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Abstract 

Recently, Deep Reinforcement Learning (DRL) has gained attention as a promising approach to tackle the challenging problem of 
mobile robot navigation. This study proposes reinforcement learning utilizing Neural Ordinary Differential Equations (NODEs), which 
offer effective training and memory capacities, and applies it to model-free  point-to-point navigation task. Through the use of NODEs, 
we achieved improvements in navigation performance as well as enhancements in resource optimization and adaptation. Extensive 
simulation studies were conducted using real-world indoor scenes to validate our approach. Results effectively demonstrated the 
effectiveness of our proposed NODEs-based methodology in enhancing navigation performance compared to traditional ResNet and 
CNN architectures. Furthermore, curriculum learning strategies were integrated into our study to enable the agent to learn through 
progressively more complex navigation scenarios. The results obtained indicate that this approach facilitates faster and more robust 
reinforcement learning. 
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Öz 

Son yıllarda, Derin Pekiştirmeli Öğrenme (DPÖ), mobil robot navigasyonun zorlu sorunlarını çözmek için umut vadeden bir yaklaşım 
olarak ortaya çıkmıştır. Bu çalışma, etkili eğitim ve bellek avantajı sunan Nöral Adi Türevsel Denklemler (NATD) kullanarak 
pekiştirmeli öğrenme yöntemini önermekte ve modelden bağımsız, noktadan-noktaya navigasyon için uygulamaktadır. NATD 
kullanımıyla, navigasyon performansında artış ve kaynak optimizasyonu ile adaptasyonda iyileştirme sağlanmıştır. Yaklaşımımızı 
doğrulamak için, gerçek dünya iç mekan sahneleri kullanılarak kapsamlı simulasyon çalışmaları yapıldı. Sonuçlar, önerdiğimiz NATD 
tabanlı metodolojinin, geleneksel ResNet ve CNN mimarilerine göre navigasyon performansını artırmada etkili olduğunu göstermiştir. 
Ayrıca, müfredat öğrenme stratejileri çalışmamıza entegre edilmiş ve ajanın aşamalı olarak daha karmaşık navigasyon senaryoları 
üzerinden öğrenmesi sağlanmıştır. Elde edilen sonuçlar, bu yaklaşım ile daha hızlı ve daha gürbüz pekiştirmeli öğrenmenin 
gerçeklenebildiğini göstermektedir.  
Anahtar Kelimeler: Nöral adi türevsel denklemler, resnet, derin pekiştirmeli öğrenme, görsel navigasyon, mobil robot  

 

1. Introduction 

In recent years, there has been a notable increase in the 
utilization of artificial intelligence in autonomous robots across a 
range of industries including logistics, finance, automotive 
manufacturing, and agriculture.  Deep learning and 
reinforcement learning, in particular, have played crucial roles in 
advancing these systems' capabilities [1-6]. However, navigation 
remains a major challenge for both mobile and robotic platforms. 
To overcome this, it is essential to integrate the robot’s 
perception and planning processes seamlessly, enhancing its 
overall navigational effectiveness. 

Deep neural networks have proven instrumental in addressing 
the integration of perception and control, particularly in 
navigation tasks [7-9].  The navigation problem is a critical 
challenge for robotic systems. Traditional navigation algorithms, 
such as Simultaneous Localization and Mapping (SLAM) [10],  

path planning [11-13], and trajectory planning [14], are 
commonly used to address this challenge. Visual navigation is one 
of the key strategies for solving complex navigation problems, as 
vision-based activities enable mobile robots to understand 
dynamics and interact with their environments. Environments 
can be categorized as either map-known or map-less [15], and 
various navigation tasks include point-to-point (P2P), object-
goal, and area-goal navigation [7] .  

Combining visual navigation with deep learning methods 
provides effective solutions for these tasks. Numerous 
approaches have been proposed for navigation applications, such 
as obstacle avoidance [9], visual recognition [16], and deep 
learning-based localization [17]. Additionally, many 
Reinforcement Learning (RL) based techniques such as the 
Partially Observable Markov Decision Process (POMDP) have 
been used for visual navigation [8], [18]. Recent researches have 
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highlighted end-to-end navigation strategies for mobile robots 
[6], [19]. 

Deep neural networks include various architectures such as 
Convolutional Neural Networks (CNN) [20], ResNet [21],  AlexNet 
[22], GoogleNet [23], and Neural Ordinary Differential Equations 
(NODEs) [24]. In the literature, several studies demonstrate the 
efficient learning performance and memory efficiency achieved 
by employing NODEs in conjunction with reinforcement learning 
approaches to tackle complex problems. One of the studies, by 
Ainsworth et al. [25], introduces the concept of Continuous-Time 
Policy Gradient (CTPG) to facilitate faster learning, providing an 
efficient and accurate gradient estimator for continuous-time 
systems. Another significant study, conducted by Yildiz et al. [26], 
proposes a continuous-time model-based reinforcement learning 
framework utilizing the actor-critic method, inferring state 
evolution differentials through Bayesian neural ODEs. The study 
which contributes to the literature on NODEs and reinforcement 
learning, presented by Meleshkova et al. [27], explores their 
application in the realm of robotics. Additionally, Du et al. [28] 
present a pioneering study on Model-based RL for Semi-Markov 
Decision Processes (SMDPs) using NODEs, incorporating actions 
and time intervals into neural ODEs to model continuous-time 
dynamics. Another study by Zhao et al. [29] introduce a primary 
controller that combines Control Barrier Function and Control 
Lyapunov Function frameworks with the Soft Actor-Critic (SAC) 
algorithm [30] for systems whose dynamics are approximated by 
NODEs. Lastly, Zhao et al. [29] presents an ODE-based recurrent 
model combined with a model-free reinforcement learning (RL) 
framework to address partially observable Markov decision 
processes (POMDPs), demonstrating efficacy across various 
continuous control and meta-RL tasks. 

NODEs' efficient training and memory capabilities suggest 
promising enhancements in resource optimization, adaptability, 
and scalability, all essential for mobile robot navigation. Hence, 
this study proposes an autonomous agent model employing deep 
reinforcement learning augmented with NODEs. This strategy 
not only improves the agent's navigation ability but also 
maintains memory efficiency throughout training. Through 
extensive experimentation and evaluation, we validate the 
efficacy of our approach in improving navigation performance for 
point-to-point tasks, particularly in environments with limited 
prior knowledge or unpredictable layouts. To the best of our 
knowledge, we are the first to apply neural ODE-based network 
for navigation tasks. Our proposed approach also includes a 
range of supplementary techniques aimed at enhancing the 
efficacy of our autonomous agent model. Firstly, Curriculum 
Learning [31] is employed to facilitate a gradual learning process. 
Additionally, we integrate data fusion techniques to enrich the 
agent's understanding of its environment. Furthermore, we 
utilize reward shaping strategies to guide the agent towards 
more efficient navigation behaviors, incentivizing actions that 
contribute to successful indoor navigation tasks.  

The remainder of the paper is structured as follows: Section 1 
presents the problem and review of relevant studies. Section 2 
outlines the methodologies and technical background employed 
in addressing the reinforcement learning and Neural Ordinary 
Differential Equations. Section 3 provides insight into the 
implementation details of our proposed approach. In Section 4, 
we present the analyses and results derived from our 
experimental investigations. Lastly, Section 5 offers discussions 
and conclusions regarding the performance of the autonomous 
agent for P2P navigation. 

 

2. Background 

2.1. Reinforcement learning 

Deep reinforcement learning is able to handle high-dimensional, 
continuous input and is capable of learning from interactions in 
complex environments. Therefore, it offers a powerful and 
flexible approach to obtain more capable/adaptable agents for 
navigation tasks [6, 15]. 

In our reinforcement learning setup, an agent interacts with an 
environment across multiple discrete time steps. At each time 
step 𝑡 = 0,1,2, ⋯ , the agent observes a state 𝑠𝑡 ∈ 𝑆, receives a 
reward 𝑟𝑡  and takes an action 𝑎𝑡 ∈ 𝐴. When an agent reaches a 
terminal state, this process restarts. The return 

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ 𝛾𝑇−𝑡−1𝑟𝑇 = ∑ 𝛾𝑘−𝑡−1𝑟𝑘

𝑇

𝑘=𝑡+1

 (1) 

is the total discounted reward from the current time 𝑡 to the final 
time step 𝑇 with a discount factor 𝛾 ∈ (0,1]. The goal of an agent 
is to learn a policy 𝜋 that chooses actions such that the expected 
return is maximized. 

At this point, it should be noted that if the agent only ever takes 
actions that it has already tried and found to be rewarding, it may 
miss out on better actions that it has not yet discovered. This is 
especially true in navigation problems where the space of 
possible actions is large, and the reward signal is sparse or noisy. 
Therefore, the process of actively seeking out new and potentially 
rewarding actions, called exploration, is incorporated into the 
learning algorithm to avoid getting stuck in suboptimal policies. 
The entropy that measures the uncertainty in the policy is one of 
the powerful tools for exploration[32], [33] . The maximizing the 
entropy of its policy encourages the agent to take more diverse 
and less predictable actions [32]. We augment the entropy into 
RL objective in such a way that the objective seeks to find a policy 
that maximizes both the expected reward and the entropy of the 
policy. Then the maximum-entropy RL objective function is 

π∗ = arg max
π𝐸π

[∑ γ𝑡𝑟𝑡

𝑇

𝑡=0

+ α𝐻π] (2) 

where 

𝐻𝜋 = − ∑ 𝜋 log 𝜋 (3) 

is the entropy of policy 𝜋. The parameter 𝛼 controls the trade-off 
between the entropy term and the reward in the objective 
function and thus determines how much randomness the optimal 
policy exhibits. 

The agent learns to directly optimize a policy that maps the 
current state of the environment to a probability distribution 
over possible actions in a policy-based approach [34]. The policy 
function (e.g., a neural network) is defined by a set of adjustable 
parameters 𝜃 that are updated in the direction that yields higher 
rewards. 

2.2. Proximal Policy Optimization(PPO) 

In our study, we use on-policy reinforcement learning algorithms 
instead of off-policy ones to be able to learn quickly and adapt to 
changes in the environment [34]. On-policy algorithms also tend 
to be more stable than off-policy algorithms since they update the 
policy based on the data they are currently collecting. Some 
common on-policy algorithms include policy gradient methods 
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[25], actor-critic methods [26], Proximal Policy Optimization 
(PPO) [34]. Especially, PPO provides simple, stable, and good-
performance solutions in a wide range of reinforcement learning 
problems, including games, robotics, and natural language 
processing. 

The main idea behind PPO is to make small updates to the policy 
at each iteration while ensuring that the new policy closely 
resembles the previous one. This is achieved by using a clipping 
mechanism that limits the ratio between the current and former 
policy in the range of [1 − 𝜖, 1 + 𝜖]. Here, the clipping threshold 𝜖 
is a hyperparameter that determines how much the policy can 
change in each iteration. The clipped surrogate objective is given 
by 

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸 [min (ρ𝑡(θ)𝐴θπ
̂ (𝑠𝑡, 𝑎𝑡),   𝑐𝑙𝑖𝑝(ρ𝑡(θ), 1 − ϵ, 1

+ ϵ)𝐴θπ
̂ (𝑠𝑡 , 𝑎𝑡))] 

(4) 

where 𝜃 is the policy parameters,  

is the advantage function that estimates the advantage of taking 
a certain action, and 

𝜌𝑡(𝜃) =
𝜋𝜃(𝑠𝑡, 𝑎𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑠𝑡, 𝑎𝑡)

 (6) 

is the probability ratio between the current policy 𝜋𝜃(𝑠𝑡, 𝑎𝑡) and 
old policy 𝜋𝜃𝑜𝑙𝑑

(𝑠𝑡, 𝑎𝑡). 

2.3. Neural Ordinary Differential Equations 

Neural ordinary differential equations are a class of deep learning 
models that represent the dynamics of hidden states as a 
continuous function parameterized by neural networks [24]. The 
agent's behavior, or policy, is encoded within the neural network 
layers, making the quality of the policy dependent on the evolving 
variables of the network. The initial concept of NODEs was 
inspired by a single layer of ResNets [21] and the Euler 
discretization method.  A residual layer updates the hidden state 
ht at time 𝑡 by adding a function 𝑓(𝜃𝑡 , ℎ𝑡−1) over the previous 
state ℎ𝑡−1 in ResNets. Mathematically, 

ℎ𝑡 = ℎ𝑡−1 + 𝑓(𝜃𝑡, ℎ𝑡−1) (7) 

Contrary to discrete updates in ResNets, Neural Ordinary 
Differential Equations take a continuous approach by 
parameterizing the derivative of the hidden state through a 
neural network 𝑓(ℎ(𝑡), 𝑡, 𝜃):  

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃) 

(8) 

Instead of updating the hidden state at fixed intervals, NODEs 
define a smooth evolution of the hidden state over time by solving 
an initial value problem using the neural network function 𝑓 with 
the parameters θ. Thus, the hidden state at any time 𝜏 can be 
determined using an ODE solver: 

ℎ(τ) = ℎ(𝑡0) + ∫ 𝑓(ℎ(𝑡), 𝑡, 𝜃)𝑑𝑡

τ

𝑡0

 (10) 

              = ODESolve(ℎ(𝑡0), 𝑓, 𝑡0 , τ, 𝜃) (11) 

where ℎ(𝑡0) represents the initial conditions of the integration,  
𝑡 ∈  (𝑡𝑜 , τ) denotes the interval over which the integration is 
performed, and ODESolve is a numerical ODE solver.  

Since this continuous framework can potentially offer improved 
accuracy and robustness in capturing complex patterns, we 
present reinforcement learning implemented with NODEs. 

3. Learning Setup 

We conducted visual navigation experiments within the 
GibsonEnv simulation environment [35], employing various 
neural network architectures and sensor inputs. The initial phase 
of our experiments utilized sensor data, including camera 
imagery and proprioceptive information extracted from the 
environment. The camera sensors provided RGB and depth 
images of the building scenes, while proprioceptive sensors 
offered data on the robot's position, orientation, as well as linear 
and angular velocity. These diverse inputs were then fed into the 
neural networks to derive an optimal navigation policy. 
Subsequently, we focused on enhancing navigation performance 
by leveraging robust neural network models. We investigated the 
efficacy of Multi-layer Perceptron (MLP), ResNets, and NODEs, 
comparing their respective performances. In the context of 
reinforcement learning, crucial components include 
observations, actions, rewards, and goals. The learning setup 
details of our implementation are provided in followings: 

Observations: We utilize two types of observations in our 
experiments. The first type comprises camera images, including 
depth and RGB images, which are fed into the neural networks 
and employed in the reward function to facilitate obstacle 
avoidance. The second type consists of sensor data, which 
includes height difference, vertical and horizontal angles of the 
robot, linear velocities, roll and pitch angles of the robot's body, 
angular velocities at joints, and contact values of the robot's 
wheels. The latter consisted of eight different joint values that 
sense the robot's interaction with the ground. This 
proprioceptive sensor data is represented by a 23 × 1 
dimensional vector. 
Action Space: We employed a discrete action space in our study. 
The agent has five possible actions: move left, move right, move 
forward, move backward, and stop. 
Rewards: We investigate a combination of continuous and 
sparse rewards designed to facilitate complex navigation tasks. 
These rewards typically encourage advancing closer to the target 
point in a single step, overall progress, avoiding collisions with 
objects or obstacles, and maintaining a straight trajectory 
towards the endpoint. 
Goals: The goal of the task is defined as point to point navigation 
without any collision. 

3.1. Environment 

We use a Gibson Simulation Environment [35] for training and 
evaluating our model. Actions can be performed within this 
environment, and their outcomes observed, in a three-
dimensional (3D) space with real-world image datasets. 
Examples of the environments, taken from the buildings 
'Euharlee' and 'Aloha' are shown in Figure 1. 

We import a husky unmanned ground vehicle as our agent into 
the Gibson framework. This agent operates within the constraints 
of space and physics, facilitated by integration with a physics 
engine [36]. While adhering to these constraints, the agent can 
perform a wide range of mobility tasks. Gibson continuously 

𝐴θπ
̂ (𝑠𝑡, 𝑎𝑡) = 𝐸𝑠𝑡+𝟙:∞;α𝑡+1:∞

[∑ 𝑟𝑡+𝑙

∞

𝑙=0

] − 𝐸𝑠𝑡+𝟙:∞;α∞
[∑ 𝑟𝑡+𝑙

∞

𝑙=0

] (5) 
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provides visual observations in the form of RGB images from 
various viewpoints, utilizing an onboard camera. 

Alongside RGB images, Gibson also generates depth information 
and proprioceptive sensory data, including joint positions, angle 
velocity, robot orientation relative to the navigation target, 
position, velocity, and more. Examples of RGB and depth images 
utilized in this study are illustrated in Figure 2. 

  

(a) (b) 
Figure 1. Example the panoramic photos of the (a) Euharlee and 
(b) Aloha buildings [35]. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Captured sample images: (a) 165th RGB image, (b) 
312th RGB image (c) 165th depth image, (d) 312th depth image. 

4. Visual Navigation 

Visual information from the surrounding environment is used to 
determine and follow a path without requiring a map of the 
environment in our study. We address the point-to-point visual 
navigation task across various setups that differ in navigation 
complexity. Our proposed approach incorporates reinforcement 
learning with a NODEs-enhanced network structure for better 
environment understanding and decision-making processes. To 
further enhance the learning process, we integrate curriculum 
learning and reward shaping to encourage desirable behaviors. 
The details are given in the following subsections. 

Figure 3. Samples of navigation plans for (a) low complexity and 
(b) high complexity tasks. Large red and green balls show the 
starting and target points of the plans, respectively. Small red 
balls represent waypoints during navigation. 

4.1. Curriculum Learning 

We apply curriculum learning that involves organizing the 
training data in a simple to complex order. The idea behind 
curriculum learning is to allow the learning algorithm to 
gradually learn from simpler examples and then move on to more 
complex ones, mimicking how humans learn [31]. 

We quantify the complexity of navigation using Equation (12) 
which calculates the ratio between dSP and dSD. 

  𝐴 =
𝑑𝑆𝑃

𝑑𝑆𝐷
                                                                                       (12) 

where dSP  is the shortest path length taken by the agent to reach 
its destination and dSD is the straight line distance between the 
agent's starting point and the destination. This ratio indicates the 
disparity between the shortest path distance dSP  and the actual 
distance traveled dSD by the agent. A larger difference signifies a 
more intricate navigation task, indicating that the agent must 
navigate through a more obstacle-ridden environment to reach 
its destination. Figure 3 provides visualization examples of 
navigation plans within the environment, illustrating various 
levels of complexity. 

Before starting to learning process, we organize the navigation 
tasks into a sequence of progressively more difficult navigation 
ones. Table 1 shows different P2P training tasks, their starting 
and goal locations, corresponding shortest path and straight path 
distances and determined task complexity using Equation 12.  

Table 1. Example P2P navigation task order for curriculum 
learning. 

Starting Point Goal Point 
dSD dSP A 

X Y Z Angle X Y Z 

-1.97 3.56 0 3.10 -2.48 -3.39 0 6.97 6.97 1 

-1.97 3.56 0 3.10 -2.57 -2.53 0 6.12 6.12 1 

2.09 3.13 0 1.18 -1.92 1.2 0 4.45 4.45 1 

-1.92 1.2 0 5.23 -2.47 -5.56 0 6.79 6.8 1.002 

-0.05 3.57 0 2.50 -2.57 -2.53 0 6.60 6.78 1.04 

2.09 3.13 0 1.18 -2.57 -2.53 0 7.33 7.84 
1.07 

2.09 3.13 0 1.18 -2.57 -4.23 0 8.71 9.54 
1.10 

After ordering the task, the agent starts learning using a simple 
P2P task with a navigation complexity level of one. As the agent 
progresses through subsequent episodes, the complexity level of 
these tasks is gradually increased in a stepwise fashion. 

  

(a) (b) 
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Experiments shows that, by using curriculum learning approach, 
our learning algorithm improves its effectiveness and converges 
to a better solution. 

4.2. Reward shaping 

Reward shaping is a crucial technique in reinforcement learning 
that involves modifying the reward function to provide additional 
feedback to the learning agent. In our study, we incorporate 
navigation-specific knowledge into the reward structure to 
enable the agent to explore the environment more efficiently and 
discover optimal policies more quickly. We observe in the 
experiments that reward shaping guides the agent away from 
suboptimal behaviors and towards more desirable actions, 
enhancing the overall performance and stability of the learning. 

In our study, we utilized a combination of continuous and sparse 
rewards to facilitate complex navigation tasks. We observed that 
maintaining a critical balance between the different reward 
components was essential; if one component dominates the 
others, it leads to an unstable policy. The various reward 
components defined for effective reward shaping in this study 
are as follows: 

i. We reward the agent based on its ability to move closer 
to the target point in one step. This reward accounts for 
the agent's potential and is defined in Equation (13).   

𝑟𝑝𝑜𝑡 =
√ (𝑥 − 𝑥𝑔𝑜𝑎𝑙)

2
+ (𝑦 − 𝑦𝑔𝑜𝑎𝑙)

2
+ (𝑧 − 𝑧𝑔𝑜𝑎𝑙)

2
 

𝑓
 

(13) 

where 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 represent the current coordinate of 
the robot, 𝑥𝑔𝑜𝑎𝑙 , 𝑦𝑔𝑜𝑎𝑙  𝑎𝑛𝑑 𝑧𝑔𝑜𝑎𝑙  are the goal coordinates 

and 𝑓 is the frame rate of the camera. 

ii. We also reward the agent for progress by calculating 
the difference between the old potential reward 𝑟𝑝𝑜𝑡𝑜𝑙𝑑

 

and the new potential reward 𝑟𝑝𝑜𝑡𝑛𝑒𝑤
  as it approaches 

the target point: 

𝑟𝑝𝑟𝑜𝑔 = 𝑟𝑝𝑜𝑡𝑜𝑙𝑑
− 𝑟𝑝𝑜𝑡𝑛𝑒𝑤

 (14) 

iii. The agent receives a binary living reward based on its 
ability to drive without tipping. This reward is sparse, 
taking a value of either 1 or 0. The agent earns a reward 
of 1 if it drives without tipping. 

iv. We correlate the negative-valued obstacle reward 
𝑟𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒with the depth images from the camera. The 
reward is scaled based on the mean value of the 
observation window (80 × 80) in the depth image.  

v. If the agent hits any object or obstacle, it incurs a 
crashing penalty 𝑟𝑐𝑟𝑎𝑠ℎ = −1. 

vi. We encourage the agent to move as straight as possible 
by penalizing any attempts to turn left or right. For this 
purpose, we define a negative-valued steering reward 
and set it to -0.1.  

vii. We also define an angle cost 𝑟𝑟𝑒𝑡𝑢𝑟𝑛  to penalize the 
agent if the angle between its heading and the direction 
to the target point increases.  

viii. The angle cost  𝑟𝑟𝑒𝑡𝑢𝑟𝑛  and the steering cost 𝑟𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 are 

used to fine-tune the heading angle and encourage the 

agent to move straight towards the target without 
excessive maneuvering. These cost values range from -
0.5 to 0.5.  

ix. Additionally, we use a binary terminal reward 
𝑟𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  of 1 to encourage the agent to reach the 
endpoint. 

4.3. Neural network architecture 

PPO for reinforcement learning requires parameterizing the 
policy function, which maps states to actions. Neural networks 
have found frequent application in representing policies as 
continuous and differentiable functions, owing to their robust 
function approximation capabilities. Additionally, gradient 
information to update the policy parameters of PPO can be 
efficiently computed in neural networks through 
backpropagation.  

In this study, we employ NODEs to ascertain the optimal policy 
for point-to-point navigation. Our input comprises RGB, depth, 
and proprioceptive sensor information. Multi-Layer Perceptron 
(MLP) architecture consistently serves as the choice for 
processing of proprioceptive sensor data in all experimental 
analyses. MLP structure has 4 hidden layers, with each hidden 
layer containing 128 neurons. 

Nevertheless, apart from NODEs, distinct architectures (CNN and 
ResNets) are explored for the depth and/or RGB input data. 

The architecture of the NODEs network, illustrated in Figure 4, 
processes depth and/or RGB images. It consists of ODE blocks 
that handle the entire feature extraction chain. In the NODEs 
network, we implement two convolutional layers as a pre-
processing stage before the ODE blocks. These convolutional 
layers, with 8x8 and 4x4 convolutional filters respectively, help 
map the input image into an appropriate state space. The function 
within the ODE block is implemented to a standard residual block 
used in residual networks.  Following the ODE blocks, the output 
is processed through a global average-pooling operation and then 
passed through a fully connected layer with softmax activation 
function. 

Additionally, we also utilize CNN and ResNet architectures for 
processing depth and/or RGB images. These architectures 
provide a benchmark to evaluate the performance of the NODEs 
network. Figure 5 illustrates the construction of the ResNet 
architecture, showcasing its characteristic residual blocks that 
enable the training of very deep networks by addressing the 
vanishing gradient problem.  

5. Experiments and Results 

We conducted our indoor navigation experiments using the 
Gibson simulation environment on a setup equipped with an Intel 
i7-13700 processor, Nvidia GTX-4070 GPU, and 64 GB of RAM. 
We tested three different neural network architectures: 
CNN+MLP, ResNet+MLP, and NODEs+MLP. As previously 
discussed, MLP structure is used for proprioceptive sensor 
inputs, while CNN, ResNet, and NODEs are employed for 
RGB/Depth image inputs. The configuration parameters for our 
simulations are detailed in Table 2.  
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Figure 4. NODEs network architecture with 3 identity block. 

 

Figure 5. ResNet network architecture with 3 identity block. 

Table 2. Configuration parameters of simulations. 

Timesteps ⋕ of Episodes ⋕ of Iterations Resolution 

500 30 151 128 

We used Success Path Length (SPL) to evaluate the navigation 
success of different learning strategies. Equation (15) defines the 
Success Path Length, 

𝑆𝑃𝐿 =
1

𝑁
∑ 𝑆𝑖

𝑙𝑖

max(𝑝𝑖 , 𝑙𝑖)

𝑁

𝑖=1

 (15) 

where 𝑁 is the number of episodes, 𝑙𝑖  is the shortest path length 
derived from the Euclidean distance, 𝑝𝑖  is the total distance 
traveled by the agent, and 𝑆𝑖  is a binary constant that indicates 
the success of the episode. 

We analyze the experimental results through two SPL-related 
graphs: a histogram of Success Path Length (SPL) and a Success 
Rate metric. The SPL histogram shows the density of episodes 
corresponding to various SPL values, illustrating the efficiency 
and consistency of success paths during the experiments. The 
Success Rate indicates the overall effectiveness of the method 
and is calculated as the ratio of successful episodes to the total 
number of episodes. 

To evaluate the impact of curriculum learning on the training 
process, we simulated neural network structures using i) only 
sensor data (blind mode) and ii) depth data. Figure 6 shows the 
Success Rate and SPL histogram results for scenarios where 
curriculum learning was either implemented or not. Figure 6-a 
illustrates that reinforcement learning without curriculum 
learning progresses at a slower pace and rapidly reaches a 
plateau. As a result, the success rate without curriculum learning 
remains around 18. In contrast, with the incorporation of 
curriculum learning, the success rate significantly increases to 
approximately 55.  Figure 6-b shows that episodes with an SPL of 
zero occur more frequently in the absence of curriculum learning.  

 
(a) 

 
(b) 

Figure 6. Comparison of (a) success rates and (b) histograms 
depicting success path lengths with and without curriculum 
learning (sensor_cl vs. sensor) in blind mode. 

However, when curriculum learning is implemented, episodes 
with an SPL of 1 are considerably more common. To assess the 
impact of curriculum learning, the rewards obtained during 
reinforcement learning are also analyzed. As illustrated in Figure 
7, the integration of curriculum learning consistently results in 
significantly higher reward values in blind mode. 
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Figure 7. Rewards in reinforcement learning with and without 
curriculum learning (sensor_cl vs. sensor) in blind mode. 

The success rate, SPL, and reward outcomes obtained when using 
depth images as input are presented in Figures 8 and 9. The 
results for depth images indicate higher success rates, a greater 
number of episodes where SPL equals one, and increased 
rewards with the integration of curriculum learning. For both 
input types (sensor and depth), the findings show that the 
integration of curriculum learning significantly enhances the 
performance, effectiveness, and robustness of navigation. 

 

 
(a) 

 

(b) 

Figure 8. Comparison of (a) success rates and (b) histograms 
depicting success path lengths with and without curriculum 
learning (DEPTH_CL vs. DEPTH) for depth images. 

 

Figure 9. Rewards in reinforcement learning with and without 
curriculum learning (DEPTH_CL vs. DEPTH) for depth images.  

The training results of different neural network architectures 
with curriculum learning are presented in Figure 10. The inputs 
for reinforcement learning consist of both depth images and 
proprioceptive sensor data. As previously noted, proprioceptive 
data is processed solely by the MLP network, while depth data is 
processed by either NODEs, CNN, or ResNets. To evaluate the 
results, we consider the cumulative reward, entropy loss, value 
function loss, and surrogate function value. Based on cumulative 
reward results, NODEs achieve higher rewards while ResNet 
collects the least reward. Entropic loss remains minimal in 
NODEs and CNN architectures, while NODEs exhibit the lowest 
value losses. Regarding surrogate function values, CNN and 
NODEs perform comparably, whereas ResNet shows lower 
values. The results in Figure 10 show that the NODE+MLP 
network architecture exhibits better training performance for 
the point-to-point navigation problem, as evidenced by higher 
rewards and lower entropy and value function losses. 
In the learning phase of NODEs and CNN networks, the success 
rates indicate that roughly 80% of the episodes end successfully, 
whereas ResNet shows a comparatively lower success rate of 
around 70% (Figure 11-a). SPL calculations show that for both 
NODEs and CNN architectures, the agents reach their goal points 
following noticeably straighter paths compared to ResNet 
(Figure 11-b).  
The training results for both RGB images and proprioceptive 
sensor data are given in Figure 12 and Figure 13. The results 
show that the use of NODEs presents high performance for P2P 
navigation training. Utilization of NODEs generally yields higher 
rewards and lower losses compared to CNN and ResNet. NODEs 
also demonstrates higher navigation performance according to 
success rate and SPL histogram metrics (Figure 13). It is 
noteworthy that CNN architecture does not perform as effectively 
on RGB images as it does on depth images. 
The results of proposed NODEs integrated reinforcement 
learning are also examined in terms of the number of network 
parameters, average scores over the last 10 iterations, and total 
time elapsed. According to the results provided in Table 3, the 
NODE architecture has minimum parameter count (118,646) and 
achieve the highest average score (120.22). However, its training 
time is significantly higher compared to other architectures. The 
CNN architecture achieves the second highest average score 
using approximately six times more parameters than NODEs. 
However, its training time is approximately 22 times less than 
that of NODEs. 
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                                                          (a)                                                                                                           (b)  

 
                                                         (c)                                                                                                             (d)  

Figure 10. (a) Cumulative rewards, (b) entropy loss, (c) value function loss and (d) surrogate function values during the reinforcement 
training for both depth and sensor data inputs. 
 
 

 
 

(a)                                                          (b) 
Figure 11. Comparison of (a) success rates and (b) histograms depicting success path lengths of different neural network architectures 
for both depth and sensor data inputs.
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                                                          (a)                                                                                                           (b)  

 
                                                         (c)                                                                                                            (d)  

Figure 12. (a) Cumulative rewards, (b) entropy loss, (c) value function loss, and (d) surrogate function values during the reinforcement 
training for both RGB image and sensor data inputs. 

 
                                                                   (a)                                                                                                          (b) 

Figure 13. Comparison of (a) success rates and (b) histograms depicting success path lengths of different neural network architectures 
for both RGB image and sensor data inputs.

Table 3. Evaluation of NODEs, ResNet, and CNN Architectures 

NN Architecture # of 
Parameters 

Average 
Score 

Total Time Elapsed 

NODEs 118646 120.22 22 Hour 24Min 

ResNet 126726 94.16 1Hour 31Min 

CNN 723366 113.52 1Hour 47Min 

6. Conclusion 

In this study, we have proposed an enhanced neural network 
architecture utilizing NODEs in model-free reinforcement 
learning for point-to-point navigation tasks. We performed 
several experiments with real-world perception in Gibson 
simulation environment and showed the effectiveness of 
integrating NODEs with a DRL approach. Our results indicate that 
NODEs outperform traditional ResNet, CNN architectures in 
terms of navigation performance and memory efficiency though 
NODEs require more training time. Additionally, leveraging 
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curriculum learning, we effectively guided the agent from low to 
high complexity paths. Our findings demonstrate that curriculum 
learning plays a pivotal role in having robust and powerful 
learning performance. Furthermore, our study achieves a 
balanced training process through the application of reward 
shaping techniques.  

Our future research studies will focus on integrating semantic 
relation exploitation, necessitating the robot's comprehension of 
its surroundings and proactive decision-making. Additionally, we 
aim to enhance navigation performance by incorporating 
attention mechanisms into the fundamental blocks of Neural 
ODEs. 
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