
DEU FMD 27(80) (2025) 224-233

DOI: https://doi.org/10.21205/deufmd.2025278008 Geliş Tarihi / Received: 02.07.2024

Kabul Tarihi / Accepted: 17.08.2024

RESEARCH ARTICLE / ARAŞTIRMA MAKALESI

Indoor Visual Navigation Based on Deep Reinforcement Learning with Neural
Ordinary Differential Equations

Nöral Adi Türevsel Denklemler ile Derin Pekiştirmeli Öğrenmeye Dayalı İç
Mekan Görsel Navigasyonu

Berk Ağın 1 , Güleser Kalaycı Demir 2*

1 Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, İzmir, TÜRKİYE
2 Dokuz Eylul University, Department of Electrical and Electronics Engineering, İzmir, TÜRKİYE

Corresponding Author / Sorumlu Yazar *: guleser.kalayci@deu.edu.tr

Abstract

Recently, Deep Reinforcement Learning (DRL) has gained attention as a promising approach to tackle the challenging problem of
mobile robot navigation. This study proposes reinforcement learning utilizing Neural Ordinary Differential Equations (NODEs), which
offer effective training and memory capacities, and applies it to model-free point-to-point navigation task. Through the use of NODEs,
we achieved improvements in navigation performance as well as enhancements in resource optimization and adaptation. Extensive
simulation studies were conducted using real-world indoor scenes to validate our approach. Results effectively demonstrated the
effectiveness of our proposed NODEs-based methodology in enhancing navigation performance compared to traditional ResNet and
CNN architectures. Furthermore, curriculum learning strategies were integrated into our study to enable the agent to learn through
progressively more complex navigation scenarios. The results obtained indicate that this approach facilitates faster and more robust
reinforcement learning.

Keywords: Neural ordinary differential equations, resnet, deep reinforcement learning, visual navigation, mobile robot

Öz

Son yıllarda, Derin Pekiştirmeli Öğrenme (DPÖ), mobil robot navigasyonun zorlu sorunlarını çözmek için umut vadeden bir yaklaşım
olarak ortaya çıkmıştır. Bu çalışma, etkili eğitim ve bellek avantajı sunan Nöral Adi Türevsel Denklemler (NATD) kullanarak
pekiştirmeli öğrenme yöntemini önermekte ve modelden bağımsız, noktadan-noktaya navigasyon için uygulamaktadır. NATD
kullanımıyla, navigasyon performansında artış ve kaynak optimizasyonu ile adaptasyonda iyileştirme sağlanmıştır. Yaklaşımımızı
doğrulamak için, gerçek dünya iç mekan sahneleri kullanılarak kapsamlı simulasyon çalışmaları yapıldı. Sonuçlar, önerdiğimiz NATD
tabanlı metodolojinin, geleneksel ResNet ve CNN mimarilerine göre navigasyon performansını artırmada etkili olduğunu göstermiştir.
Ayrıca, müfredat öğrenme stratejileri çalışmamıza entegre edilmiş ve ajanın aşamalı olarak daha karmaşık navigasyon senaryoları
üzerinden öğrenmesi sağlanmıştır. Elde edilen sonuçlar, bu yaklaşım ile daha hızlı ve daha gürbüz pekiştirmeli öğrenmenin
gerçeklenebildiğini göstermektedir.
Anahtar Kelimeler: Nöral adi türevsel denklemler, resnet, derin pekiştirmeli öğrenme, görsel navigasyon, mobil robot

1. Introduction

In recent years, there has been a notable increase in the
utilization of artificial intelligence in autonomous robots across a
range of industries including logistics, finance, automotive
manufacturing, and agriculture. Deep learning and
reinforcement learning, in particular, have played crucial roles in
advancing these systems' capabilities [1-6]. However, navigation
remains a major challenge for both mobile and robotic platforms.
To overcome this, it is essential to integrate the robot’s
perception and planning processes seamlessly, enhancing its
overall navigational effectiveness.

Deep neural networks have proven instrumental in addressing
the integration of perception and control, particularly in
navigation tasks [7-9]. The navigation problem is a critical
challenge for robotic systems. Traditional navigation algorithms,
such as Simultaneous Localization and Mapping (SLAM) [10],

path planning [11-13], and trajectory planning [14], are
commonly used to address this challenge. Visual navigation is one
of the key strategies for solving complex navigation problems, as
vision-based activities enable mobile robots to understand
dynamics and interact with their environments. Environments
can be categorized as either map-known or map-less [15], and
various navigation tasks include point-to-point (P2P), object-
goal, and area-goal navigation [7] .

Combining visual navigation with deep learning methods
provides effective solutions for these tasks. Numerous
approaches have been proposed for navigation applications, such
as obstacle avoidance [9], visual recognition [16], and deep
learning-based localization [17]. Additionally, many
Reinforcement Learning (RL) based techniques such as the
Partially Observable Markov Decision Process (POMDP) have
been used for visual navigation [8], [18]. Recent researches have

https://orcid.org/0000-0002-5431-5337
https://orcid.org/0000-0003-3808-5305

DEU FMD 27(80) (2025) 224-233

 225

highlighted end-to-end navigation strategies for mobile robots
[6], [19].

Deep neural networks include various architectures such as
Convolutional Neural Networks (CNN) [20], ResNet [21], AlexNet
[22], GoogleNet [23], and Neural Ordinary Differential Equations
(NODEs) [24]. In the literature, several studies demonstrate the
efficient learning performance and memory efficiency achieved
by employing NODEs in conjunction with reinforcement learning
approaches to tackle complex problems. One of the studies, by
Ainsworth et al. [25], introduces the concept of Continuous-Time
Policy Gradient (CTPG) to facilitate faster learning, providing an
efficient and accurate gradient estimator for continuous-time
systems. Another significant study, conducted by Yildiz et al. [26],
proposes a continuous-time model-based reinforcement learning
framework utilizing the actor-critic method, inferring state
evolution differentials through Bayesian neural ODEs. The study
which contributes to the literature on NODEs and reinforcement
learning, presented by Meleshkova et al. [27], explores their
application in the realm of robotics. Additionally, Du et al. [28]
present a pioneering study on Model-based RL for Semi-Markov
Decision Processes (SMDPs) using NODEs, incorporating actions
and time intervals into neural ODEs to model continuous-time
dynamics. Another study by Zhao et al. [29] introduce a primary
controller that combines Control Barrier Function and Control
Lyapunov Function frameworks with the Soft Actor-Critic (SAC)
algorithm [30] for systems whose dynamics are approximated by
NODEs. Lastly, Zhao et al. [29] presents an ODE-based recurrent
model combined with a model-free reinforcement learning (RL)
framework to address partially observable Markov decision
processes (POMDPs), demonstrating efficacy across various
continuous control and meta-RL tasks.

NODEs' efficient training and memory capabilities suggest
promising enhancements in resource optimization, adaptability,
and scalability, all essential for mobile robot navigation. Hence,
this study proposes an autonomous agent model employing deep
reinforcement learning augmented with NODEs. This strategy
not only improves the agent's navigation ability but also
maintains memory efficiency throughout training. Through
extensive experimentation and evaluation, we validate the
efficacy of our approach in improving navigation performance for
point-to-point tasks, particularly in environments with limited
prior knowledge or unpredictable layouts. To the best of our
knowledge, we are the first to apply neural ODE-based network
for navigation tasks. Our proposed approach also includes a
range of supplementary techniques aimed at enhancing the
efficacy of our autonomous agent model. Firstly, Curriculum
Learning [31] is employed to facilitate a gradual learning process.
Additionally, we integrate data fusion techniques to enrich the
agent's understanding of its environment. Furthermore, we
utilize reward shaping strategies to guide the agent towards
more efficient navigation behaviors, incentivizing actions that
contribute to successful indoor navigation tasks.

The remainder of the paper is structured as follows: Section 1
presents the problem and review of relevant studies. Section 2
outlines the methodologies and technical background employed
in addressing the reinforcement learning and Neural Ordinary
Differential Equations. Section 3 provides insight into the
implementation details of our proposed approach. In Section 4,
we present the analyses and results derived from our
experimental investigations. Lastly, Section 5 offers discussions
and conclusions regarding the performance of the autonomous
agent for P2P navigation.

2. Background

2.1. Reinforcement learning

Deep reinforcement learning is able to handle high-dimensional,
continuous input and is capable of learning from interactions in
complex environments. Therefore, it offers a powerful and
flexible approach to obtain more capable/adaptable agents for
navigation tasks [6, 15].

In our reinforcement learning setup, an agent interacts with an
environment across multiple discrete time steps. At each time
step 𝑡 = 0,1,2, ⋯ , the agent observes a state 𝑠𝑡 ∈ 𝑆, receives a
reward 𝑟𝑡 and takes an action 𝑎𝑡 ∈ 𝐴. When an agent reaches a
terminal state, this process restarts. The return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯ 𝛾𝑇−𝑡−1𝑟𝑇 = ∑ 𝛾𝑘−𝑡−1𝑟𝑘

𝑇

𝑘=𝑡+1

 (1)

is the total discounted reward from the current time 𝑡 to the final
time step 𝑇 with a discount factor 𝛾 ∈ (0,1]. The goal of an agent
is to learn a policy 𝜋 that chooses actions such that the expected
return is maximized.

At this point, it should be noted that if the agent only ever takes
actions that it has already tried and found to be rewarding, it may
miss out on better actions that it has not yet discovered. This is
especially true in navigation problems where the space of
possible actions is large, and the reward signal is sparse or noisy.
Therefore, the process of actively seeking out new and potentially
rewarding actions, called exploration, is incorporated into the
learning algorithm to avoid getting stuck in suboptimal policies.
The entropy that measures the uncertainty in the policy is one of
the powerful tools for exploration[32], [33] . The maximizing the
entropy of its policy encourages the agent to take more diverse
and less predictable actions [32]. We augment the entropy into
RL objective in such a way that the objective seeks to find a policy
that maximizes both the expected reward and the entropy of the
policy. Then the maximum-entropy RL objective function is

π∗ = arg max
π𝐸π

[∑ γ𝑡𝑟𝑡

𝑇

𝑡=0

+ α𝐻π] (2)

where

𝐻𝜋 = − ∑ 𝜋 log 𝜋 (3)

is the entropy of policy 𝜋. The parameter 𝛼 controls the trade-off
between the entropy term and the reward in the objective
function and thus determines how much randomness the optimal
policy exhibits.

The agent learns to directly optimize a policy that maps the
current state of the environment to a probability distribution
over possible actions in a policy-based approach [34]. The policy
function (e.g., a neural network) is defined by a set of adjustable
parameters 𝜃 that are updated in the direction that yields higher
rewards.

2.2. Proximal Policy Optimization(PPO)

In our study, we use on-policy reinforcement learning algorithms
instead of off-policy ones to be able to learn quickly and adapt to
changes in the environment [34]. On-policy algorithms also tend
to be more stable than off-policy algorithms since they update the
policy based on the data they are currently collecting. Some
common on-policy algorithms include policy gradient methods

DEU FMD 27(80) (2025) 224-233

 226

[25], actor-critic methods [26], Proximal Policy Optimization
(PPO) [34]. Especially, PPO provides simple, stable, and good-
performance solutions in a wide range of reinforcement learning
problems, including games, robotics, and natural language
processing.

The main idea behind PPO is to make small updates to the policy
at each iteration while ensuring that the new policy closely
resembles the previous one. This is achieved by using a clipping
mechanism that limits the ratio between the current and former
policy in the range of [1 − 𝜖, 1 + 𝜖]. Here, the clipping threshold 𝜖
is a hyperparameter that determines how much the policy can
change in each iteration. The clipped surrogate objective is given
by

𝐿𝐶𝐿𝐼𝑃(θ) = 𝐸 [min (ρ𝑡(θ)𝐴θπ
̂ (𝑠𝑡, 𝑎𝑡),   𝑐𝑙𝑖𝑝(ρ𝑡(θ), 1 − ϵ, 1

+ ϵ)𝐴θπ
̂ (𝑠𝑡 , 𝑎𝑡))]

(4)

where 𝜃 is the policy parameters,

is the advantage function that estimates the advantage of taking
a certain action, and

𝜌𝑡(𝜃) =
𝜋𝜃(𝑠𝑡, 𝑎𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑠𝑡, 𝑎𝑡)

 (6)

is the probability ratio between the current policy 𝜋𝜃(𝑠𝑡, 𝑎𝑡) and
old policy 𝜋𝜃𝑜𝑙𝑑

(𝑠𝑡, 𝑎𝑡).

2.3. Neural Ordinary Differential Equations

Neural ordinary differential equations are a class of deep learning
models that represent the dynamics of hidden states as a
continuous function parameterized by neural networks [24]. The
agent's behavior, or policy, is encoded within the neural network
layers, making the quality of the policy dependent on the evolving
variables of the network. The initial concept of NODEs was
inspired by a single layer of ResNets [21] and the Euler
discretization method. A residual layer updates the hidden state
ht at time 𝑡 by adding a function 𝑓(𝜃𝑡 , ℎ𝑡−1) over the previous
state ℎ𝑡−1 in ResNets. Mathematically,

ℎ𝑡 = ℎ𝑡−1 + 𝑓(𝜃𝑡, ℎ𝑡−1) (7)

Contrary to discrete updates in ResNets, Neural Ordinary
Differential Equations take a continuous approach by
parameterizing the derivative of the hidden state through a
neural network 𝑓(ℎ(𝑡), 𝑡, 𝜃):

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃)

(8)

Instead of updating the hidden state at fixed intervals, NODEs
define a smooth evolution of the hidden state over time by solving
an initial value problem using the neural network function 𝑓 with
the parameters θ. Thus, the hidden state at any time 𝜏 can be
determined using an ODE solver:

ℎ(τ) = ℎ(𝑡0) + ∫ 𝑓(ℎ(𝑡), 𝑡, 𝜃)𝑑𝑡

τ

𝑡0

 (10)

 = ODESolve(ℎ(𝑡0), 𝑓, 𝑡0 , τ, 𝜃) (11)

where ℎ(𝑡0) represents the initial conditions of the integration,
𝑡 ∈ (𝑡𝑜 , τ) denotes the interval over which the integration is
performed, and ODESolve is a numerical ODE solver.

Since this continuous framework can potentially offer improved
accuracy and robustness in capturing complex patterns, we
present reinforcement learning implemented with NODEs.

3. Learning Setup

We conducted visual navigation experiments within the
GibsonEnv simulation environment [35], employing various
neural network architectures and sensor inputs. The initial phase
of our experiments utilized sensor data, including camera
imagery and proprioceptive information extracted from the
environment. The camera sensors provided RGB and depth
images of the building scenes, while proprioceptive sensors
offered data on the robot's position, orientation, as well as linear
and angular velocity. These diverse inputs were then fed into the
neural networks to derive an optimal navigation policy.
Subsequently, we focused on enhancing navigation performance
by leveraging robust neural network models. We investigated the
efficacy of Multi-layer Perceptron (MLP), ResNets, and NODEs,
comparing their respective performances. In the context of
reinforcement learning, crucial components include
observations, actions, rewards, and goals. The learning setup
details of our implementation are provided in followings:

Observations: We utilize two types of observations in our
experiments. The first type comprises camera images, including
depth and RGB images, which are fed into the neural networks
and employed in the reward function to facilitate obstacle
avoidance. The second type consists of sensor data, which
includes height difference, vertical and horizontal angles of the
robot, linear velocities, roll and pitch angles of the robot's body,
angular velocities at joints, and contact values of the robot's
wheels. The latter consisted of eight different joint values that
sense the robot's interaction with the ground. This
proprioceptive sensor data is represented by a 23 × 1
dimensional vector.
Action Space: We employed a discrete action space in our study.
The agent has five possible actions: move left, move right, move
forward, move backward, and stop.
Rewards: We investigate a combination of continuous and
sparse rewards designed to facilitate complex navigation tasks.
These rewards typically encourage advancing closer to the target
point in a single step, overall progress, avoiding collisions with
objects or obstacles, and maintaining a straight trajectory
towards the endpoint.
Goals: The goal of the task is defined as point to point navigation
without any collision.

3.1. Environment

We use a Gibson Simulation Environment [35] for training and
evaluating our model. Actions can be performed within this
environment, and their outcomes observed, in a three-
dimensional (3D) space with real-world image datasets.
Examples of the environments, taken from the buildings
'Euharlee' and 'Aloha' are shown in Figure 1.

We import a husky unmanned ground vehicle as our agent into
the Gibson framework. This agent operates within the constraints
of space and physics, facilitated by integration with a physics
engine [36]. While adhering to these constraints, the agent can
perform a wide range of mobility tasks. Gibson continuously

𝐴θπ
̂ (𝑠𝑡, 𝑎𝑡) = 𝐸𝑠𝑡+𝟙:∞;α𝑡+1:∞

[∑ 𝑟𝑡+𝑙

∞

𝑙=0

] − 𝐸𝑠𝑡+𝟙:∞;α∞
[∑ 𝑟𝑡+𝑙

∞

𝑙=0

] (5)

DEU FMD 27(80) (2025) 224-233

 227

provides visual observations in the form of RGB images from
various viewpoints, utilizing an onboard camera.

Alongside RGB images, Gibson also generates depth information
and proprioceptive sensory data, including joint positions, angle
velocity, robot orientation relative to the navigation target,
position, velocity, and more. Examples of RGB and depth images
utilized in this study are illustrated in Figure 2.

(a) (b)
Figure 1. Example the panoramic photos of the (a) Euharlee and
(b) Aloha buildings [35].

(a)

(b)

(c)

(d)

Figure 2. Captured sample images: (a) 165th RGB image, (b)
312th RGB image (c) 165th depth image, (d) 312th depth image.

4. Visual Navigation

Visual information from the surrounding environment is used to
determine and follow a path without requiring a map of the
environment in our study. We address the point-to-point visual
navigation task across various setups that differ in navigation
complexity. Our proposed approach incorporates reinforcement
learning with a NODEs-enhanced network structure for better
environment understanding and decision-making processes. To
further enhance the learning process, we integrate curriculum
learning and reward shaping to encourage desirable behaviors.
The details are given in the following subsections.

Figure 3. Samples of navigation plans for (a) low complexity and
(b) high complexity tasks. Large red and green balls show the
starting and target points of the plans, respectively. Small red
balls represent waypoints during navigation.

4.1. Curriculum Learning

We apply curriculum learning that involves organizing the
training data in a simple to complex order. The idea behind
curriculum learning is to allow the learning algorithm to
gradually learn from simpler examples and then move on to more
complex ones, mimicking how humans learn [31].

We quantify the complexity of navigation using Equation (12)
which calculates the ratio between dSP and dSD.

 𝐴 =
𝑑𝑆𝑃

𝑑𝑆𝐷
 (12)

where dSP is the shortest path length taken by the agent to reach
its destination and dSD is the straight line distance between the
agent's starting point and the destination. This ratio indicates the
disparity between the shortest path distance dSP and the actual
distance traveled dSD by the agent. A larger difference signifies a
more intricate navigation task, indicating that the agent must
navigate through a more obstacle-ridden environment to reach
its destination. Figure 3 provides visualization examples of
navigation plans within the environment, illustrating various
levels of complexity.

Before starting to learning process, we organize the navigation
tasks into a sequence of progressively more difficult navigation
ones. Table 1 shows different P2P training tasks, their starting
and goal locations, corresponding shortest path and straight path
distances and determined task complexity using Equation 12.

Table 1. Example P2P navigation task order for curriculum
learning.

Starting Point Goal Point
dSD dSP A

X Y Z Angle X Y Z

-1.97 3.56 0 3.10 -2.48 -3.39 0 6.97 6.97 1

-1.97 3.56 0 3.10 -2.57 -2.53 0 6.12 6.12 1

2.09 3.13 0 1.18 -1.92 1.2 0 4.45 4.45 1

-1.92 1.2 0 5.23 -2.47 -5.56 0 6.79 6.8 1.002

-0.05 3.57 0 2.50 -2.57 -2.53 0 6.60 6.78 1.04

2.09 3.13 0 1.18 -2.57 -2.53 0 7.33 7.84
1.07

2.09 3.13 0 1.18 -2.57 -4.23 0 8.71 9.54
1.10

After ordering the task, the agent starts learning using a simple
P2P task with a navigation complexity level of one. As the agent
progresses through subsequent episodes, the complexity level of
these tasks is gradually increased in a stepwise fashion.

(a) (b)

DEU FMD 27(80) (2025) 224-233

 228

Experiments shows that, by using curriculum learning approach,
our learning algorithm improves its effectiveness and converges
to a better solution.

4.2. Reward shaping

Reward shaping is a crucial technique in reinforcement learning
that involves modifying the reward function to provide additional
feedback to the learning agent. In our study, we incorporate
navigation-specific knowledge into the reward structure to
enable the agent to explore the environment more efficiently and
discover optimal policies more quickly. We observe in the
experiments that reward shaping guides the agent away from
suboptimal behaviors and towards more desirable actions,
enhancing the overall performance and stability of the learning.

In our study, we utilized a combination of continuous and sparse
rewards to facilitate complex navigation tasks. We observed that
maintaining a critical balance between the different reward
components was essential; if one component dominates the
others, it leads to an unstable policy. The various reward
components defined for effective reward shaping in this study
are as follows:

i. We reward the agent based on its ability to move closer
to the target point in one step. This reward accounts for
the agent's potential and is defined in Equation (13).

𝑟𝑝𝑜𝑡 =
√ (𝑥 − 𝑥𝑔𝑜𝑎𝑙)

2
+ (𝑦 − 𝑦𝑔𝑜𝑎𝑙)

2
+ (𝑧 − 𝑧𝑔𝑜𝑎𝑙)

2
 

𝑓

(13)

where 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 represent the current coordinate of
the robot, 𝑥𝑔𝑜𝑎𝑙 , 𝑦𝑔𝑜𝑎𝑙 𝑎𝑛𝑑 𝑧𝑔𝑜𝑎𝑙 are the goal coordinates

and 𝑓 is the frame rate of the camera.

ii. We also reward the agent for progress by calculating
the difference between the old potential reward 𝑟𝑝𝑜𝑡𝑜𝑙𝑑

and the new potential reward 𝑟𝑝𝑜𝑡𝑛𝑒𝑤
 as it approaches

the target point:

𝑟𝑝𝑟𝑜𝑔 = 𝑟𝑝𝑜𝑡𝑜𝑙𝑑
− 𝑟𝑝𝑜𝑡𝑛𝑒𝑤

 (14)

iii. The agent receives a binary living reward based on its
ability to drive without tipping. This reward is sparse,
taking a value of either 1 or 0. The agent earns a reward
of 1 if it drives without tipping.

iv. We correlate the negative-valued obstacle reward
𝑟𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒with the depth images from the camera. The
reward is scaled based on the mean value of the
observation window (80 × 80) in the depth image.

v. If the agent hits any object or obstacle, it incurs a
crashing penalty 𝑟𝑐𝑟𝑎𝑠ℎ = −1.

vi. We encourage the agent to move as straight as possible
by penalizing any attempts to turn left or right. For this
purpose, we define a negative-valued steering reward
and set it to -0.1.

vii. We also define an angle cost 𝑟𝑟𝑒𝑡𝑢𝑟𝑛 to penalize the
agent if the angle between its heading and the direction
to the target point increases.

viii. The angle cost 𝑟𝑟𝑒𝑡𝑢𝑟𝑛 and the steering cost 𝑟𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 are

used to fine-tune the heading angle and encourage the

agent to move straight towards the target without
excessive maneuvering. These cost values range from -
0.5 to 0.5.

ix. Additionally, we use a binary terminal reward
𝑟𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 of 1 to encourage the agent to reach the
endpoint.

4.3. Neural network architecture

PPO for reinforcement learning requires parameterizing the
policy function, which maps states to actions. Neural networks
have found frequent application in representing policies as
continuous and differentiable functions, owing to their robust
function approximation capabilities. Additionally, gradient
information to update the policy parameters of PPO can be
efficiently computed in neural networks through
backpropagation.

In this study, we employ NODEs to ascertain the optimal policy
for point-to-point navigation. Our input comprises RGB, depth,
and proprioceptive sensor information. Multi-Layer Perceptron
(MLP) architecture consistently serves as the choice for
processing of proprioceptive sensor data in all experimental
analyses. MLP structure has 4 hidden layers, with each hidden
layer containing 128 neurons.

Nevertheless, apart from NODEs, distinct architectures (CNN and
ResNets) are explored for the depth and/or RGB input data.

The architecture of the NODEs network, illustrated in Figure 4,
processes depth and/or RGB images. It consists of ODE blocks
that handle the entire feature extraction chain. In the NODEs
network, we implement two convolutional layers as a pre-
processing stage before the ODE blocks. These convolutional
layers, with 8x8 and 4x4 convolutional filters respectively, help
map the input image into an appropriate state space. The function
within the ODE block is implemented to a standard residual block
used in residual networks. Following the ODE blocks, the output
is processed through a global average-pooling operation and then
passed through a fully connected layer with softmax activation
function.

Additionally, we also utilize CNN and ResNet architectures for
processing depth and/or RGB images. These architectures
provide a benchmark to evaluate the performance of the NODEs
network. Figure 5 illustrates the construction of the ResNet
architecture, showcasing its characteristic residual blocks that
enable the training of very deep networks by addressing the
vanishing gradient problem.

5. Experiments and Results

We conducted our indoor navigation experiments using the
Gibson simulation environment on a setup equipped with an Intel
i7-13700 processor, Nvidia GTX-4070 GPU, and 64 GB of RAM.
We tested three different neural network architectures:
CNN+MLP, ResNet+MLP, and NODEs+MLP. As previously
discussed, MLP structure is used for proprioceptive sensor
inputs, while CNN, ResNet, and NODEs are employed for
RGB/Depth image inputs. The configuration parameters for our
simulations are detailed in Table 2.

DEU FMD 27(80) (2025) 224-233

 229

Figure 4. NODEs network architecture with 3 identity block.

Figure 5. ResNet network architecture with 3 identity block.

Table 2. Configuration parameters of simulations.

Timesteps ⋕ of Episodes ⋕ of Iterations Resolution

500 30 151 128

We used Success Path Length (SPL) to evaluate the navigation
success of different learning strategies. Equation (15) defines the
Success Path Length,

𝑆𝑃𝐿 =
1

𝑁
∑ 𝑆𝑖

𝑙𝑖

max(𝑝𝑖 , 𝑙𝑖)

𝑁

𝑖=1

 (15)

where 𝑁 is the number of episodes, 𝑙𝑖 is the shortest path length
derived from the Euclidean distance, 𝑝𝑖 is the total distance
traveled by the agent, and 𝑆𝑖 is a binary constant that indicates
the success of the episode.

We analyze the experimental results through two SPL-related
graphs: a histogram of Success Path Length (SPL) and a Success
Rate metric. The SPL histogram shows the density of episodes
corresponding to various SPL values, illustrating the efficiency
and consistency of success paths during the experiments. The
Success Rate indicates the overall effectiveness of the method
and is calculated as the ratio of successful episodes to the total
number of episodes.

To evaluate the impact of curriculum learning on the training
process, we simulated neural network structures using i) only
sensor data (blind mode) and ii) depth data. Figure 6 shows the
Success Rate and SPL histogram results for scenarios where
curriculum learning was either implemented or not. Figure 6-a
illustrates that reinforcement learning without curriculum
learning progresses at a slower pace and rapidly reaches a
plateau. As a result, the success rate without curriculum learning
remains around 18. In contrast, with the incorporation of
curriculum learning, the success rate significantly increases to
approximately 55. Figure 6-b shows that episodes with an SPL of
zero occur more frequently in the absence of curriculum learning.

(a)

(b)

Figure 6. Comparison of (a) success rates and (b) histograms
depicting success path lengths with and without curriculum
learning (sensor_cl vs. sensor) in blind mode.

However, when curriculum learning is implemented, episodes
with an SPL of 1 are considerably more common. To assess the
impact of curriculum learning, the rewards obtained during
reinforcement learning are also analyzed. As illustrated in Figure
7, the integration of curriculum learning consistently results in
significantly higher reward values in blind mode.

DEU FMD 27(80) (2025) 224-233

 230

Figure 7. Rewards in reinforcement learning with and without
curriculum learning (sensor_cl vs. sensor) in blind mode.

The success rate, SPL, and reward outcomes obtained when using
depth images as input are presented in Figures 8 and 9. The
results for depth images indicate higher success rates, a greater
number of episodes where SPL equals one, and increased
rewards with the integration of curriculum learning. For both
input types (sensor and depth), the findings show that the
integration of curriculum learning significantly enhances the
performance, effectiveness, and robustness of navigation.

(a)

(b)

Figure 8. Comparison of (a) success rates and (b) histograms
depicting success path lengths with and without curriculum
learning (DEPTH_CL vs. DEPTH) for depth images.

Figure 9. Rewards in reinforcement learning with and without
curriculum learning (DEPTH_CL vs. DEPTH) for depth images.

The training results of different neural network architectures
with curriculum learning are presented in Figure 10. The inputs
for reinforcement learning consist of both depth images and
proprioceptive sensor data. As previously noted, proprioceptive
data is processed solely by the MLP network, while depth data is
processed by either NODEs, CNN, or ResNets. To evaluate the
results, we consider the cumulative reward, entropy loss, value
function loss, and surrogate function value. Based on cumulative
reward results, NODEs achieve higher rewards while ResNet
collects the least reward. Entropic loss remains minimal in
NODEs and CNN architectures, while NODEs exhibit the lowest
value losses. Regarding surrogate function values, CNN and
NODEs perform comparably, whereas ResNet shows lower
values. The results in Figure 10 show that the NODE+MLP
network architecture exhibits better training performance for
the point-to-point navigation problem, as evidenced by higher
rewards and lower entropy and value function losses.
In the learning phase of NODEs and CNN networks, the success
rates indicate that roughly 80% of the episodes end successfully,
whereas ResNet shows a comparatively lower success rate of
around 70% (Figure 11-a). SPL calculations show that for both
NODEs and CNN architectures, the agents reach their goal points
following noticeably straighter paths compared to ResNet
(Figure 11-b).
The training results for both RGB images and proprioceptive
sensor data are given in Figure 12 and Figure 13. The results
show that the use of NODEs presents high performance for P2P
navigation training. Utilization of NODEs generally yields higher
rewards and lower losses compared to CNN and ResNet. NODEs
also demonstrates higher navigation performance according to
success rate and SPL histogram metrics (Figure 13). It is
noteworthy that CNN architecture does not perform as effectively
on RGB images as it does on depth images.
The results of proposed NODEs integrated reinforcement
learning are also examined in terms of the number of network
parameters, average scores over the last 10 iterations, and total
time elapsed. According to the results provided in Table 3, the
NODE architecture has minimum parameter count (118,646) and
achieve the highest average score (120.22). However, its training
time is significantly higher compared to other architectures. The
CNN architecture achieves the second highest average score
using approximately six times more parameters than NODEs.
However, its training time is approximately 22 times less than
that of NODEs.

DEU FMD 27(80) (2025) 224-233

 231

 (a) (b)

 (c) (d)

Figure 10. (a) Cumulative rewards, (b) entropy loss, (c) value function loss and (d) surrogate function values during the reinforcement
training for both depth and sensor data inputs.

(a) (b)
Figure 11. Comparison of (a) success rates and (b) histograms depicting success path lengths of different neural network architectures
for both depth and sensor data inputs.

DEU FMD 27(80) (2025) 224-233

 232

 (a) (b)

 (c) (d)

Figure 12. (a) Cumulative rewards, (b) entropy loss, (c) value function loss, and (d) surrogate function values during the reinforcement
training for both RGB image and sensor data inputs.

 (a) (b)

Figure 13. Comparison of (a) success rates and (b) histograms depicting success path lengths of different neural network architectures
for both RGB image and sensor data inputs.

Table 3. Evaluation of NODEs, ResNet, and CNN Architectures

NN Architecture # of
Parameters

Average
Score

Total Time Elapsed

NODEs 118646 120.22 22 Hour 24Min

ResNet 126726 94.16 1Hour 31Min

CNN 723366 113.52 1Hour 47Min

6. Conclusion

In this study, we have proposed an enhanced neural network
architecture utilizing NODEs in model-free reinforcement
learning for point-to-point navigation tasks. We performed
several experiments with real-world perception in Gibson
simulation environment and showed the effectiveness of
integrating NODEs with a DRL approach. Our results indicate that
NODEs outperform traditional ResNet, CNN architectures in
terms of navigation performance and memory efficiency though
NODEs require more training time. Additionally, leveraging

DEU FMD 27(80) (2025) 224-233

 233

curriculum learning, we effectively guided the agent from low to
high complexity paths. Our findings demonstrate that curriculum
learning plays a pivotal role in having robust and powerful
learning performance. Furthermore, our study achieves a
balanced training process through the application of reward
shaping techniques.

Our future research studies will focus on integrating semantic
relation exploitation, necessitating the robot's comprehension of
its surroundings and proactive decision-making. Additionally, we
aim to enhance navigation performance by incorporating
attention mechanisms into the fundamental blocks of Neural
ODEs.

Ethics committee approval and conflict of interest
statement

There is no need for an ethics committee approval in the current
article. There is no conflict of interest with any person/institution
in the current article.

Author Contribution Statement

This work is based on the first author's master's thesis titled
‘Deep learning based visual navigation in indoor environments,'
completed under the supervision of the second author. The first
author contributed to the analysis, coding, simulation, and
writing, while the second author contributed to the idea
development, methodology, analysis, review and writing. Both
authors contributed equally to this manuscript.

References

[1] Ferreira, B., Reis, J. 2023. A Systematic Literature Review on the
Application of Automation in Logistics, Logistics, Vol. 7, no. 4, p. 80, DOI:
10.3390/logistics7040080.

[2] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M. 2013. Playing Atari with Deep Reinforcement
Learning. arXiv, http://arxiv.org/abs/1312.5602 (Accessed: Jun. 12,
2024).

[3] Fox, I., Lee, J., Pop-Busui, R., Wiens, J. 2020. Deep Reinforcement
Learning for Closed-Loop Blood Glucose Control, arXiv,
http://arxiv.org/abs/2009.09051 (Accessed: Jun. 12, 2024).

[4] Yang, S. 2023. Deep Reinforcement Learning for Portfolio Management,
Knowledge-Based Systems, Vol.278,
https://doi.org/10.1016/j.knosys.2023.110905.

[5] Liu, X.-Y., Yang, H., Chen, Q., Zhang, R., Yang, L., Xiao, B., Wang, C. 2022.
FinRL: A Deep Reinforcement Learning Library for Automated Stock
Trading in Quantitative Finance, arXiv,
http://arxiv.org/abs/2011.09607. (Accessed: Jun. 12, 2024).

[6] Shi, H., Shi, L., Xu, M., Hwang, K.-S. 2020. End-to-End Navigation Strategy
With Deep Reinforcement Learning for Mobile Robots, IEEE Trans. Ind.
Inform., Vol. 16, no. 4, pp. 2393-2402, doi: 10.1109/TII.2019.2936167.

[7] Anderson, P., Chang, A., Chaplot, D.S., Dosovitskiy, A. et al. 2018. On
Evaluation of Embodied Navigation Agents. arXiv,
https://arxiv.org/abs/1807.06757 (Accessed: Sep. 23, 2023)

[8] López,, M.E., Bergasa, L. M., Escudero,M.S. 2003. Visually augmented
POMDP for indoor robot navigation, in Applied Informatics, pp. 183-
187.

[9] Gaya, J., Gon√ßalves, L., Duarte, A., Zanchetta, B., Drews-Jr, P., Botelho, S.
2016. Vision-based Obstacle Avoidance Using Deep Learning, doi:
10.1109/LARS-SBR.2016.9.

[10] Thrun, S. 2008. Simultaneous localization and mapping. In Robotics and
cognitive approaches to spatial mapping, pp. 13-41, Springer Berlin
Heidelberg.

[11] Balakrishnan, K., Chakravarty, P., Shrivastava, S. 2021. An A* Curriculum
Approach to Reinforcement Learning for RGBD Indoor Robot
Navigation. arXiv, http://arxiv.org/abs/2101.01774, (Accessed: Aug.
07, 2023).

[12] Stentz, A. 1994. Optimal and efficient path planning for partially-known
environments, IEEE International Conference on Robotics and
Automation, 1994, pp.3310-3317Vol.4. doi:
10.1109/ROBOT.1994.351061.

[13] LaValle, S.M. 1998. Rapidly-exploring random trees: A new tool for path
planning, Technical Report 98-11, Comput. Sci. Dept, Iowa State Univ.

[14] Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R. 2012. Trajectory
planning in robotics, Math. Comput. Sci., Vol. 6, no. 3, pp. 269-279.

[15] Bonin-Font, F., Ortiz, A., Oliver, G., 2008. Visual navigation for mobile
robots: A survey, J. Intell. Robot. Syst., Vol. 53, no. 3, pp. 263-296.

[16] Pan, M., Liu, Y., Cao, J., Li, Y., Li, C., Chen, C.-H. 2020. Visual Recognition
Based on Deep Learning for Navigation Mark Classification, IEEE Access,
Vol. 8, pp. 32767-32775, doi: 10.1109/ACCESS.2020.2973856.

[17] Ayyalasomayajula R., Arun, A., Wu, C., Sharma, S., Sethi, A.R., Vasisht, D.,
Bharadiaet D. 2020. Deep Learning Based Wireless Localization for
Indoor Navigation," 26th Annual International Conference on Mobile
Computing and Networking, doi: 10.1145/3372224.3380894

[18] Ocaña, M., Bergasa, L. M., Sotelo, M., Flores, R. 2005. Indoor robot
navigation using a POMDP based on WiFi and ultrasound observations,
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp 2592-2597.

[19] Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T.,
Zhang, B., Nguyen B., et al., 2022. Automated Reinforcement Learning
(AutoRL): A Survey and Open Problems, J. Artif. Intell. Res., Vol. 74, pp.
517-568, doi: 10.1613/jair.1.13596.

[20] LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning, Nature, Vol. 521,
pp. 436-444, doi: 10.1038/nature14539.

[21] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image
Recognition, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770-778, doi: 10.1109/CVPR.2016.90.

[22] Krizhevsky, A., Sutskever, I., Hinton, G.E. 2012. ImageNet Classification
with Deep Convolutional Neural Networks, in Advances in Neural
Information Processing Systems, pp 1097-1105.

[23] Szegedy C., et al., 2015. Going deeper with convolutions, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1-9,
2015. doi: 10.1109/CVPR.2015.7298594.

[24] R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. 2018. Neural
ordinary differential equations. Advances in neural information
processing systems, 31.

[25] Ainsworth, S., Lowrey, K., Thickstun, J., Harchaoui, Z., Srinivasa, S. 2021.
Faster Policy Learning with Continuous-Time Gradients. In Learning for
Dynamics and Control, pp. 1054-1067, PMLR

[26] Yıldız, Ç., Heinonen, M., Lähdesmäki, H. 2021. Continuous-time model-
based reinforcement learning. In International Conference on Machine
Learning, pp. 12009-1201, PMLR.

[27] Meleshkova, Z., Ivanov, S.E., Ivanova, L. 2021. Application of Neural ODE
with embedded hybrid method for robotic manipulator control,
Procedia Comput. Sci., Vol. 193, pp. 314-324, doi:
10.1016/j.procs.2021.10.032.

[28] Du, J., Futoma, J., Doshi-Velez, F. 2020. Model-based Reinforcement
Learning for Semi-Markov Decision Processes with Neural ODEs.
Advances in Neural Information Processing Systems, 33, 19805-19816.

[29] Zhao, L., Miao, K., Gatsis, K., Papachristodoulou, A. 2024. NLBAC: A
Neural Ordinary Differential Equations-based Framework for Stable and
Safe Reinforcement Learning. arXiv http://arxiv.org/abs/2401.13148,
(Accessed: Apr. 29, 2024).

[30] Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., Levine, S. 2018.
Composable Deep Reinforcement Learning for Robotic Manipulation,
IEEE International Conference on Robotics and Automation (ICRA), pp.
6244-6251. doi: 10.1109/ICRA.2018.8460756.

[31] Soviany, P., Ionescu, R.T., Rota, P., Sebe, N. 2021. Curriculum Learning:
A Survey. International Journal of Computer Vision, Vol. 130:6,pp. 1526
- 1565, doi:10.1007/s11263-022-01611-x

[32] Zhao, R., Sun, X., Tresp, V., 2019. Maximum Entropy-Regularized Multi-
Goal Reinforcement Learning, International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., in Proceedings of
Machine Learning Research, Vol. 97. PMLR, pp. 7553-7562.

[33] Ziebart, B. D. 2010. Modeling purposeful adaptive behavior with the
principle of maximum causal entropy. Carnegie Mellon University.

[34] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. 2017.
Proximal Policy Optimization Algorithms, arXiv preprint
arXiv:1707.06347.

[35] Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S., 2018. Gibson Env:
Real-World Perception for Embodied Agents, IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9068-9079. doi:
10.1109/CVPR.2018.00945.

[36] Coumans, E., Bai, Y. 2016. Pybullet, a python module for physics
simulation for games, robotics and machine learning.

	1. Introduction
	2. Background
	2.1. Reinforcement learning
	2.2. Proximal Policy Optimization(PPO)
	2.3. Neural Ordinary Differential Equations
	3. Learning Setup
	4. Visual Navigation
	Visual information from the surrounding environment is used to determine and follow a path without requiring a map of the environment in our study. We address the point-to-point visual navigation task across various setups that differ in navigation co...
	4.1. Curriculum Learning
	We quantify the complexity of navigation using Equation (12) which calculates the ratio between dSP and dSD.
	where dSP is the shortest path length taken by the agent to reach its destination and dSD is the straight line distance between the agent's starting point and the destination. This ratio indicates the disparity between the shortest path distance dSP ...
	4.2. Reward shaping
	4.3. Neural network architecture
	5. Experiments and Results
	6. Conclusion

