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Abstract 
 

Parameter estimation of chaotic systems is a challenging and critical topic in nonlinear science. Problem 
at hand is multi-dimensional and highly nonlinear thereof conventional optimization methods generally 
fail to extract the unknown parameters of chaotic system. In this study, Artificial Cooperative Search 
algorithm is put into practice for successful parameter estimation of chaotic systems and compared the 
parameter estimation performance of Artificial Cooperative Search with Bat, Artificial Bee Colony, 
Quantum behaved Particle Swarm Optimization algorithms. Parameter identification performance of 
each algorithm is outlined and benchmarked with several numerical simulations including Lörenz system, 
Duffing equation and Josephson junction. Results show that Artificial Cooperative Search algorithm 
outperforms other algorithms in terms of robustness and effectiveness. 

 

Keywords: Artificial cooperative search, Chaotic systems, Metaheuristic algorithms, Parameter 
identification. 

 
1. Introduction 

 

Chaos is a dynamic, unpredictable and complex 
phenomenon which occurs in nonlinear systems. It shows 
an unstable behaviour which is very sensitive to initial 
conditions and involves infinite unstable periodic motions 
(Wang et. al. 2011).  Many natural and simulated 
phenomena such as voice generation, earthquakes, laser 
systems and epileptic seizures serve chaotic behaviour 
(Chang et. al. 2008). All these events were thought to be 
stochastic and even unpredictable however; time series 
generated by the chaotic systems can be predicted if 
mathematical models of chaotic systems are successfully 
constructed.  

Chaos has been applied to various areas such as   
chemical reactions, power converters, biological systems, 
information processing, secure communication, and 
economics (Wang & Xu  2011). Many mathematical 
models and simulations have been carried out for 
controlling and synchronization of chaotic systems during 
two decades (He et al 2007; Tang & Guan 2009; Modares 
et al. 2010). Such models have been applied in definite 
chaotic systems with predetermined system parameters 
however; there generally exist parameter mismatches and 
distortions in real world problems (Wang et al 2010).   
Therefore, this topic has become popular among the 
researchers and numerous scientific studies   have been 
proposed to overcome this drawback by suggesting novel 
solution strategies (Rahul 2005; Peng et al. 2009; 
Biswambhar et al. 2011).   

Parameter estimation of chaotic system is converted to 
parameter optimization by virtue of constructing 
appropriate fitness function.   Metaheuristic algorithms 
have commonly been utilized for estimating the 
parameters of chaotic systems since they are derivative 
free and do not require domain information. Genetic 
algorithms (Dai et. al. 2002), Particle Swarm Optimization 
(Tang & Guan 2009; Ko et al. 2010; Sun et al. 2010) Bee 

Colony Algorithm (Gholipour et al. 2013), Invasive Weed 
Optimization (Ahmadi & Mojallahi 2012) , Firefly 
algorithm (Gao et al. 2013), Ant Swarm algorithm (Li et al. 
2006), Cuckoo Search algorithm (Xiang-Tao & Ming-Hao 
2012), Harmony search (Coelho & Bernert 2009), 
Gravitational Search (Li et al. 2012) and some of the 
hybrid algorithms (Tien & Li 2012; Wang & Li 2012) were  
utilized  for parameter estimation of chaotic systems and 
most of them succeeded in finding  true values of system 
parameters however, there is still room to improve the 
best results obtained by these algorithms. In this study, 
Artificial Cooperative Search (ACS) (Civicioglu 2013) 
algorithm is suggested for parameter identification of 
chaotic systems. To the best of author’s knowledge, 
Artificial Cooperative Search algorithm has not been 
utilized in estimating parameters of chaotic systems yet.  
Performance of ACS algorithm will be compared with 
Quantum behaved Particle Swarm Optimization (QPSO) 
(Sun et al. 2004), Artificial Bee Colony (ABC)  (Karaboga 
2005), Bat Algorithm (BAT) (Yang et al. 2010) in terms of 
best, worst, mean and standard deviation values. To 
upgrade the search mechanism of the algorithms, 
randomized algorithm parameters are used which are 
bounded between real valued numbers instead of static 
parameters.  Effectiveness of the optimizers is compared 
by means of applying numerical simulations based on 
chaotic systems including Lorenz system, Duffing 
equation and Josephsen junctions.  

Rest of the paper is organized as follows: Section 2 
describes the parameter estimation of chaotic differential 
systems in optimization point of view. Section 3 gives the 
detailed description Artificial Cooperative Search 
algorithm. Numerical simulations, comparisons and 
discussions are performed in Section 4. Finally, the article 
is concluded with some remarkable comments in Section 
5. 
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2. Formulation of the problem 
 
Parameter identification of chaotic systems will be 
clarified in this section. Consider n - dimensional 
continuous nonlinear chaotic differential equation 
system: 

 0X G X ,X ,                                                                          (1) 

where  1 2
T n

nX x ,x ,...,x R   the state is vector; 
0X  

specifies the initial state and  1 2
T m

m, ,..., R      is the 

set of system parameters; n m nG : R R R   is a 

nonlinear vector function.  Presuming that the nature of 
the system is known in advance, parameter estimation 
system can be stated as the following 

 0
ˆ ˆˆ ˆX G X ,X ,                                                                          (2)     

where   1 2
T n

n
ˆ ˆ ˆ ˆX x ,x ,...,x R   is the estimated state vector; 

0X̂  is estimated initial state vector; 

 1 2

T m
m

ˆ ˆ ˆ ˆ, ,..., R     is the estimated parameters of 

chaotic system.  Parameter estimation problem can be 
defined as  

1

W

k k
k

ˆmin  J= X X



                                                                (3)      

where W is the length of state variables; kX  and 
kX̂  

are the measurable state variables of original and 

estimated system at time 1 2k , ,...,W . Optimization 

objective is to estimate parameters of system while 
minimizing fitness function J.  Parameter estimation of 
chaotic system is a hard and tedious task since it is a multi-
dimensional nonlinear optimization problem. In addition, 
there are many local optima in search space due to the 
multidimensionality of objective function and this makes 
it very difficult to obtain global best solution with 
traditional optimization algorithms. Therefore, in this 
study, Artificial Cooperative Search algorithm is applied in 
order to estimate the unknown parameters of chaotic 
systems. Framework of parameter identification in the 
view of optimization can be depicted in Figure 1. 

Figure 1. The principle of parameter identification for a chaotic 
system 

 
3. Artificial Cooperative Search 

 
ACS is swarm intelligence based metaheuristic algorithm 
used for solving numerical optimization problems. The 
algorithm is based on interaction between two artificial 
superorganisms as they interact and migrate to different 
zones to find global minimum of a problem. 
Amount of food that can be found in a specific zone is tied 
to yearly climate a change. For this reason, 

superorganisms develop some kind of seasonal migration 
behaviour to discover better food sources. It is known 
that, in nature, most species form superorganisms and 
divide into sub-groups (sub-superorganisms) prior to 
migration in order to find a better food source. This 
superorganism behaviour is determined by the 
coordination of sub-groups. 

Interaction and explorer usage are two main 
behaviours of the superorganisms. Before migrating to a 
new zone, first, superorganism sends an explorer to 
collect information about the possible migration zones. 
Then, explorer shares the information with the 
superorganism individuals and these individuals give 
their opinion for the possibility of migration to the new 
discovered areas. During the migration process, 
exploration behaviour is sustained to find better zones. 
Interaction behaviour is another important behaviour 
among the living species. All superorganisms living in the 
same habitat, naturally interacts with each other. 
Parasite/host or predator/prey relationships may emerge 
in alturation, coextinction, coevolution or cooperation 
interactions between superorganisms. 

In ACS algorithm, two superorganisms named   and

  consist of random solutions of the problem move to 

more fruitful nesting or feeding areas. Each 
superorganism consists of N members and each sub-
superorganism consists of D members, which corresponds 
to dimension of the problem. Also, the two 
superorganisms decide the predator and prey sub-
superorganisms.  Predator sub-superorganism tracks the 
prey sub-superorganism while they move towards global 
minimum of the problem.  
The initial values of the individuals of the two 
superorganisms are calculated by using Equation (4). 

, ,

, ,

( )

( )

i j t j j j

i j t j j j

rnd up low low

rnd up low low





   

   
                                                (4)                                                        

where i  1,2, 3,...,N , j 1,2, 3,...,D  and 

1,2,3,...,maxitert  . The g value represents the iteration 

number while rnd represents a random number chosen 
from a uniform distribution between [0, 1]. up j  and low j  

represents the upper and lower bounds of the search 
space for  jth dimension of the problem.  Fitness values of 
the associated sub-superorganisms are determined by 
using Equation (5). 
yi;  f ( i )

yi;  f (i )
                                                                                    (5)  

Predator individuals are determined by the rule in 

Algorithm 1.  
Algorithm 1   Calculation of Predator individuals 

  

if   rnd  rnd

     Predator =  ,   y
Predator

= y
a
,    key = 1

else

     Predator = ,   y
Predator

= y

,    key = 2

end

 

Prey individuals are determined by the rule in Algorithm 

2. 
Algorithm 2    Calculation of Prey individuals 

  

if   rnd  rnd   Prey =    else   Prey =    end

Prey = permute (Prey)
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In Algorithm 2, permute() function randomly changes the 

places of all row elements of prey individuals. Since only 

active individuals are permitted to migrate, passive 

individuals are determined by Algorithm 3.  
 
Algorithm 3    Calculation of passive individuals by 
binary valued integer map (M) 

 

 

 

1

0

1

N  x D

rndint(N) , rndint(D)

i, j

M

for all elements in M

       if   rnd p rnd    then  M      end

end

if  rnd < p rnd   then

    for i=1 to N

        for j=1 to D

             if  rnd < p rnd  then  M    else   M



  



 

1

0

0

i , j

D

i i,rndint(D)
j

   end

        end 

    end

end     

for i=1 to N

     if  M D   then   M    end

end





 

 

rndint() function generates random integers between a 

chosen interval by employing gauss distribution and p 

represents the probability of biological interaction.  

Biological interaction location between prey and predator 

individuals is calculated by using the following equation: 

 x Predator + R Prey - Predator                                    (6)

 
R is a variable that controls the speed of biological 

interaction. R is generated by using the procedure in 

Algorithm 4. 
 
Algorithm 4    Decision rule to obtain scale factor (R) 

where rnd is a random number between 0.0 and 1.0; Γ() 
represents the gamma distribution with a shape 

parameter of 4 rnd and scale parameter of 1.0.  Position 

update procedure used by active individuals is shown in 
Algorithm 5. 
 
Algorithm 5    Updating of biological interaction 
locations by active individuals 

If biological interaction locations exceed boundaries, new 

locations are generated according to the rule in Algorithm 

6. 
Algorithm 6     Application of boundary control 
mechanism 

 

for  i=1 to N

     for j=1 to D

          if xi, j  low j  xi, j  up j  then

                xi, j  low j  rnd  up j  low j 
          end

     end

end

 

 
Predator sub-superorganisms are compared with 
biological interaction locations concerning their fitness 
values. If the fitness values of biological locations are 
better than objective function values of Predator 
individuals, Predator individuals are updated by 
implementing the methodology given in Algorithm 7.  
 

Algorithm 7     Predator sub-superorganism update 

 

 

i i ,Predator

i i

i ,Predator i

for i=1 to N

    if   f x y  then 

         Predator x

         y f x

    end

end







 

 
New α and β superorganisms  and their fitness values for next 

generations are determined by the strategy presented in 

Algorithm 8 with the utilization  of  “key” parameter decided 

in Algorithm 1. 

 

Algorithm 8     Determination of new sub superorganisms 

for next generations 

Predator

Predator

if  key=1 then

     = Predator, y y

else 

     = Predator, y y

end













 

 
Pseudocode of Artificial Cooperative Search algorithm 

is presented in Table 1. 
  
Table 1. Psudocode of Artificial Cooperative Search 
 

Initialize population size, problem dimension, maximum number 
of iteration, lower and upper bounds,initialize Superorganisms (

 ,  ) and determine their corresponding fitness values with 

Equation (4) and (5) 
 
 for iter = 1 to maxiter 
           Calculate Predator  individuals by applying Algorithm 1 
           Determine Prey individuals with Algorithm 2  
           Calculate the scale factor (R) with Algorithm 4  
           Calculate passive individuals by binary valued  integer map 
as explained  
           in Algorithm 3     
           Decide  biological interaction locations with Equation 3  

  

if  rnd  rnd   then

    R  4  rnd  rnd  rnd 
else

    R   4  rnd ,1 
end

 

  

for  i=1 to N

     for j=1 to D

         if  Mi, j  0 then  xi, j  Predatori, j    end

     end

end
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           Update  biological interaction locations by active 
individuals with 
           the rules of Algorithm 5 
           Apply boundary control with Algorithm 6  
           Update Predator superorganisms by Algorithm 7 
           Determine  new superorganisms for next generations by 
Algorithm 8 
           Store the best solution and its corresponding fitness value  
 end 
           Output best results 

 

4. Simulations and results 

 
This section gives the performance comparison of 
metaheuristic algorithms on extracting of unknown 
parameters of chaotic systems  including Lorenz system, 
Duffing system, and Josephson junctions. Numerical 
simulations are performed in Java™ executing Pentium i5 
CPU @ 2.5 GHz and 6.0 GB RAM on personal computer. 
Sampling intervals (h) and total sampling points (W) for 
each chaotic system are set to h=0.01 and W=200 
respectively. Fourth order adaptive Runge - Kutta method 
is applied for solving system of differential equations 
which are selected for testing the effectiveness of 
discussed metaheuristic algorithms. For the sake of 
comparison reliability, upper and lower limits of 
estimated parameters are taken all same for each 
algorithm. In addition, maximum generation (iteration) 
and population size of each algorithm are fixed to 5000 
and 20 respectively. Algorithms are run for 100 times due 
to the stochastic discrepancy. For Artificial Bee Colony 
algorithm, limited food source is set to 2000. For Quantum 
behaved Particle Swarm Optimization,  cognitive and 
social learning factors are set to real valued numbers that 
are randomly generated between 0.0 and 3.0.  For Bat 
Algorithm,  and   values are set to uniform random 

numbers between 0 and 1; 
minf  and maxf  are fixed to 0.0 

and 2.0,  respectively;   is a random number between 0.0 

and 5.0; initial values of loudness of the sound pulse (A) 
and pulse emission rate (r) are selected as uniformly 
distributed random numbers between 0.0 and 1.0. For 
each algorithm, best solutions are taken into 
consideration while plotting evolution of fitness function 
and system parameters.  

4.1. Lorenz System 

First example is employed as Lorenz system (Zhou et al. 

2004) which is formulated as follows  

 1 2 1

2 1 1 3 2

3 1 2 3

x a x x

x bx x x x

x x x cx

 

  

 

                                           (7)         

where 1x , 2x  and 3x  are the state variables; a, b, and c are 

unknown algorithm parameters. This system serves 
chaotic behaviour when a = 10, b = 28 and c = 8/3.  Initial 
values of state variables are  0 0 0 0

1 2 3 1 0 1 0 1 0x x ,x ,x . , . , .  
 

. 

Search space of a, b and c parameters are restricted 
between [5, 15], [20, 30] and [0, 5], correspondingly.  
Table 2 reports the statistical results of parameter 
identification of Lorenz system. Table 2 shows that ACS 
and QPSO finds true values of system parameters 
however, ACS algorithm is superior to all algorithms in 
terms of robustness and even worst results obtained by 
ACS algorithm are better than BAT, ABC algorithm.  

Table 2.    Statistical results of different algorithms for Lorenz 
system 

  ACS BAT ABC QPSO 

BEST a 10.00000 9.99998 10.0003 10.00000 
 b 28.00000 27.9998 27.9999 28.00000 
 c 2.66666 2.6666 2.6666 2.66666 
 Jmin 0.000000 0.00676 0.19198 0.000000 
      

AVG. a 10.00000 9.99997 10.00225 10.03121 
 b 28.00000 28.0000 27.99594 27.95318 
 c 2.66666 2.6666 2.66626 2.66228 
 Javg 2.18E-13 0.04285 3.47033 26.09139 
      

WORST a 9.99999 9.9999 10.01553 10.62163 
 b 28.00000 27.9999 27.97346 27.09904 
 c 2.66666 2.6666 2.66379 2.58054 
 Jmax 6.52E-12 0.09356 8.771272 300.2061 

 
Figure 2(a) shows the convergence properties of fitness 

values for all mentioned algorithms.  

Figure 2(a).  Convergence history of fitness function for each 
algorithm for Lorenz system 
 
In Figure 2(a), it is seen that QPSO algorithm reaches 
optimum solution after 247 iterations whereas ACS finds 
optimum solution after 497 iterations. BAT and ABC 
algorithms have not obtained optimum solution within 
600 iterations. Figure 2(b)-(d) depicts the convergence 
process of equation parameters for each algorithm in a 
single run generating the best solution.  

 Figure 2(b).  Evolution of “a” parameter for Lorenz system 

 

Figure 2(c).  Evolution of “b” parameter for Lorenz system 
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Figure 2(d).  Evolution of “c” parameter for Lorenz system  

4.2. Duffing equation 

    Duffing equation (Yang et al. 2009) is a non-linear 
second order differential equation which simulates 
damped and driven oscillators. This equation generates 
chaotic sequences when a = 4.0, b = 1.1 and c = 1.0 and 
given as: 

 3 2 1 1 8x ax bx cx . sin . t                                           (8) 

Initial state of system is 0 00 1 0 1x . ,  x .  . Upper and 

lower bounds for algorithm parameters are defined as  

0 0 20 0. a .  , 0 0 10 0. b .  , and 0 0 10 0. c .  . For 

Duffing equation, statistical analysis is given in Table 3.  
 
Table 3. Statistical results of different algorithms for Duffing 
equation 

     ACS   BAT ABC QPSO 

BEST a 0.39999 0.39943 0.39803    0.39999 
 b 1.09999   1.09885     1.09556  1.09999   
 c 1.00000 0.99979 0.99908    0.99999 
 Jmin 0.00000     3.15E-4   0.01307      6.79E-6 
      
AVG. a 0.39999 0.44065 0.40532   0.43922 
 b 1.09999   1.13315 1.11219   1.18903 
 c 1.00000 1.03700 1.00249 1.01819 
 Javg  9.8E-14 0.64426  0.15462 0.73188 
      
WORST a  

0.39999  
1.50000  0.28742  0.03964 

 b  
1.09999   

2.00000      0.84527  0.27853 

 c  
1.00000  

2.00000    0.94766  0.83003 

 Jmax  4.6E-13  17.3583 0.76635  2.58151 

 
Comparisons reveal that ACS algorithm outperforms other 
algorithms   concerning robustness and best solution. 
Figure 3(a) depicts the evolving history of fitness values 
and unknown parameters of algorithms.  

Figure 3(a).  Convergence history of fitness function for each 
algorithm for Duffing equation 
 

Figure 3(a) presents that ACS finds optimum solution after 
914 iterations while other algorithms have not reached 
the optimum within 1200 iterations. Figure 3(b)-(d) 
shows the convergence performance of algorithm 

parameters for each algorithm. As it is clarified in Figure 
3(b)-(d), ACS converges to true values of system 
parameters more quickly than other algorithms.    

Figure 3(b).  Evolution of “a” parameter for Duffing equation 

 Figure 3(c).   Evolution of “b” parameter for Duffing equation 

 
Figure 3(d).  Evolution of “c” parameter for Duffing equation 

4.3. Josephson junctions 

The study of the chaotic behaviour of (quantum) 
Josephson junctions (Yeh & Kao 1983) is of much 
fundamental and even practical interest. Written in 
dimensionless form, the differential equation for the 
quantum phase difference,   , across the junction is given 
by 

 
0 5.

c sin Asin t


       (9) 

where  βc is the so-called McCumber parameter and Ω is 
the (normalized) angular frequency of the driving current. 
Equation (11) is in chaotic state when  βc = 4, Ω = 0.47 and 

A = 0.9045 with the initial conditions of 0  .   

Searching ranges of the system parameters are defined as: 
0 0 10 0c. .  , 0 0 5 0. .  , 0 0 5 0. A .  . Table 4 

reports the statistical results for this simulation.  
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Table 4.  Statistical results of different algorithms for Josephson 
junctions  

  ACS BAT ABC QPSO 

BEST a 0.90449 0.90190 0.93973 0.90468 
 b 0.49999 0.49863 0.51710 0.50010 
 c 0.47000 0.47121 0.45398 0.46991 
 Jmin 6.58E-

11 
8.79E-5 0.02036 1.89E-4 

      
AVG. a 0.90450 0.90426 0.86367 0.91661 
 b 0.49999 0.49991 0.48020 0.49599 
 c 0.46999 0.47011 0.49355 0.47107 
 Javg 2.07E-8 2.46E-4 0.07355 0.04458 
      
WORST a 0.90450 0.90526 0.97797 0.62918 
 b 0.49999 0.50034 0.57497 0.27842 
 c 0.46999 0.46977 0.44551 0.64321 
 Jmax 3.58E-7 5.15E-4 0.19651 0.24246 

 
In Table 4, ACS finds almost true values of system 
parameters in every try and shows its superiority over the 
other algorithms in terms of robustness and solution 
accuracy. In addition, even the worst solution obtained by 
ACS is much better than the best solutions acquired by the 
other algorithms. Figure 4(a) visualizes the evolving 
process of fitness values for each algorithm.  

Figure 4(a).   Convergence history of fitness function for each 
algorithm for Josephson junctions 
 
In Figure 4(a), it is shown that ACS converges to optimal 
solution more quickly and obtains optimum after 1998 

iterations. Figure 4(b) to (d) depicts the convergence rates 
of system parameters and it is observed that ACS 
converges to true values more rapidly than the others as 
all system parameters reaches to optimum less than 1500 
iterations.  

Figure 4(b).   Evolution of “a” parameter for Josephson junctions 

Figure 4(c).   Evolution of “b” parameter for Josephson junctions 

Figure 4(d).   Evolution of “c” parameter for Josephson junctions 

5. Conclusion 

In this study, Artificial Cooperative Search algorithm is 
introduced to identify the unknown parameters of chaotic 
systems which are formulated as a multi-dimensional 
continuous optimization problem. Statistical results those 
are obtained from ACS are compared with the solutions 
acquired by Artificial Bee Colony, Quantum behaved 
Particle Swarm and Bat algorithms.  To improve the 
algorithm performance, randomized algorithm 
parameters are utilized instead of static parameters.  
Simulation results of chaotic Lorenz system, Duffing 
equation and Josephson junctions indicate that Artificial 
Cooperative Search algorithm has better performance 
than Artificial Bee Colony, Quantum behaved Particle 
Swarm and Bat algorithm in identifying system 
parameters since Artificial Cooperative Search can 
estimate the system parameters more accurately, more 
rapidly and more stably. For a future work, Artificial 
Cooperative Search which gives the best performance for 
this study will be applied on time-delay systems. 
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