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Abstract 
 

In this paper we introduce some new graphs obtained from bipartite posets. We show that lower-minimal 
graph of a bipartite poset is isomorphic to upper-maximal graph of dual of the poset by using set 
representations of the posets by using set representations of the posets. 
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1. Preliminaries 
 

In this section we give some definitions we shall use in this 
paper. We study with finite posets and finite simple 
graphs. 
 
Definition 1.1. A partial order (Simovici, Dan A. and 
Djeraba, Chabane, 2008) is a binary relation ≤ over a set P  
if it has: 

 
- a ≤ a for all a ∈ P (reflexivity), 
 
- if a ≤ b and b ≤ a then a = b , a, b ∈ P (antisymmetry), 
 
- if a ≤ b and b ≤ c then a ≤ c,  a,b ,c ∈ P (transitivity). 
 

Definition 1.2. (Simovici, Dan A. and Djeraba, Chabane, 
2008) Let P = (X,≤P) be a poset and x, y ∈ X. If x ≤P y and x 
≠ y then x <P y. 

 
Definition 1.3. (Simovici, Dan A. and Djeraba, Chabane, 
2008) Let P = (X,≤P) be a poset. An element x ∈ X is called 
a maximal element (respectively, a minimal element) of P 
if there is no element y ∈ X with x <P y in P (resp., y <P x in 
P). We denote the set of all maximal elements of a poset P 
by max(P), while min(P) denotes the set of all minimal 
elements of P. 

 
Definition 1.4. (Steiner, G., and Stewart, L. K., 1987) A 
bipartite poset is a triple P = (X,Y;≤), where ≤ is a partial 
order on X ∪ Y and if x < y in P, then x ∈ X and y ∈ Y.  X = 
max(P) and Y = min(P).  

 
Definition 1.5.  A dual poset Pd of a poset P is defined to be 
x ≤y holds in Pd if and only if y≤x holds in P. 
 

 
 
Figure 1. An example for Pd of a poset P 

 

Definition 1.6. (Civan, Y., 2013) Let P = (X,≤P ) be a poset. 
For a given x ∈ X, we define min(x) ∶= {c ∈ min(P) ∶ c ≤P x}.  
 
Definition 1.7. A graph G is an ordered pair of disjoint sets 
(V,E), where E ⊆ V ×V . Set V is called the vertex or node 
set, while set E is the edge set of graph G. A simple graph 
does not contain self-loops.  
 
Definition 1.8. (Chartrand, G., 1985) Let G = (V, E) and G1 = 
(V1,  E1) be graphs. G and G1 are said to be isomorphic (G 
∼ G1) if there exist a pair of functions f : V −→ V1 and f : E 
−→ E1 such that f associates each element in V with exactly 
one element in V1 and vice versa; g associates each 
element in E with exactly one element in E1 and vice versa, 
and for each v ∈ V , and each e ∈ E , if v is an endpoint of 
the edge e, then f(v) is an endpoint of the edge g(e). 
 
Definition 1.9. (Skienna. S, 2003) Chromatic number of a 
graph G, χ(G) is the smallest number of colors needed to 
color the vertices of G so that  no two adjacent vertices 
share the same color. 
 
Definition 1.10. (Civan, Y., 2013) Let P = (X,≤P ) be a poset. 
For a given x ∈ X,  we define max(x) ∶= {c ∈ max(P) ∶ x ≤P 
c}.  
 

Definition 1.11. (Civan, Y., 2013) The upper-maximal 
graph UM(P) = (X, EUM(P)) of P = (X,≤) is defined to be the 
simple graph on X with xy ∈ UM(P) if and only if x ≠ y and 
either max(x) ⊆ max(y) or max(y) ⊆ min(x) holds. The 
graph is called UM-graph.  
 

 
 
 
Figure 2. An example for UM-graph of a poset P 

 
Definition 1.12. (Civan, Y., 2013)  The lower-minimal 
graph LM(P) = (X, ELM(P)) of P = (X,≤) is defined to be the 
simple graph on X with xy ∈ LM(P) if and only if x ≠ y and 
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either min(x) ⊆ min(y) or min(y) ⊆ min(x) holds. The 
graph is called LM-graph.  
 

 
 
Figure 3. An example for LM-graph of a poset P 

 
 
2. Set Representations of Graphs of Bipartite 

Posets 
 

We want to obtain lower-minimal graph and upper-
maximal graph of dual poset of a bipartite poset by using 
representations in Definition 1.3 and Definition 1.4 in 
order to analyze graph theotretical relations between the 
graphs. 
 
Definition 2.1 Let P = (X,Y ; ≤) be a bipartite poset. Set 
terms are elements of P under interpretation of [[ ]] such 
that [[y]]= {x1, x2, x3, …, xn} where y ∈ Y, x1, x2, x3, …, xn ∈ X 
and y < x1, y < x2,…,y < xn. 
 
Definition 2.2 Let P = (X,Y ;≤) be a bipartite poset. Upper 
set terms are elements of P under interpretation of [[ ]] 
such that [[y]]U= {x1, x2, x3, …, xn} where y ∈ Y,  x1, x2, x3, …, 

xn ∈ X and y>x1, y>x2,…,y>xn. 
 
 
3.    Proofs 
 
 
Proposition 2.1. LM-graph of every bipartite poset is 
representable by set terms of the poset as Definition 2.1. 
 
Proof. Let P = (X,Y ;≤) be  a bipartite poset. One can obtain 
[[y]]= {x1, x2, x3, …, xn} for all y ∈ Y and , x1, x2, x3, …, xn ∈ X  
by taking Y=min(P), X=max(P) and y<x1, y<x2,…,y<xn . 
Under the circumtances, ELM(XUY) is obtained by taking 
xiy∈ ELM(XUY)  and min(xi) ⊆ min(y) for all y ∈ Y  and 1 
≤ i < n. On the other hand, it is true that xixj ∈ ELM(XUY) 
since min(xi) ⊆ min(xj) or min(xj) ⊆ min(xi)  for y<xi, y<xj 
for 1≤ i ,j ≤ n. Therefore, the lower-minimal graph is 
LM(P)=(XUY, ELM(XUY)). 
 
Lemma 2.2. Let P = (X,Y ;≤) be  a bipartite poset with 
min(P)=X, max(P)=Y and [[xi]] are set terms of P where 1≤ 
i ≤  n and yj ∈ Y such that  1≤ j ≤ m. Then all [[yj]] which 
hold the condition ‘’ if yj ∈ [[xi]] then xi ∈ [[yj]] ‘’ are  set 
terms of Pd for all xi ∈ X, 1≤ i ≤  n and for all yj ∈ Y, 1≤ j ≤ 
m. 
 
Proof. Let P = (X,Y ;≤) be  a bipartite poset with min(P)=X, 
max(P)=Y and [[xi]] are set terms of P where 1≤ i ≤ n and 
yj ∈ Y such that  1≤ j ≤ m. It is obvious that Pd=(X, Y, ≤) is a 
bipartite poset with max(P)=X and min(P)=Y. İf xi < yj in P 
than xi > yj in Pd from Definition 2.1. Therefore, every [[yj]] 
is a set term in Pd for all yj  ∈ Pd. 
 
Theorem 2.3. If P = (X,Y ;≤) is a bipartite poset with 
min(P)=X, max(P)=Y and [[xi]] are set terms of P where 1≤ 
i ≤ n then [[xi]]U are upper set terms of Pd where 1≤ i ≤ n. 

Proof. Let P = (X,Y ; ≤) be a bipartite poset with min(P)=X, 
max(P)=Y and [[xi]] are set terms of P where 1≤ i ≤ n. Then 
there exist xi < y1, x < y2, …, xi < yj, 1≤ j ≤ m in P.  xi > y1, 
xi > y2, …, xi > yj in Pd from Definition 1.5. We conclude 
[[xi]]U are upper set terms for Pd where 1≤ i ≤ n from 
Definition 2.2. 
 
Corollary 2.4. If P is bipartite poset then LM(P) ~ UM(Pd) 
and UM(P) ~ LM(Pd). 
 
Proof. It is easy to see from Definition 1.8 and Theorem 
2.3. 
 
Corollary 2.5. If P is bipartite poset then χ(LM(P)) = χ 
(UM(Pd)) and χ(LM(Pd)) = χ (UM(P)). 
 
Proof. It is easy to see from Corollary 2.4. 
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