this context, the performance 
metrics of the test data are listed in Table 5. Table 5 is 
created to resemble Table 4, where the values obtained 
with the training data set are reported. In addition to 
existing performance metrics, the AUC value is also 
reported. The graph of the AUC values given with the 
performance metrics of the test values is shown in 
Figure 3. 
 

 
Figure 3. ROC curve graphs obtained in models for 

test data 
 

Table 4. Performance metrics for train data set 
 # Model Performance Metrics (%) 

Accuracy Recall Precision F1-Score 

G
la

ss
 B

ox
 

M
od

el
s 

1 Logistic Regression 88.8430 88.8430 88.9863 88.9146 
2 Naïve Bayes 67.7686 67.7686 77.0972 72.1325 

3 Decision Tree  77.6860 77.6860 77.6528 77.6694 
4 Explainable Boosting  95.0413 95.0413 95.0489 95.0451 

B
la

ck
 B

ox
 

M
od

el
s 

1 Random Forest  88.0165 88.0165 88.0128 88.0147 
2 Support Vector Machine 85.9504 85.9504 86.0250 85.9877 
3 Multi-Layer Perceptron  86.7769 86.7769 86.8602 86.8185 
4 Gradient Boosting  100.0000 100.0000 100.0000 100.0000 
5 Stochastic Gradient Descent  86.3636 86.3636 86.5579 86.4607 
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Table 5. Performance metrics for test data set 
 # Model Performance Metrics (%) 

Accuracy Recall Precision F1-Score AUC 

G
la

ss
 B

ox
 

M
od

el
s 1 Logistic Regression 81.9672 81.9672 83.0761 82.5179 0.907 

2 Naïve Bayes 75.4098 75.4098 81.6214 78.3927 0.873 
3 Decision Tree  72.1311 72.1311 73.1069 72.6158 0.726 
4 Explainable Boosting  77.0492 77.0492 76.8275 76.9382 0.872 

B
la

ck
 B

ox
 

M
od

el
s 

1 Random Forest  75.4098 75.4098 77.2509 76.3193 0.880 
2 Support Vector Machine 80.3279 80.3279 81.8386 81.0762 0.933 
3 Multi-Layer Perceptron  78.6885 78.6885 79.7530 79.2172 0.930 
4 Gradient Boosting  80.3279 80.3279 82.9217 81.6042 0.897 
5 Stochastic Gradient Descent  81.9672 81.9672 82.4220 82.1940 0.944 

 
Suppose the performance metrics obtained for the test 
and train data sets are examined simultaneously. In that 
case, it is seen that in most of the models, better results 
are obtained with the train data set, and there are 
decreases in these metrics for the test data. Moreover, 
this decrease is greater in black-box models than in 
glass-box models. In addition, the test performance 
metrics for the gradient boosting algorithm, which 
achieved 100% success, are lower than other black-box 
models. This shows that over-fitting is explicitly 

observed for this model. For this reason, if black-box 
models are established and a model is selected, it would 
be appropriate to choose the RF method, where the 
change between train and test is less and good results 
are obtained in the training data. When the glass-box 
models are examined, it becomes clear that the 
explainable boosting algorithm is a usable model in 
terms of giving good results in training and good results 
in terms of testing. 

 

 
(a) 

 
(b) 

Figure 4. Global feature importance for the selected models: (a) Explainable boosting classifier and (b) RF with 
SHAP 
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After glass-box (explainable boosting classifier) and 
black-box (RF) models are selected, they need to be 
evaluated in terms of explainability. As mentioned 
before, due to their structure, glass-box models are 
easier to interpret the results individually than black-
box models. In this context, a summary of the variables 
and information within the scope of the variables can 
be obtained with the explainable boosting model. In 
addition, comments can be obtained for individuals. 
However, this process cannot be performed directly in 
black-box models. For this reason, this information can 
be obtained using methods such as LIME and SHAP. 
Before explaining the examples locally, we can present 
the weights of the variations obtained by explainable 
boosting, as in Figure 4(a). The graph in Figure 4(a) 
shows importance weights on the x-axis and features on 
the y-axis. According to the information obtained from 
this graph, the “cp” variable corresponding to the chest 
pain type is the most crucial feature in the explainable 
boosting classifier model. In contrast, it seems that the 
least important feature is the parameter formed by the 
“chol&caa” combination. Similarly, importance levels 
of variables can be obtained for RF using SHAP. Since 

different functions are used, the visualization of the 
results also varies. As can be seen from Figure 4(b), the 
most crucial variable is “cp.” In the results obtained by 
evaluating RF in terms of explainability, it is seen that 
the variables have similarities in terms of importance. 
 
In addition to the importance of the weights of the 
variables for the model, another essential feature of 
XAI is that it provides the opportunity for local 
interpretation. In other words, it means explaining each 
observation value (in this study, patients whose heart 
attack risk is measured are expressed). In this context, 
an observation value in the data set is chosen randomly, 
and local explanations are given based on this 
observation value. Since the explainable boosting 
classifier and LIME use the same library, namely 
interpret, the resulting graphics have a similar visual 
structure. SHAP, on the other hand, shows a different 
visuality because it comes from a different library. As 
mentioned before, an observation value is chosen 
randomly. In this context, the results of the 11th 
observation are shown in Figure 5, respectively. 

 
(a) 

 
(b) 

           
(c) 

Figure 5. Local explanation of observation 11: (a) Explainable boosting classifier, (b) RF with LIME, and (c) 
RF with SHAP 
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In all three graphs in Figure 5, the x-axis shows the 
importance values of the variables for that patient. The 
y-axis shows the variables and the patient’s values of 
those variables. For example, for this patient, the 
gender is shown as 1, and the age variable is expressed 
as 41. It can be seen from this information that it 
contains data from a 41-year-old male patient. In 
addition, the chest pain type value of this patient, 
expressed as "cp = 1", shows that the patient has typical 
angina. Moreover, the patient information and the 
observation value are estimated to have a high risk of 
heart attack in both models (explainable boosting 
classifier and RF). The importance of the variables that 
affect this estimate can also be obtained using the 
graphs in Figure 5. 
 
The graphs in Figure 5 should be evaluated to show the 
effect of the variables in calculating the risk of having 
a heart attack after being used to obtain the patient's 
data. The most effective variable in classifying the risk 
in the explainable boosting algorithm for the patient 
whose information is given in Figure 5 is "caa," 
whereas the most effective variable for RF visualized 
with LIME is “thall” and the variable visualized with 
SHAP is "cp.". Similarly, it is seen that the influencing 
variables change as the effects of the variables change. 
Considering only the RF algorithm, using different 
visualization techniques for the same model also causes 
the variables and their effects to differ. According to the 
information obtained here, selecting and individually 
evaluating the method for problems that significantly 
impact human life, such as the models used to 
determine the risk of heart attack, is vital. In addition, 
presenting the results to decision-makers and 
physicians in this problem, with more than one 
explanatory model, will be effective in determining the 
treatments to be applied. 
 
V. CONCLUSION 
 In healthcare, AI rapidly transforms how we diagnose, 
predict, and classify diseases. ML techniques have 
proven to be powerful tools, delivering impressive 
accuracy. However, a major hurdle lies in the 
complexity of some AI models. These models, often 
called "black-box" models, can generate highly 
accurate predictions but lack transparency in their 
reasoning process. This lack of clarity can be 
concerning, particularly in critical areas like healthcare 
decision-making, affecting human life. XAI fills this 
gap by providing explanations for the complex 
calculations performed by these models. Ideally, 
researchers prefer models with complete 
interpretability, also known as "glass-box" models. 
However, these models may compromise accuracy for 
transparency. Finding the right balance between these 
two aspects is crucial for XAI implementation in 
healthcare. 
 
 

This study addresses this challenge by investigating a 
model specifically designed to classify heart attack risk 
based on patient data. LR, NB, DT, and explainable 
gradient boosting algorithms, called glass-box models, 
are developed in this context. In addition to these 
models, RF, SVM, MLP, gradient boosting, and 
stochastic gradient boosting algorithms, classified as 
black-box models, are established. To select the best 
model among the developed models, fine-tuning is 
done by running the models with different parameters 
using grid search. The results of the fine-tuning 
processes, whose results provide the best models of the 
methods within themselves, are compared. Considering 
all the proposed models, it is seen that the best results 
are obtained with the explainable gradient boosting 
algorithm. In addition, the best performance in black-
box models is obtained as RF when considering glass-
box and black-box models. The ability to explain 
predictions on an individual patient basis is also 
essential. The RF algorithm is visualized using LIME 
and SHAP explanation methods to compare the patient-
based description of these two methods. These methods 
are used to unveil the inner workings of the RF model, 
making its predictions more interpretable. When 
explainable gradient boosting and RF are compared, it 
is seen that the importance of the features changes, and 
different features are considered in determining the risk 
of heart attack. Moreover, this study highlights another 
crucial point: even within the same model (RF in this 
case), the choice of interpretability technique (LIME 
vs. SHAP) can influence the perceived importance of 
variables. This underscores the importance of careful 
method selection and individual evaluation, especially 
when dealing with high-impact domains like 
healthcare, where decisions can influence life-and-
death situations. Furthermore, presenting physicians 
with multiple interpretable models can be highly 
beneficial. By considering diverse perspectives on the 
data, physicians gain a richer understanding of the 
factors contributing to a patient's heart attack risk. This 
comprehensive view can empower them to make more 
informed decisions about each individual's most 
effective treatment course. 
 
That is, findings offer valuable insights for healthcare 
professionals. By understanding the strengths and 
limitations of different AI models, they can make 
informed decisions about which tool is best suited for 
their specific needs, striking a crucial balance between 
accuracy and interpretability in the healthcare field. 
Future studies can expand the study regarding data set 
size, application area, and model. In this context, by 
expanding the data set, the validity of the application 
can be ensured, and its applicability in large data can be 
addressed. Apart from heart attacks, applications can be 
created for different cardiovascular diseases and 
diseases in different areas. In addition, it can be applied 
not only in the health field but also in areas that affect 
human and living life and require individual evaluation. 
On more extensive data sets, deep learning algorithms 



AI for Classifying Heart Attack Risk                            Int. J. Adv. Eng. Pure Sci. 2025, 37(UYIK 2024 Special Issue): <65-76> 

75 
 

can also be used, and the performance of the 
explanation methods can be examined. Finally, by 
developing hybrid models, the model's accuracy rate 
and interpretability rate can be improved. 
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