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Abstract. In this paper, a novel subclass, denoted as PH(q, α), is unveiled within the domain of harmonic
functions in the open unit disk E. This subclass, comprised of functions f = u + v ∈ SH0, is characterized by a
specific inequality involving the q-derivative operator. Through meticulous analysis, it is demonstrated that func-
tions belonging to PH(q, α) exhibit remarkable close-to-convexity properties. Furthermore, diverse results such as
distortion theorem, coefficient bounds, and a sufficient coefficient condition are yielded by the exploration. Addi-
tionally, the closure properties of PH(q, α) under convolution operations and convex combination are elucidated,
underscoring its structural coherence and relevance in the broader context of harmonic mappings.
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1. Introduction

In the realm of harmonic functions, each function f belonging to the class SH0 can be represented in the form
f = u + v, where

u(z) = z +
∞∑

s=2

uszs, v(z) =
∞∑

s=2

vszs. (1.1)

Here, both u and v are analytic functions within the open unit disk E = {z ∈ C : |z| < 1}. When the condition
|u′(z)| > |v′(z)| holds throughout the disk E, it follows that the function f is sense-preserving and locally univalent in
this domain. Additionally, it is crucial to highlight that if v(z) is identically zero, the class SH0 simplifies to the class
S, where S denotes the class of analytic, univalent, and normalized functions in the unit disk E.

The subclasses K and S∗ of S are characterized by their mappings of the unit disk E onto close-to-convex and
starlike domains, respectively. In a similar vein, the subclasses of SH0 that map the unit disk E onto corresponding
domains are denoted by SH0,∗ and KH0. For a more comprehensive understanding, one can refer to the detailed
discussions in [7, 11].

Jackson’s q-derivative for a function u ∈ S, where 0 < q < 1, is defined as follows [10]:

Dqu(z) =

 u(z)−u(qz)
(1−q)z , if z , 0,
u′(z), if z = 0.
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It is important to note that if the function u is differentiable at z in the classical sense, then the limit as q approaches
1 from the left satisfies limq→1− Dqu(z) = u′(z). In the context of equation (1.1), this q-derivative can be expressed as:

Dqu(z) = 1 +
∞∑

s=2

[s]qaszs−1,

where the q-number [s]q is given by [s]q =
1−qs

1−q for any positive integer s. As q tends to 1 from the left, it is evident
that [s]q → s.

Furthermore, Jackson defined the q-integral as follows [10]:∫ z

0
u(ζ) dqζ = z(1 − q)

∞∑
s=0

qs
u(zqs),

provided that the series on the right-hand side converges. This definition plays a significant role in the study of
q-calculus, particularly in examining the properties of functions within the class S under q-differentiation and q-
integration.

A function u ∈ S is termed q-starlike in the open unit disk E, and this is denoted by u ∈ S∗(q), if it satisfies the
condition:

Re
{

zDqu(z)
u(z)

}
> α (0 ≤ α < 1),

where Dq represents the Jackson q-derivative. Similarly, a function u ∈ S is called q-convex in E, denoted by u ∈ C(q),
if it fulfills the condition:

Re
{

Dq(zDqu(z))
Dqu(z)

}
> α (0 ≤ α < 1).

Moreover, if there exists a q-convex function ϕ in E, and if u ∈ K(q), where K(q) represents a class of q-close-to-
convex functions, such that

Re
{

Dqu(z)
Dqϕ(z)

}
> α (0 ≤ α < 1),

then, in the particular case where ϕ(z) = z, it implies that

Re{Dqu(z)} > α (0 ≤ α < 1).
This definition extends the classical notions of convex and starlike functions to the setting of q-calculus, providing

a framework for analyzing these properties in the context of Jackson’s q-derivative.
In 2019, Ahuja and Çetinkaya [1] introduced the class of q-harmonic, univalent, and sense-preserving functions

f = u + v, denoted by SH0
q. A necessary and sufficient condition for a function f to belong to the class SH0

q is that∣∣∣ωq(z)
∣∣∣ = ∣∣∣∣ Dqv(z)

Dqu(z)

∣∣∣∣ < 1. Additionally, as q→ 1−, the class SH0 is recovered. For further details, see [2, 3, 17].
Let us now introduce a novel class of functions utilizing the Jackson q-derivative.

Definition 1.1. The class PH(q, α) is defined as the set of functions f = u + v ∈ SH0
q that satisfy the inequality:

Re
{
Dqu(z) − α

}
>
∣∣∣Dqv(z)

∣∣∣ (1.2)

for 0 ≤ α < 1 and z ∈ E.

If q, 1 is approximated from the left in inequality (1.2), the P0
H(α) class studied by Li and Ponnusamy [13, 14] is

obtained. Also, for α = 0, the P0
H class studied by Ponnussamy et al. [12] is obtained. For more detailed information

on classes of close-to-convex harmonic functions, see references [4–6] .

Definition 1.2. The class P(q, α) consists of functions u ∈ S that satisfy the inequality:

Re
{
Dqu(z)

}
> α

for 0 ≤ α < 1 and z ∈ E.
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2. Geometric Properties of the Class PH(q, α).

In this section, we investigate the geometric properties of the class PH(q, α). We establish key results including
coefficient bounds, q-close-to-convexity, and distortion theorem for functions in this class. Specifically, we prove the q-
close-to-convexity of harmonic mappings, derive coefficient bounds, and provide sufficient conditions for membership
in PH(q, α).

A mapping f : E→ C is termed close-to-convex if it is univalent within the unit disk E and its image f (E) constitutes
a close-to-convex domain. In particular, a function f is referred to as a q-close-to-convex harmonic function if it is
close-to-convex and also q-harmonic. One approach to establishing the close-to-convexity of harmonic mappings
involves examining their relationship with analytic functions. In this context, Clunie and Sheil-Small provided a useful
criterion in their work [7].

Lemma 2.1 ( [7]). Let u and v be analytic functions in E, and suppose that |v′(0)| < |u′(0)|. If, for each ε with |ε| = 1,
the function Fε = u + εv is close-to-convex, then f = u + v is also close-to-convex in E.

The next result gives a relation between analytic functions of class P(q, α) and functions of class PH(q, α).

Theorem 2.2. The harmonic mapping f = u+ v belongs to the class PH(q, α) if and only if for each ε with |ε| = 1, the
function Fε = u + εv is in the class P(q, α).

Proof. Suppose f = u + v is a member of the class PH(q, α). For any complex number ε with |ε| = 1, let us define
Fε = u + εv. Then we have:

Re
{
DqFε(z)

}
= Re

{
Dq(u(z) + εv(z))

}
= Re

{
Dqu(z) + εDqv(z)

}
= Re

{
Dqu(z)

}
+ Re

{
εDqv(z)

}
≥ Re

{
Dqu(z)

}
−
∣∣∣εDqv(z)

∣∣∣
= Re

{
Dqu(z)

}
−
∣∣∣Dqv(z)

∣∣∣
≥ α.

Therefore, Fε is in the class P(q, α). Conversely, assume Fε is in the class P(q, α). Then,

Re
{
Dqu(z)

}
> Re

{
−εDqv(z)

}
+ α for z ∈ E.

By choosing ε appropriately such that |ε| = 1, we get,

Re
{
Dqu(z) − α

}
>
∣∣∣Dqv(z)

∣∣∣ for z ∈ E.

Hence, f = u + v is in the class PH(q, α). □

Theorem 2.3. Any function in the class PH(q, α) is q-close-to-convex in the domain E.

Proof. Let f = u + v be a function belonging to the class PH(q, α). By definition, f = u + v is q-harmonic, univalent,
and sense-preserving. Since f ∈ PH(q, α), Theorem 2.2 ensures that Fε = u+ εv belongs to P(q, α). This membership
implies that Fε = u + εv is q-close-to-convex. As q approaches 1 from the left, Fε becomes close-to-convex in the
classical sense. Therefore, by Lemma 2.1, we conclude that f = u + v is close-to-convex. Thus, it follows that f is
indeed q-close-to-convex in E. □

Theorem 2.4. Let f = u + v belong to the class PH(q, α). For s ≥ 2, the following inequality holds:

|vs| ≤
1 − α
[s]q
.

This bound is sharp, and equality is achieved for the function f(z) = z + 1−α
[s]q

z̄s.
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Proof. Assuming f = u + v ∈ PH(q, α), with the function v(reiθ) represented as a series, where 0 ≤ ρ < 1 and θ ∈ R,
we have the following inequalities:

ρs−1[s]q |vs| ≤
1

2π

∫ 2π

0

∣∣∣Dqv(ρeiθ)
∣∣∣ dθ

<
1

2π

∫ 2π

0
Re{Dqu(ρeiθ) − α}dθ

=
1

2π

∫ 2π

0
Re

1 − α + ∞∑
s=2

[s]qusρ
s−1ei(s−1)θ

 dθ = 1 − α.

As the parameter ρ approaches 1 from the left side, we achieve the desired bound. □

Theorem 2.5. Let f = u + v ∈ PH(q, α). Then, for s ≥ 2, the following inequalities hold:
i. |us| + |vs| ≤

2(1−α)
[s]q
,

ii. ||us| − |vs|| ≤
2(1−α)

[s]q
,

iii. |us| ≤
2(1−α)

[s]q
.

Equality is achieved by the function f(z) = z +
∞∑

s=2

2(1−α)
[s]q

zs.

Proof. (i) Let f = u + v belong to the class PH(q, α). From Theorem 2.2, it follows that Fε = u + εv belongs to the
class P(q, α) for every ε where |ε| = 1. Consequently, we obtain

Re{Dq(u(z) + εv(z))} > α

for all z ∈ E. Thus, there exists an analytic functionΦwith a positive real part in the unit disk E, which can be expressed
in the form Φ(z) = 1 +

∑∞
s=1 ϕszs. This implies that

Dq(u(z) + εv(z)) = α + (1 − α)Φ(z).

By comparing the coefficients of both sides, we derive

[s]q(us + εvs) = (1 − α)ϕs−1 for s ≥ 2.

Given that the real part of Φ(z) is positive, we have |ϕs| ≤ 2 for s ≥ 1. Furthermore, considering that ε with |ε| = 1
is arbitrary, we can rigorously establish that inequality (i) holds true. The proofs for statements (ii) and (iii) can be
derived following similar lines of reasoning and logic. The function f(z) = z +

∑∞
s=2

2(1−α)
[s]q

zs serves as an example to
demonstrate that all the stated inequalities are indeed sharp.

For s ≥ 1, we obtain |ϕs| ≤ 2 since the real component of Φ(z) is positive. In addition, we can firmly prove that
inequality (i) holds since ε with |ε| = 1 is arbitrary. Similar lines of reasoning and logic can be used to derive the
proofs for propositions (ii) and (iii). To show that all of the given inequalities are, in fact, sharp, consider the function
f(z) = z +

∑∞
s=2

2(1−α)
[s]q

zs. □

We now give a sufficient condition for a function to belong to the class PH(q, α).

Theorem 2.6. Suppose f = u + v belongs to the class SH0
q, where

∞∑
s=2

[s]q (|us| + |vs|) ≤ 1 − α. (2.1)

In that case, f belongs to the class PH(q, α).

Proof. Considering that f = u + v is a member of the class SH0
q . We may write the following set of inequalities using

the provided condition (2.1):

Re{Dqu(z) − α} = Re

1 − α + ∞∑
s=2

[s]quszs−1

 > 1 − α −
∞∑

s=2

[s]q |us| ≥

∞∑
s=2

[s]q |vs| >

∣∣∣∣∣∣∣
∞∑

s=2

[s]qvszs−1

∣∣∣∣∣∣∣ = ∣∣∣Dqv(z)
∣∣∣ .

Consequently, it may be concluded that f belongs to the class PH(q, α). □
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Theorem 2.7. Let f = u + v ∈ PH(q, α). Then,

|z| + 2
∞∑

s=2

(−1)s−1 |z|s

[s]q
≤ |f(z)| ≤ |z| + 2

∞∑
s=2

|z|s

[s]q
.

Equality is achieved by the function f(z) = z +
∞∑

s=2

2
[s]q

zs.

Proof. Let f = u + v ∈ PH(q, α). Using Theorem 2.2, we have Fε = u + ε v ∈ P(q, α) for each ε (|ε| = 1). By
employing a similar method as in [9], we obtain

1 − (1 − 2α) |z|
1 + |z|

≤
∣∣∣DqFε(z)

∣∣∣ ≤ 1 + (1 − 2α) |z|
1 − |z|

(|z| < 1). (2.2)

The expression on the right side of inequality (2.2) can be derived using the Taylor series expansion, denoted as∣∣∣DqFε(z)
∣∣∣ = ∣∣∣Dqu(z) + εDqv(z)

∣∣∣
≤ 1 + 2(1 − α)

∞∑
s=1

|z|s .

Similarly, the expression on the left side of inequality (2.2) can be obtained through the Taylor series expansion,
denoted as ∣∣∣DqFε(z)

∣∣∣ = ∣∣∣Dqu(z) + εDqv(z)
∣∣∣

≤ 1 + 2(1 − α)
∞∑

s=1

(−1)s |z|s .

Specifically, we obtain the following inequalities:

∣∣∣Dqu(z)
∣∣∣ + ∣∣∣Dqv(z)

∣∣∣ ≤ 1 + 2(1 − α)
∞∑

s=1

|z|s ,

and ∣∣∣Dqu(z)
∣∣∣ − ∣∣∣Dqv(z)

∣∣∣ ≤ 1 + 2(1 − α)
∞∑

s=1

(−1)s |z|s .

Denote the radial segment from 0 to z by Γ. We get,

|f(z)| ≤
∫
Γ

(∣∣∣Dqu(ζ)
∣∣∣ + ∣∣∣Dqv(ζ)

∣∣∣) ∣∣∣dqζ
∣∣∣

≤

|z|∫
0

1 + 2(1 − α)
∞∑

s=1

|ρ|s
 dqρ

= |z| + 2(1 − α)
∞∑

s=1

|z|s+1

[s + 1]q

= |z| + 2(1 − α)
∞∑

s=2

|z|s

[s]q
,
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and

|f(z)| ≤
∫
Γ

(∣∣∣Dqu(ζ)
∣∣∣ − ∣∣∣Dqv(ζ)

∣∣∣) ∣∣∣dqζ
∣∣∣

≤

|z|∫
0

1 + 2(1 − α)
∞∑

s=1

(−1)s |ρ|s
 dqρ

= |z| + 2(1 − α)
∞∑

s=1

(−1)s |z|s+1

[s + 1]q

= |z| + 2(1 − α)
∞∑

s=2

(−1)s−1 |z|s

[s]q
.

□

3. Exploring Closure Properties of the Class PH(q, α)

In this section, we investigate whether the class PH(q, α) is closed under convex combinations and convolutions.

Theorem 3.1. The class PH(q, α) is closed under convex combinations.

Proof. Let us consider that fk = uk + vk belongs to the class PH(q, α) for each k = 1, 2, ..., n, and suppose further that

the sum
n∑

k=1
φk = 1 with each coefficient 0 ≤ φk ≤ 1. The convex combination of the functions fk for k = 1, 2, ..., n can

be expressed as:

f(z) =
n∑

k=1

φkfk(z) = u(z) + v(z),

where

u(z) =
n∑

k=1

φkuk (z) and v(z) =
n∑

k=1

φkvk (z) .

Both u and v are analytic functions within the open unit disk E, satisfying the initial conditions u(0) = v(0) = Dqu(0)−
1 = Dqv(0) = 0. Now, we consider the real part of the q-derivative of u:

Re{Dqu(z) − α} = Re

 n∑
k=1

φkDquk(z) − α


>

n∑
k=1

φk

∣∣∣Dqvk(z)
∣∣∣

≥
∣∣∣Dqv(z)

∣∣∣ ,
showing that f belongs to the class PH(q, α). □

If a sequence {as}
∞
s=0 of non-negative real numbers satisfies the following criteria, it is termed a ”convex null se-

quence”: as s→ ∞, as approaches 0, and the inequality

a0 − a1 ≥ a1 − a2 ≥ a2 − a3 ≥ . . . ≥ as−1 − as ≥ . . . ≥ 0

holds.

Lemma 3.2 ( [8]). When {as}∞s=0 is a convex null sequence, then the function

A(z) =
a0

2
+

∞∑
s=1

aszs

is analytic, and the real part of A(z) is positive within the open unit disk E.
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The Hadamard product (or convolution) of two harmonic functions is defined similarly to that of analytic functions,
with the product applied separately to both the analytic and co-analytic parts of the functions. Let f(z) = u1(z) + v1(z)
and k(z) = u2(z)+v2(z) be two harmonic functions, where u1(z) =

∑∞
s=0 uszs and u2(z) =

∑∞
s=0 cszs are analytic functions,

and v1(z) =
∑∞

s=0 vszs and v2(z) =
∑∞

s=0 dszs are co-analytic functions. Then, the Hadamard product of f and k, denoted
by (f ∗ k)(z), is defined as

(f ∗ k)(z) = (u1 ∗ u2)(z) + (v1 ∗ v2)(z),

where

(u1 ∗ u2)(z) =
∞∑

s=0

uscszs and (v1 ∗ v2)(z) =
∞∑

s=0

vsdszs.

Thus, the Hadamard product is obtained by multiplying the coefficients of the analytic and co-analytic parts of the
harmonic functions separately.

Lemma 3.3 ( [16]). Suppose the functionΦ(z) is analytic within the domain E, satisfyingΦ(0) = 1 and Re{Φ(z)} > 1/2
throughout E. For any analytic function F defined in E, the function Φ ∗ F maps to values within the convex hull of the
image of E under F.

Lemma 3.4. Let F ∈ P(q, α), then Re
[

F(z)
z

]
>

1
2
.

Proof. Consider F belonging to the class P(q, α), defined as F(z) = z +
∑∞

s=2 Uszs. Then, the inequality

Re

1 + ∞∑
s=2

[s]qUszs−1

 > α (z ∈ E),

can be equivalently expressed as Re{Φ(z)} > 1
2 within the open unit disk E, where

Φ(z) = 1 +
1

2(1 − α)

∞∑
s=2

[s]qUszs−1.

Let {as}
∞
s=0 be a sequence defined by

a0 = 1 and as−1 =
2(1 − α)

[s]q
for s ≥ 2.

It is clear that the sequence {as}
∞
s=0 constitutes a convex null sequence. Utilizing Lemma 3.2, we deduce that the

function

A(z) =
1
2
+

∞∑
s=2

2(1 − α)
[s]q

zs−1

is analytic, with Re{A(z)} > 0 within E. Expressing

F(z)
z
= Φ(z) ∗

1 + ∞∑
s=2

2(1 − α)
[s]q

zs−1

 ,
and using Lemma 3.3, we arrive at the conclusion that Re

{
F(z)

z

}
>

1
2

for z ∈ E. □

Lemma 3.5. Let um ∈ P(q, α) for m = 1, 2. Then, u1 ∗ u2 ∈ P(q, α).

Proof. Let u1(z) = z +
∑∞

s=2 Uszs and u2(z) = z +
∑∞

s=2Vszs, and

U(z) = (u1 ∗ u2)(z) = z +
∞∑

s=2

UsVszs.

Considering

DqU(z) − α
1 − α

=
Dqu1(z) − α

1 − α
∗
u2(z)

z
. (3.1)
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Since u1 ∈ P(q, α), we get Re
[Dqu1(z)−α

1−α

]
> 0 (z ∈ E). Moreover, using Lemma 3.4, Re

[
u2(z)

z

]
>

1
2

in E. Now,

Re
[
DqU(z)

]
> 0 in E results from applying Lemma 3.4 to (3.1). Thus, U = u1 ∗ u2 ∈ P(q, α). □

Using Lemma 3.5, we now show that the class PH(q) is closed under convolutions of its members.

Theorem 3.6. For m = 1, 2, let fm ∈ PH(q, α). Then, the convolution f1 ∗ f2 also belongs to the class PH(q, α).

Proof. Assume that fm = um + vm ∈ PH(q, α) for m = 1, 2. The convolution f1 ∗ f2 = u1 ∗ u2 + v1 ∗ v2 is defined as the
convolution of the individual components of f1 and f2. To demonstrate that f1 ∗ f2 belongs to the class PH(q, α), we
need to show that the function Fε = u1 ∗ u2 + ε(v1 ∗ v2) belongs to P(q, α) for every ε with |ε| = 1.

According to Lemma 3.5, the class P(q, α) is closed under convolutions. For each ε with |ε| = 1, since um + εvm ∈
P(q, α) for m = 1, 2, we can assert that P(q, α) includes both U1 and U2, where

U1 = (u1 − v1) ∗ (u2 − εv2) and U2 = (u1 + v1) ∗ (u2 + εv2).
Given that P(q, α) is closed under convex combinations, we can form the function

Uε =
1
2

(U1 + U2) = u1 ∗ u2 + ε(v1 ∗ v2).

This function Uε also belongs to the class P(q, α). Therefore, we can conclude that the class PH(q, α) is closed
under convolution operations, meaning that the convolution of any two functions within PH(q, α) also remains within
PH(q, α). □

4. Examples of Functions in the Class PH(q, α)

Example 4.1. Let f1(z) = z+ 1
13 z3 + 3

13 z3. According to Theorem 2.5, the function f1(z) belongs to the class PH( 1
3 ,

1
3 ).

This function maps the unit disk to a starlike region, thereby making it close-to-convex. Figure 1 illustrates the image
of concentric circles inside the unit disk E under the transformation defined by f1(z) = z + 1

13 z3 + 3
13 z3.

Figure 1. Under the map f1(z) = z + 1
13 z3 + 3

13 z3, the image of concentric circles inside the unit disk.
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Example 4.2. Let f2(z) = z+ 1
12 z2 − 3

13 z3. According to Theorem 2.5, the function f2(z) belongs to the class PH( 1
3 ,

1
3 ).

This function maps the unit disk to a close-to-convex region. Figure 2 illustrates the image of concentric circles inside
the unit disk E under the transformation defined by f2(z) = z + 1

12 z2 − 3
13 z3.

Figure 2. Under the map f2(z) = z + 1
12 z2 − 3

13 z3, the image of concentric circles inside the unit disk.

Example 4.3. Let f3(z) = f1(z) ∗ f2(z) = z − 9
169 z3, where f1 and f2 are the functions given in Example 4.1 and

Example 4.2. According to Theorem 2.5, the function f3(z) belongs to the class PH( 1
3 ,

1
3 ). This function maps the unit

disk to a close-to-convex region. Figure 3 illustrates the image of concentric circles inside the unit disk E under the
transformation defined by f3(z) = z − 9

169 z3.

Figure 3. Under the map f3(z) = z − 9
169 z3, the image of concentric circles inside the unit disk.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.



On Properties of q-Close-to-Convex Harmonic Functions of Order α 480

Authors Contribution Statement

The author has read and agreed the published version of the article.

References
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