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Abstract. In this article, firstly we study pointwise slant, pointwise hemi-slant submanifolds whose
ambient spaces are para-cosymplectic manifolds and we prove that there exist pointwise hemi-slant non-

trivial warped product submanifolds whose ambient spaces are para- cosymplectic manifolds by giving

some examples. We get several theorems and some characterizations. Later, we also obtain some in-
equalities.
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1. Introduction

Slant submanifold was explained by B.Y. Chen in 1990 and he started the working in pseudo-Riemannian
manifolds in 2012 [4]. Then, Almost contact manifold was indicated by I. Sato [10]. S. Zamkovoy re-
searched almost para-contact metric manifolds [12] and An almost para-contact geometry is expressed
as (P, ξ, η). Such that, P2 = I − η ⊗ ξ and η(ξ) = 1 on almost para-contact structure. Then, some
researchers have been working Riemannian and semi-Riemannian manifolds in last years [1, 2, 5, 8].

Bishop and O’Neill produced notion of warped product manifolds. Warped products are Na and Nb

be Riemannian manifolds with ğa and ğb. Then, warped product manifold Nx = Na ×k Nb is a product
manifold Na×Nb equipped by ğx = ğa+k

2ğb and k is a warping function of warped product manifold [3].
Warped products is generally used in differential geometry, theory of general relativity, theory of string,
black holes. Warped product pseudo-slant submanifolds whose ambient spaces are Kaehler manifolds
were worked by B. Sahin [9]. He proved that the warped product pseudo-slant N⊥

b ×k N
θ
a submanifold

does not exist and he obtained a characterization and an inequality. Later S. Uddin and others worked
warped product submanifolds whose ambient spaces are cosymplectic manifolds [11].

This article is organized as follows. In section 2, we introduce pointwise slant submanifolds of para-
cosymlectic manifolds. Moreover, we give some definitions, examples and results. In section 3, we
introduce proper pointwise hemi-slant submanifolds in para-cosymplectic manifolds and we give theo-
rems, lemmas and examples. In section 4, we define pointwise hemi-slant non-trivial warped product
submanifolds in para-cosymlectic manifolds. Also, we give some results and examples. In section 5, we
obtain some inequalities.

2. Preliminaries

Let N̄x be a (2n̄+1)-dimensional almost para-contact metric structure. If it is provided with structure
(P, ξ, η, ğ1), that P is a tensor field of type (1, 1), η is a one form, ξ is a vector field and ğ1 is to expressed
semi-Riemannian metric.

P2 = I − η ⊗ ξ, η(ξ) = 1, ğ1(PXa, PYb) = −ğ1(Xa,Yb) + η(Xa)η(Yb) (1)
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These situations require that

Pξ = 0 , η(PXa) = 0 , η(Xa) = ğ1(Xa, ξ), (2)

ğ1(PXa,Yb) = −ğ1(Xa,PYb). (3)

An almost para-contact metric manifold is named para-cosymplectic manifold if the following relation is
satisfied:

(∇̄Xa
P)Yb = 0 , P∇̄Xa

Yb = ∇̄Xa
PYb, ∇̄Xa

ξ = 0 (4)

including any vector fields Xa,Yb on N̄x.
Let currently, Nx is a submanifold of (P, ξ, η, ğ1). The Gauss and Weingarten equations are dedicated

by

∇̄XaYb = ∇XaYb + h1(Xa,Yb), (5)

∇̄Xa
V = −AV Xa +∇⊥

Xa
V, (6)

including Xa,Yb ∈ Γ(T Nx) and V ∈ Γ(T N⊥
b ), that h1 is a second fundamental form of Nx, AV is the

Weingarten endomorphism connected with V and ∇⊥ is the normal connection. AV and h1 are related
by

ğ1(AV Xa,Yb) = ğ1(h1(Xa,Yb), V ), (7)

here ğ1 designates the semi-Riemannian metric on Nx with the one introduced on Nx. For all tangent
vector field Xa, we denote

PXa = RXa + SXa, (8)

such that RXa is the tangential component of PXa and SXa is the normal one. For all normal vector
field V ,

PV = rV + sV, (9)

such that rV and sV are the tangential, normal components of PV , respectively.
From the covariant derivative of the tensor fields R,S,r and s, we get

(∇XaR)Yb = ∇XaRYb −R∇XaYb, (10)

(∇Xa
S)Yb = ∇⊥

X aSYb − S∇Xa
Yb, (11)

(∇Xa
r)V = ∇Xa

rV − r∇⊥
X aV, (12)

(∇Xas)V = ∇⊥
X asV − s∇⊥

X aV. (13)

The mean curvature vector is indicated by

H =
1

n
traceh1. (14)

Definition 1. We call that a submanifold Nx of almost para-contact metric structure (N̄x,P, ξ, η, ğ1) is
pointwise slant if for all time-like or space-like tangent vector field Xa, the ratio ğ1(RXa, RXa)/ğ1(PXa, PXa)
is a function. Moreover, a submanifold Nx of almost para-contact metric structure N̄x is named point-
wise slant, if at each point p ∈ Nx, the Wirtinger angle θ(X) between PXa and TpNx is dependent of
the choice of the non-zero Xa ∈ TpNx. In this instance, the Wirtinger angle causes a real-valued func-
tion θ : T Nx − 0 → R which is named the slant function or Wirtinger function of the pointwise slant
submanifold.

We express that a pointwise slant submanifold whose ambient spaces are almost para-contact manifold
is named slant, if its Wirtinger function θ is globally constant. We state that all slant submanifold is a
pointwise slant submanifold [9].

If Nx is a para-complex submanifold, in that case, PXa = RXa and the above ratio is equal to 1.
Moreover if Nx is totaly real, then R = 0, so PXa = SXa and the above ratio equals 0. Hence, both
para-complex submanifolds and totally real are the special situations of pointwise slant submanifolds.

Definition 2. Let Nx be a proper pointwise slant submanifold of almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). We call that it is of type-1 if for any spacelike(timelike) vector field Xa, RXa is time-

like(spacelike), also |RXa|
|PXa| > 1 and (For type-2) |RXa|

|PXa| < 1 .
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Theorem 1. Let Nx be a pointwise slant submanifold in almost para-contact metric structure (N̄x,P, ξ, η, ğ1).
So that, for any spacelike (timelike) vector field Xa, RXa is timelike (spacelike) and Nx is the pointwise
slant submanifold of type-1 -2 necessary and sufficient condition

(a) µ = R2 = cosh2θ(I − η ⊗ ξ), µ ∈ (1 ,+∞) (Type− 1), (15)

(b) µ = R2 = cos2θ(I − η ⊗ ξ), µ ∈ (0, 1) (Type− 2). (16)

where θ denotes the slant function of Nx.

Proof. Firstly, if Nx is a pointwise slant submanifold of type-1 for any spacelike tangent vector field Xa,
RXa is timelike. from the equation of (1), PXa also is. Furthermore, they supply |RXa|/|PXa| > 1. So,
there exists the slant function θ. Because of,

cosh θ =
|RXa|
|PXa|

=

√
−ğ1(RXa, RXa))√
−ğ1(PXa,PXa)

(17)

and using (1) and (17) , we have

ğ1(R
2Xa,Xa) = cosh2 θ(I − η ⊗ ξ)ğ1(Xa,Xa).

Thus, we get R2Xa = cosh2θ(Xa − η(Xa)ξ). So, µ = R2 = cosh2 θ(I − η ⊗ ξ).
Also, for any time-like tangent vector field Z, RZ and PZ are spacelike. Therefore, in place of (17), we
get

cosh θ =
|RZ|
|PZ|

=

√
ğ1(RZ, RZ))√
ğ1(PZ,PZ)

Because of R2Xa = cosh2θ(Xa−η(Xa)ξ), for any spacelike and timelike Xa it further provides for lightlike
vector fields and therefore we get µ = R2 = cosh2 θ(I − η ⊗ ξ). Thus, we get (a). In a similar way, we
have (b) □

Corollary 1. Let Nx be a pointwise slant submanifold of almost para-contact metric structure (N̄x,P, ξ, η, ğ1)
with the slant function θ. Later, for any non-null vector fields Xa,Yb ∈ T Nx− < ξ >, If Nx is of type-1,
type-2, we obtain:

ğ1(RXa, RYb) = − cosh2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = sinh2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)), (18)

ğ1(RXa, RYb) = − cos2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = − sin2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (19)

Corollary 2. Let Nx be a pointwise slant submanifold of an almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Later, let Nx be a pointwise slant submanifold of almost para-contact metric structure
N̄x. Therefore Nx is a pointwise slant submanifold of ( type-1 -2 ) necessary and sufficient condition,

* rSXa = − sinh2 θ(Xa − η(Xa)ξ) and SRX = −sSX (For type-1)
* rSXa = sin2 θ(Xa − η(Xa)ξ) and SRX = −sSX (For type-2)

are satisfied for all timelike (spacelike) vector field Xa.

3. Pointwise Hemi-Slant Submanifolds Whose Ambient Spaces are Para-Cosymplectic
Manifolds

Definition 3. A semi-Riemannian submanifold Nx of almost para-contact manifold (N̄x,P, ξ, η, ğ1) is
named to pointwise hemi-slant submanifold if there exist a two orthogonal distributions D⊥

t , Dα
n with

Nx. Such that,
1) T Nx = D⊥

t ⊕Dα
n⊕ < ξ > .

2) The distribution D⊥
t is an totally real distribution, PD⊥

t ⊂ T ⊥Nx.
3) The distribution Dα

n is a pointwise slant distribution.
Then, we say θ as function.
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Definition 4. Let Nx be a pointwise hemi-slant submanifold of an almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Let Dα

n be a pointwise slant distribution on Nx. Then, we call that it is of (For type-1)

if for any spacelike(timelike) vector field Xa, RXa is timelike(spacelike), also |RXa|
|PXa| > 1 and (For type-2)

|RXa|
|PXa| < 1 .

Theorem 2. Let Nx be a pointwise hemi-slant submanifold of almost para-contact metric structure
(N̄x,P, ξ, η, ğ1). Nx is the pointwise slant submanifold of type-1 -2 necessary and sufficient condition

(a) µ = R2 = cosh2θ(I − η ⊗ ξ), µ ∈ (1 ,+∞), (Type− 1). (20)

(b) µ = R2 = cos2θ(I − η ⊗ ξ), µ ∈ (0, 1), (Type− 2). (21)

For any spacelike (timelike) vector field Xa, RXa is timelike (spacelike).

Proof. The proof is proved like the proof of Theorem 1. □

Corollary 3. Let Nx be a pointwise hemi-slant submanifold of almost para-contact structure (N̄x,P, ξ, η, ğ1).
For non-null vector fields Xa,Yb ∈ T Nx− < ξ >, if Dα

n is of type-1 and type-2, then we obtain (respec-
tively)

ğ1(RXa, RYb) = − cosh2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = sinh2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (22)

and

ğ1(RXa, RYb) = − cos2 θ(ğ1(Xa,Yb)− η(X)η(Y )),

ğ1(SXa, SYb) = − sin2 θ(ğ1(Xa,Yb)− η(Xa)η(Yb)). (23)

Lemma 1. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is
para-cosymplectic manifold N̄x. We get, APZaWb = APWb

Za is satisfied for any non-null vector fields
Za,Wb ∈ D⊥

t .

Proof. For type-1 -2 and for Za,Wb ∈ D⊥
t , Ua ∈ Γ(T Nx), we write Ua = P1Ua + P2Ua + η(Ua)ξ. Let be

T Nx = D⊥
t ⊕Dα

n⊕ < ξ > and T ⊥Nx = PD⊥
t ⊕ SDα

n ⊕ λ
Using (3),(4),(6) and (7), we obtain

ğ1(APWb
Za,Ua) = ğ1(h1(Za,Ua),PWb)

= −ğ1(−APZa
Ua +∇⊥

Ua
PZa,Wb)

= ğ1(APZa
Wb,Ua).

□

Lemma 2. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is para-
cosymplectic manifold (N̄x,P, ξ, η, ğ1). In this case, the totally real distribution D⊥

t is always integrable.

Proof. For type-1, type-2 and since N̄x is a para-cosymplectic manifold, using equations (1),(3),(4),(5),(6),
(8) and from definition of projections for non-null vector fields Xa,Yb ∈ D⊥

t and Ua ∈ T Nx, we write

ğ1([Xa,Yb],PUa) = −ğ1(P[Xa,Yb],Ua)

= −ğ1(∇̄X aPYb,Ua) + ğ1(∇̄Y bPXa,Ua).

The right hand side of the last equation should be zero. Thus, we derive

ğ1([Xa,Yb],PUa) = 0,

ğ1([Xa,Yb], RUa) + ğ1([Xa,Yb], SUa) = 0,

ğ1([Xa,Yb], RP2Ua)) = 0.

From above equation, we have [Xa,Yb] = 0. So, D⊥
t is integrable. □

Lemma 3. Let Nx be a pointwise hemi-slant type-1 and type-2 submanifold whose ambient space is
para-cosymplectic manifold (N̄x,P, ξ, η, ğ1). For Dα

n⊕ < ξ > to be integrable, necessary and sufficient
condition
1) ğ1(∇Y bXa,Z) = sech2θ(ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ))(Tip-1)
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2) ğ1(∇Y bXa, Z) = sec2θ(ğ1(h1(Xa, Z), SRYb)− ğ1(h1(Xa, RYb),PZ))(Tip− 2)
for non-null vector fields Xa,Yb ∈ Dα

n⊕ < ξ > and Z ∈ D⊥
t .

Proof. We demonstrate 1) and 2) in a similar method. We will give its proof when Dα
n is type-1. N̄x is

a para-cosymplectic manifold, using (1),(2),(3),(4),(5),(6),(7),(8) and Corollary 2, we write

ğ1([Xa,Yb], Z) = ğ1(∇̄X aYb − ∇̄Y bXa,Z)

= −ğ1(∇̄X aPYb,PZ)− η(∇̄X aYb)η(Z)− ğ1(∇̄Y bXa,Z)

= −ğ1(∇̄X aRYb,PZ)− ğ1(∇̄X aSYb,PZ)− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ) + ğ1(∇̄X aPSYb,Z)− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ) + ğ1(∇̄X arSYb,Z) + ğ1(∇̄X asSYb,Z)

− ğ1(∇̄Y bXa,Z)

= −ğ1(h1(Xa, RYb),PZ)− sinh2θğ1(∇̄X aYb,Z)

+ ğ1(h1(Xa,Z), SRYb)− ğ1(∇̄Y bXa,Z)

making add subtract sinh2θğ1(∇̄Y bXa,Z) above equation, we have

cosh2θğ1(([Xa,Yb],Z)) = ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ)

− cosh2θğ1(∇̄Y bXa,Z)

ğ1(([Xa,Yb],Z)) = sech2θ(ğ1(h1(Xa,Z), SRYb)− ğ1(h1(Xa, RYb),PZ))

− ğ1(∇̄Y bXa,Z)

The right hand side of the last equation should be zero, proof is complete. □

Theorem 3. Let Nx be a pointwise hemi-slant type1-2 submanifold whose ambient space is para-cosymplectic
manifold (N̄x,P, ξ, η, ğ1). In that case, totally real distribution D⊥

t describes a totally geodesic foliation,
necessary and sufficient condition

ğ1(APWb
RXa−ASRXa

Wb,Za) = 0 (24)

is satisfied for non-null vector fields Za,Wb ∈ D⊥
t , Xa ∈ Dα

n⊕ < ξ >.

Proof. For type-1 , we obtain

ğ1(∇ZaWb,Xa) = ğ1(∇̄ZaWb,Xa)− ğ1(h1(Za,Wb),Xa).

Using (1) and (5), we get

ğ1(∇ZaWb,Xa) = −ğ1(P∇̄ZaWb,PXa) + η(∇̄ZaWb)η(Xa)

= −ğ1(P∇̄ZaWb,PXa).

Using (6), (8), also from PW and SXa are orthogonally. We obtain

ğ1(∇ZaWb,Xa) = −ğ1(∇̄ZaPWb, RXa)− ğ1(∇̄ZaPWb, SXa)

= ğ1(APWb
Za, RXa)− ğ1(∇⊥

Za
PWb, RXa) + ğ1(∇̄ZaSXa,PWb).

Using (1), (4) and (7). We obtain

ğ1(∇ZaWb,Xa) = ğ1(APWb
Za, RXa) + ğ1(∇̄ZaSXa,PWb)

= ğ1(h1(Za, RXa),PWb)− ğ1(∇̄ZaPSXa,Wb).

Using (9) and (Corollary 2 for type-1), we obtain

ğ1(∇ZaWb,Xa) = ğ1(h1(Za, RXa),PWb)− ğ1(∇̄ZarSXa,Wb)

− ğ1(∇̄ZasSXa,Wb)

= ğ1(h1(Za, RXa),PWb) + sinh2θğ1(∇̄ZaXa,Wb)

+ ğ1(∇̄ZaSRXa,Wb).

Using (5), (6), (7) and because of Wb and Xa are orthogonally, we obtain

ğ1(∇ZaWb,Xa) = ğ1(h1(Za, RXa),PWb)− sinh2θğ1(∇ZaWb,Xa)



122 S. AYAZ, Y. GÜNDÜZALP

− ğ1(h1(Za,Wb), SRXa)

cosh2θğ1(∇ZaWb,Xa) = ğ1(h1(RXa,Za),PWb)− ğ1(h1(Wb,Za), SRXa)

cosh2θğ1(∇ZaWb,Xa) = ğ1(APWb
RXa,Za)− ğ1(ASRXa

Wb,Za).

Thus, the proof is complete. In the same way, we get for type-2 □

Theorem 4. Let Nx be a pointwise hemi-slant type1-2 submanifold whose ambient space is para-cosymplectic
manifold (N̄x,P, ξ, η, ğ1). In that case, pointwise slant distribution Dα

n⊕ < ξ > describes a totally geodesic
foliation, necessary and sufficient condition

ğ1(ASRXa
Wb −APWb

RXa,Yb) = 0 (25)

is satisfied for non-null vector fields Wb ∈ D⊥
t and Xa,Yb ∈ Dα

n⊕ < ξ >.

Proof. For type-1, using (1) and (5), we get

ğ1(∇Y bXa,Wb) = ğ1(∇̄Y bXa,Wb)

= −ğ1(∇̄Y bPXa,PWb).

Using (3), (5),(6), (8) and Corollary 2, we obtain

ğ1(∇Y bXa,Wb) = −ğ1(∇Y bRXa,PWb)− ğ1(h1(Yb, RXa),PWb)

+ ğ1(P∇̄Y bSXa,Wb)

= −ğ1(h1(Yb, RXa),PWb) + ğ1(∇̄Y brSXa,Wb)

+ ğ1(∇̄Y bsSXa,Wb)

− ğ1(∇̄Y bSRXa,Wb).

(1 + sinh2θ)ğ1(∇Y bXa,Wb) = −ğ1(h1(Yb, RXa),PWb)− ğ1(∇̄Y bSRXa,Wb).

(cosh2θ)ğ1(∇Y bXa,Wb) = −ğ1(APWb
RXa,Yb)− ğ1(−ASRXa

Yb,Wb)

− ğ1(∇⊥
Yb
SRXa,Wb)

= ğ1(ASRXaWb −APWb
RXa,Yb).

So, the proof is completed. In the same way, we have for type-2 too. □

Corollary 4. Let Nx be a pointwise hemi-slant submanifold type-1,2 submanifold whose ambient space is
para-cosymplectic manifold N̄x. Therefore Nx is a locally semi-Riemannian product structure, necessary
and sufficient condition

APYb
RXa = ASRXaYb

is satisfied for Xa ∈ Dα
n⊕ < ξ > and Yb ∈ D⊥

t , that N⊥
b is a anti-invariant submanifold and N θ

a is a
pointwise slant submanifold of N̄x.

4. Pointwise Hemi-Slant Non-Trivial Warped Product Submanifolds of
Para-Cosymplectic Manifolds

Warped product manifolds were introduced by Bishop and O’Neill [3]. Projections of Na × Nb are
β1 : Na ×Nb → Na and β2 : Na ×Nb → Nb. Such that warped product manifold Nx = Na ×k Nb is the
Riemannian manifold Na ×Nb = (Na ×Nb, ğ) with the Riemannian structure. Therefore

ğ(Xa,Yb) = ğ1(β1∗Xa, β1∗Yb) + (k ◦ β1)
2ğ1(β2∗Xa, β2∗Yb)

for every vector fields Xa,Yb ∈ Γ(TNx), that * indicates the tangent map. The function k is named the
warping function of the warped product manifold. Especially, if the warping function is non-constant,
the manifold Nx is named to be non-trivial. Na is totally geodesic and Nb is totally umbilical in Nx.

Lemma 4. Let Nx = Na ×k Nb be a warped product manifold with warping function k, therefore
1) ∇Xa

Yb ∈ Γ(T Na) is the lift of ∇Xa
Yb on Na;

2) ∇Xa
Z = ∇ZXa = (Xalnk)Z ;

3) ∇ZW = ∇̄2
ZW − (ğ(Z,W)÷ k) gradk ;

are satisfied for non-null vector fields Xa,Yb ∈ T Na and Z,W ∈ T Nb, where gradk is the gradient of k
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introduced as ğa(gradk,Xa) = Xak also ∇ , ∇̄2
define the Levi-Civita connections on Nx and Nb [3].

As a result, we get

||gradk||2 =

s∑
v=1

(ev(k))
2 (26)

is satisfied for an orthonormal frame (e1 , ..., es) on Na.

Theorem 5. There does not exist a pointwise hemi-slant non-trivial warped product submanifolds Nx =
N⊥

b ×kN θ
a whose ambient space is para-cosymplectic manifold N̄x and ξ ∈ T N⊥

b . Such that N⊥
b is totally

real and N θ
a is pointwise slant submanifold of N̄x.

Proof. The non-existence of warped products pointwise semi-slant submanifolds whose ambient spaces
are cosymplectic manifolds had proved by K.S. Park [7]. Similarly, we can demonstrate the non-existence
of warped products pointwise hemi-slant submanifolds whose ambient spaces are para-cosymplectic man-
ifolds. □

Let’s consider para-cosymplectic structure on R̄7
3 :

P(
∂

∂xi
) =

∂

∂yi
, P(

∂

∂yi
) =

∂

∂xi
, P(

∂

∂z
) = 0, ξ =

∂

∂z
, η = dz.

Here, η is 1-form, ξ is vector field and ğ1 = (+,−,+,−,+,−,+). ğ1 is pseudo-Riemannian metric.
Also, (x1, y1, x2, y2, x3, y3, z) denotes the cartesian coordinates over R̄7

3. Then (R̄7
3,P, ξ, η, ğ1) is a para-

cosymplectic manifold.
Let Nx be a semi-Riemannian submanifold of R̄7

3 described by ψ : Nx → R̄7
3.

Example 1. For m+ n > 0 and m + n ∈ R with

ψ(m, n, c, t) = (coshm, coshn, sinhn, sinhm, c3, α, t),

ψm = sinh m
∂

∂x1
+ cosh m

∂

∂y2
, ψn = sinh n

∂

∂y1
+ cosh n

∂

∂x2
,

ψc = +3c2
∂

∂x3
, ψt =

∂

∂z
= ξ.

Then, we get

Pψm = sinh m
∂

∂y1
+ cosh m

∂

∂x2
, Pψn = sinh n

∂

∂x1
+ cosh n

∂

∂y2
, Pψc = 3c2

∂

∂y3

describes a pointwise hemi-slant submanifold N 4
x with type-1 whose ambient space is para-cosymplectic

manifold (R̄7
3,P, ξ, η, ğ1) with µ = R2 = cosh2(m+n)(I−η⊗ξ). Actually Dα

n = span{ψm, ψn} is pointwise
slant distribution with hemi-slant function and D⊥

t = span{ψc} is anti-invariant distribution.
It is easy to notice that Dα

n , D⊥
t are integrable. The induced metric tensor gNx on Nx = N θ

a ×k N⊥
b is

given by gNx
= −dm2 + dn

2 + (9c4)dc
2 + dt

2.
Thus, Nx is a pointwise hemi-slant non-trivial warped product type-1 submanifold whose ambient space
is para-cosymplectic manifold R̄7

3 with warping function k = 3c2.

Example 2. For m− n ∈ (0, π2 ) with

ψ(m, n, c, t) = (cosm, cosn, sinm, sinn, sin c, π, t),

ψm = − sinm
∂

∂x1
+ cosm

∂

∂x2
, ψn = − sinn

∂

∂y1
+ cos n

∂

∂y2
,

ψc = cos c
∂

∂x3
, ψt =

∂

∂z
= ξ,

Then, we get

Pψm = − sin m
∂

∂y1
+ cos m

∂

∂y2
, Pψn = − sin n

∂

∂x1
+ cos n

∂

∂x2
, Pψc = cos c

∂

∂y3

describes a pointwise hemi-slant submanifold with type-2 in (R̄7
4,P, ξ, η, ğ1), with µ = R2 = cos2(m−n)(I−

η ⊗ ξ). Dα
n = span{ψm, ψn} is pointwise slant distribution with hemi-slant function and D⊥

t = span{ψc}
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is anti-invariant distribution and Pψc⊥TNx = span{ψm, ψn, ψt}.
It is easy to notice that Dα

n , D⊥
t are integrable. The induced metric tensor gNx on Nx = N θ

a ×k N⊥
b

is given by gNx
= dm

2 − dn
2 + (cos2 c)dc

2 + dt
2. Thus, N 4

x is a pointwise hemi-slant non-trivial warped
product type-2 submanifold whose ambient space is para-cosymplectic manifold R̄7

3 with warping function
k = cosc.

Lemma 5. Let Nx = N θ
a ×kN⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 submanifold
whose ambient space is para-cosymplectic manifold N̄x. Such that ξ ∈ TN⊥

b , then
1) ξ(lnk) = 0.
2) For any Xa,Yb ∈ TN θ

a and Z ∈ TN⊥
b ,

ğ1(h1(Xa,Yb),PZ) = ğ1(h1(Xa,Z), SYb). (27)

Proof. 1) For any Xa ∈ TN θ
a and ξ ∈ TN⊥

b , we obtain ∇̄Xa
ξ = 0. Also Using (5),(6) and from Lemma

4 - (2), we obtain ξ(lnk)Xa = 0 which means that ξ(lnk) = 0, for any non-zero vector field Xa ∈ TN θ
a

that proves 1).
2)Using (5),(3), (8),(6), (7), we derive

ğ1(h1(Xa,Yb),PZ) = ğ1(∇̄XaYb −∇XaYb,PZ)

= −ğ1(∇̄XaPYb,Z)

= −ğ1(∇̄XaSYb,Z)

= −ğ1(−ASYb
Xa +∇⊥

Xa
SYb,Z)

= ğ1(h1(Xa,Z), SYb)

If we relocate Xa with RXa and Yb with RYb in (27) , then we get belove results

ğ1(h1(RXa,Yb),PZ) = ğ1(h1(RXa,Z), SYb), (28)

ğ1(h1(Xa, RYb),PZ) = ğ1(h1(Xa,Z), SRYb), (29)

ğ1(h1(RXa, RYb),PZ) = ğ1(h1(RXa,Z), SRYb). (30)

□

Lemma 6. Let Nx = N θ
a ×kN⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 submanifold
whose ambient space is para-cosymplectic manifold N̄x. Such that ξ ∈ TN θ

a , then
1) ğ1(h1(Za,Wb), SXa) = ğ1(h1(Xa,Za),P,Wb) + (RXalnk)ğ1(Za,Wb),
2) a) For type-1;
ğ1(h1(Za,Wb), SRXa) = ğ1(h1(RXa,Za),PWb) + (Xalnk)cosh

2θğ1(Za,Wb),
b) For type-2 ;
ğ1(h1(Za,Wb), SRXa) = ğ1(h1(RXa,Za),PWb)− (Xalnk)cos

2θğ1(Za,Wb),
for any Za,Wb ∈ TN⊥

b and Xa ∈ TN θ
a .

Proof. Using (8), (5) and Lemma 4-(2), we derive

ğ1(h1(Za,Wb), SXa) = ğ1(h1(Xa,Za), (PXa −RXa))

= ğ1(∇̄ZaWb,PXa)− ğ1(∇ZaWb,PXa)

= ğ1(∇̄ZaPWb,Xa)− ğ1(∇ZaW, RXa).

By using (4) and from Wb and RXa are orthogonality. Also later using (6), (7) and from Lemma 4-(2),
we obtain

ğ1(h1(Za,Wb), SXa) = −ğ1(∇̄Za
PWb,Xa) + ğ1(Wb,∇Za

RXa)

= −ğ1(−APWb
Za,Xa) + ğ1(∇⊥

Za
PWb,Xa)

+ (RXalnk)ğ1(Za,Wb)

= ğ1((h1(Xa,Za),PWb) + (RXalnk)ğ1(Za,Wb).

Therefore, Proof 1 is complete. Now, we will demonstrate proof 2(a) for type-1.
If we replace Xa and RXa in the last equation and using (1), we derive

ğ1(h1(Za,Wb), SXa) = ğ1((h1(Xa,Za),PWb) + (RXalnk)ğ1(Za,Wb)

= ğ1((h1(RXa,Za),PWb) +R2(Xalnk)ğ1(Za,Wb).
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For type-1, (a);

ğ1(h1(Za,Wb), SRXa) = ğ1((h1(RXa,Za),PWb) + cosh2θ(Xalnk)ğ1(Za,Wb).

For type-2, (b);

ğ1(h1(Za,Wb), SRXa) = ğ1((h1(RXa,Za),PWb) + cos2θ(Xalnk)ğ1(Za,Wb).

□

Theorem 6. Let Nx = N θ
a ×k N⊥

b be a pointwise hemi-slant non-trivial warped product type1-2 subman-
ifold whose ambient space is para-cosymplectic manifold N̄x. Then Nx is locally a mixed geodesic warped
product pointwise submanifold N θ

a ×k N⊥
b necessary and sufficient condition

APZaXa = 0, ASXaZa = RXa(φ)Za, ASRXaZa = cosh2θXa(φ)Za (Type1), (31)

APZa
Xa = 0, ASXa

Za = RXa(φ)ZaASRXa
Za = cos2θXa(φ)Za (Tip− 2) (32)

are satisfied for any Xa ∈ Dα
n⊕ < ξ > and Za ∈ D⊥

t , that φ is a function on Nx and Wb(φ) = 0 is
satisfied for any Wb ∈ D⊥

t .

Proof. Using advantage of Lemmas 4 and 5, we demonstrate that Nx is a mixed geodesic warped product
pointwise submanifold. Let Nx be a hemi-slant submanifold with the slant distribution Dα

n⊕ < ξ > and
the anti-invariant distribution D⊥

t with the cases shown in (31) and (32). Also using these conditions
and Theorem 4, the distribution Dα

n⊕ < ξ > describes a totally geodesic foliation and utilizing Lemma
2, D⊥

t is integrable, imagine h⊥ be the second fundamental form of the leaf N⊥
b of D⊥

t in Nx, Also for
any Xa ∈ Dα

n⊕ < ξ > and Wb,Za ∈ D⊥
t .

Utilizing (5), (1), (3), (4) and (8), we have

ğ1(h
⊥(Za,Wb),Xa) = ğ1((∇̄Za

Wb,Xa)

= −ğ1((∇̄Za
PWb,PXa) + η(∇̄Za

PWb)η(PXa)

= −ğ1((∇̄Za
PWb, RXa)− ğ1((∇̄Za

PWb, SXa).

Utilizing (6) and therefore PWb and SXa are orthogonality, we obtain

ğ1(h
⊥(Za,Wb),Xa) = −ğ1((APWb

Za, RXa) + ğ1(PWb, ∇̄Za
SXa).

Utilizing (1),(3),(4) and (9), we get

ğ1(h
⊥(Za,Wb),Xa) = −ğ1((APWb

RXa,Za)− ğ1(Wb, ∇̄ZarSXa)

− ğ1(Wb, ∇̄ZasSXa).

Utilizing first condition of (31) and Corollary 2, we derive

ğ1(h
⊥(Za,Wb),Xa) = ğ1(Wb, ∇̄Za

sinh2θXa) + ğ1(Wb, ∇̄Za
SRXa).

Therefore, orthogonality of Wb with Xa, using (5),(6) and (31), we derive

ğ1(h
⊥(Za,Wb),Xa) = −sinh2θğ1(∇̄ZaWb,Xa)

+ ğ1(Wb, (−ASRXa
Za +∇⊥

Za
SRXa))

= −sinh2θğ1(h⊥(Za,Wb),Xa)− ğ1(ASRXa
Za,Wb),

−cosh2θğ1(h⊥(Za,Wb),Xa) = ğ1(ASRXa
Za,Wb)

= cosh2θXa(φ)ğ1(Za,Wb).

From the describtion of gradient, we obtain

ğ1(h
⊥(Za,Wb),Xa) = −ğ1(Za,Wb)ğ1(gradφ,Xa).

So that, h⊥(Za,Wb) = −ğ1(Za,Wb)ğ1gradφ for vectors Za,Wb ∈ D⊥
t . H = −gradφ and N⊥

b is totally
umbilical in Nx

Now, we explain gradφ is parallel suitable to the normal connection D⊥
t of N⊥

b in Nx. For Xa ∈ Dα
n⊕ <

ξ > and Wb ∈ D⊥
t , we derive

ğ1(DWb
gradφ,Xa) = ğ1(∇Wb

gradφ,Xa)

= Wbğ1(gradφ,Xa)− ğ1(gradφ,∇Wb
Xa)

= Wb(Xa(φ))− ğ1(gradφ, [Wb,Xa])− ğ1(gradφ,∇XaWb)
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= Xa(Wbφ) + ğ1(∇Xa
gradφ,Wb) = 0.

So, Wbφ = 0 is satisfied for every Wb ∈ D⊥
t also ∇Xa

gradφ ∈ Dα
n⊕ < ξ > therefore Dα

n⊕ < ξ > is totally
geodesic. We understand that mean curvature of N⊥

b is parallel. So that, the leaves of D⊥
t are totally

umbilical with parallel mean curvature H = −gradφ. So, N⊥
b is called the extrinsic sphere in Nx. By

considering Hiepko ( [6]), we attain that Nx is a warped product pointwise submanifold and the proof is
completed for type-1 .
In a similarly way, for type-2 is also proved. □

5. An Optimal Inequality

Let Nx = N θ
a ×k N⊥

b be a s-dimensional pointwise hemi-slant non-trivial warped product submanifold
whose ambient space is (2m+1)-dimensional para-cosymplectic manifold N̄x. Such that, N⊥

b is dimension
d1 and N θ

a is dimension d2 = 2p + 1 so ξ is tangent to N θ
a . We take tangent spaces of N⊥

b and N θ
a by

D⊥
t and Dα

n⊕ < ξ >. We create orthonormal frames according to type-1 and type-2. Firstly for type-1,
the orthonormal frames of D⊥

t and Dα
n⊕ < ξ >, respectively;

{E1, E2, .., Ed1
} and {Ed1+1 = E∗1 , ..., Ed1+p = E∗p , Ed1+p+1 = E∗p+1 = sechθRE∗1, ...

, Ed1+2p = E∗2p = sechθRE∗p , Ed1+2p+1 = E∗2p+1 = ξ} that θ is nonconstant.

At the moment, we will give orthonormal frames of the normal subbundles of PD⊥
t , SD

α
n and λ. This

frames respectively are
{Es+1 = Ē1 = PE1, Es+2 = Ē2 = PE2, ..., Es+d1 = Ēd1 = PEd1},
{Es+d1+1 = Ēd1+1 = cschθSE∗1, Es+d1+2 = Ēd1+2 = cschθSE∗2, ..., Es+d1+p = Ēd1+p = cschθSE∗p, Es+d1+p+1 =
Ēd1+p+1 = cschθsechθSRE∗1, ..., Es+d1+p+p = Ēd1+p+p = cschθsechθSRE∗p} and
{E2s = Ēs, ..., E2m+1 = Ē2(m−s+1)}. where θ is the slant function.
Lets assume that
* on D⊥

t : orthonormal basis {Ev}v=1 ,...,d1 , where d1 = dim(D⊥
t ); also, supposed that ğ1(Ev, Ev) = 1.

* on Dα
n : orthonormal basis {E∗w}w=1 ,...,2p+1, where 2p+ 1 = dim(Dα

n) also ğ1(E
∗
w, E

∗
w) = ∓1.

* on PD⊥
t : orthonormal basis {Ev}v=1 ,...,d1

, where d1 = dimP(D⊥
t ) also ğ1(PEv,PEv) = −1.

* on SDα
n : orthonormal basis {E∗w}w=1 ,...,2p+1, where 2p+ 1 = dimS(Dα

n) also ğ1(E
∗
w, E

∗
w) = ∓1.

Theorem 7. Let Nx = N θ
a ×kN⊥

b be a s-dimensional mixed geodesic warped product pointwise hemi-slant
of type-1 submanifold whose ambient space is (2m+ 1 )- dimensional para-cosymplectic manifold N̄x. So
that N θ

a is a proper pointwise slant submanifold of dimension 2p+1 and N⊥
b is a totally real submanifold

of dimension d1 of N̄x. So that N⊥
b is spacelike. Then

1) The squared norm of the second fundamental form of Nx supplies

||h1||2 ≤ d1coth
2 θ||gradlnk||2 , (33)

where grad(lnk) is the gradient of lnk.

2) If the equality sign of (33) holds the same way, then N θ
a is totally geodesic and N⊥

b is totally umbilical
in N̄x.

Proof. From description ||h1||2 = ||h1(Dm,Dm)||2 + 2||h1(Dm,D⊥
t )||2 + ||h1(D⊥

t ,D⊥
t )||2 , that Dm =

Dα
n⊕ < ξ >. Because of Nx is mixed geodesic, the middle term of the right-hand side should be zero. In

that case, we obtain

||h1||2 =

2m+1∑
r=s+1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Er)

2 +

2m+1∑
r=s+1

d1∑
l,b=1

ğ1(h1(E
∗
l , E

∗
b), Er )

2

This equation can be seperated for the PD⊥
t , SD

α
n and λ components as follows

||h1||2 =

d1∑
r=1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2

+

2p+d1∑
r=d1+1

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2
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+

2(m−s+1)∑
r=s

2p+1∑
v,w=1

ğ1(h1(E
∗
v, E

∗
w), Ēr)

2

+

d1∑
r=1

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2

+

2p+1∑
r=d1+1

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2

+

2(m−s+1)∑
r=s

d1∑
l,b=1

ğ1(h1(El, Eb), Ēr)
2 (34)

Utilizing( 27) and ( 30), the first term of right-hand side in the last equation vanishes same way and we
should leave all the terms except the fifth term in the last equation, then we have

||h1||2 ≤
∑2p+d1

r=d1+1

∑d1

l,b=1 ğ1(h1(El, Eb), Ēr)
2

Using the frame of SDα
n , we get,

||h1||2 ≤
p∑

w=1

d1∑
l,b=1

ğ1(h1(El, Eb), cschθSE
∗
w)

2

+

p∑
w=1

d1∑
l,b=1

ğ1(h1(El, Eb), cschθsechθSRE
∗
w)

2

Utilizing Lemma 5 and Lemma 6-1, we obtain

||h1||2 ≤ csch2θ

p∑
w=1

d1∑
l,b=1

(RE∗wlnk)
2ğ1(El, Eb)

2

+ coth2θ

p∑
w=1

d1∑
l,b=1

(E∗wlnk)
2ğ1(El, Eb)

2

= (csch2θ

p∑
w=1

(RE∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2

= d1(csch
2θ

p∑
w=1

(RE∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2)

= d1(csch
2θ

p∑
w=1

ğ1(E
∗
w, Rlnk)

2 + coth2θ

p∑
w=1

(E∗wlnk)
2)

By using ( 26), the above equation will be simlified as

||h1||2 ≤ d1[csch
2θ(||Rgradlnk||2 −

p∑
w=1

ğ1(E
∗
p+w, Rgradlnk)

2)

+ coth2θ

p∑
w=1

d1∑
l,b=1

(E∗wlnk)
2ğ1(E

∗
wlnk)

2]

, (for Rgradlnk ∈ Dm and Rξ = 0 )

= d1[csch
2θ(||Rgradlnk||2 − cosh2θ

p∑
w=1

ğ1(E
∗
w, gradlnk)

2)

+ coth2θ

p∑
w=1

(E∗wlnk)
2]
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= d1[coth
2θ||Rgradlnk||2 − coth2θ

p∑
w=1

(E∗wlnk)
2 + coth2θ

p∑
w=1

(E∗wlnk)
2]

Last equation specifies in ( 33) and from the leaving terms in (34), we have the following connections
from the second and the third leaving terms of (34).
ğ1(h1(Dm,Dm)SDα

n) = 0 , ğ1(h1(Dm,Dm), λ) = 0 that intend

h1(Dm,Dm)⊥SDα
n , h1(Dm,Dm)⊥λ⇒ h1(Dm,Dm) ∈ PD⊥

t (35)

Because of a mixed geodesic warped product pointwise submanifold and from Theorem 5 , we derive
ğ1(h1(Dm,Dm),PD⊥

t ) = 0. Such that

h1(Dm,Dm)⊥PD⊥
t (36)

When we take into account (35) and (36), understand that h1(Dm,Dm) = 0 using this connection with
the fact that N θ

a is totaly geodesic in Nx ( [3]).
From the leaving fourth and the sixth terms of (34) on the right side, we determine that ğ1(h1(D⊥

t ,D⊥
t ),PD⊥

t ) =
0, ğ1(h1(D⊥

t ,D⊥
t ), λ) = 0, we get

h1(D⊥
t ,D⊥

t )⊥PD⊥
t , h1(D⊥

t ,D⊥
t )⊥λ⇒ h1(D⊥

t ,D⊥
t ) ∈ SD⊥

t (37)

For a mixed geodesic, from Lemma 5(1), we derive

ğ1(h1(Za,Wb), SXa) = (RXalnk)ğ1(Za,Wb) (38)

for any Xa ∈ TN θ
a and Za,Wb ∈ TN⊥

b .
Therefore, by the connections (37), (38) and substantially N⊥

b is totally umbilical in Nx [3], we obtain
that N⊥

b is totally umbilical in N̄x. □

Remark 1. If N⊥
b manifold of Theorem 7 is totally umbilical and timelike, equation (33) should be

modified by

||h1||2 ≥ d1coth
2 θ||gradlnk||2 , (39)

where grad(lnk) is the gradient of lnk.

Theorem 8. Let Nx = N θ
a ×kN⊥

b be a s-dimensional mixed geodesic warped product pointwise hemi-slant
submanifold whose ambient space is (2m+1)- dimensional para-cosymplectic manifold N̄x. So that N θ

a is
a pointwise slant submanifold and N⊥

b is a totally real submanifold of dimension d1 of N̄x. Hence, N⊥
b

is spacelike and timelike. Then, (for type-2)

||h1||2 ≤ d1cot
2θ||gradlnk||2 (respectively, ||h1||2 ≥ d1cot

2θ||gradlnk||2 ), (40)

where grad(lnk) is the gradient of lnk.
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