
New Theory
Journal of

ISSN: 2149-1402 

48 (2024) 24-39

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

www.dergipark.org.tr/en/pub/jnt

Number 48 Year 2024

New Theory
Journal of

Bi-f-Harmonic Legendre Curves on (α, β)-Trans-Sasakian
Generalized Sasakian Space Forms
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Research Article

Abstract − In this study, we consider bi-f -harmonic Legendre curves on (α, β)-trans-
Sasakian generalized Sasakian space form. We provide the necessary and sufficient conditions
for a Legendre curve to be bi-f -harmonic on (α, β)-trans-Sasakian generalized Sasakian space
form without any restrictions by a main theorem. Afterward, we investigate these conditions
under nine different cases. As a result of these investigations, we obtain the original theo-
rems and corollaries as well as the nonexistence theorems. We perform these investigations
according to the ρ2 and ρ3 functions from the curvature tensor of the (α, β)-trans-Sasakian
generalized Sasakian space form, the curvature and torsion of the bi-f -harmonic Legendre
curve, and finally, the positions of the basis vectors relative to each other.
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1. Introduction

Let M and N be Riemannian manifolds. Then, a map ϑ̇ : (M, g) → (N, h) is called harmonic if it is a
critical point of energy functional given by

E(ϑ̇) = 1
2

∫
M

∣∣∣dϑ̇
∣∣∣2 vg

Moreover, harmonic maps are defined as solutions of the corresponding Euler-Lagrange equation which
is a non-linear elliptic partial differential equation characterized by the vanishing of the tension field
τ̇(ϑ̇) = trace∇dϑ̇.

The bienergy functional of a map ϑ̇ is introduced by Eells and Sampson [1] as follows:

V2(ϑ̇) = 1
2

∫
M

∣∣∣τ̇(ϑ̇)
∣∣∣2 vg

Here, if ϑ̇ is a critical point of the bienergy functional, then it is called a biharmonic map. The Euler-
Lagrange equation of V2(ϑ̇) which is characterized by the vanishing of the bitension field is obtained
by Jiang [2] as

τ̇2(ϑ̇) = −△τ̇(ϑ̇) − traceRN(dϑ̇, τ̇(ϑ̇))dϑ̇

Here, RN(X , Y) = [∇X , ∇Y ] − ∇[X ,Y] is the curvature operator of N and ∆ = −trace(∇ϑ̇∇ϑ̇ − ∇ϑ̇
∇) is

the rough Laplacian on the sections of ϑ̇−1TN. If τ̇2(ϑ̇) = 0, then ϑ̇ is called as a biharmonic map.
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f -harmonic maps are defined as critical points of f -energy functional

Vf (ϑ̇) = 1
2

∫
M

f
∣∣∣dϑ̇

∣∣∣2 vg

for the maps ϑ̇ : (M, g) → (N, h) where f ∈ C∞(M,R) [3]. The Euler-Lagrange equation is given by
τ̇f (ϑ̇) = f τ̇(ϑ̇) + dϑ̇(gradf) where τ̇(ϑ̇) ≡ trace∇dϑ̇ is the tension field of ϑ̇.

The critical points of the f -bienergy functional

V2,f (ϑ̇) = 1
2

∫
M

f
∣∣∣τ̇(ϑ̇)

∣∣∣2 vg

for maps ϑ̇ : (M, g) → (N, h) is called as f -biharmonic maps. The Euler-Lagrange equation provides
the f -biharmonic map equation as

τ̇2, f (ϑ̇) ≡ f τ̇2(ϑ̇) − (∆f)τ̇(ϑ̇) − 2∇ϑ̇
gradf τ̇(ϑ̇)

which is called f -bitension field of map ϑ̇ [4].

Bi-f -harmonic maps are defined as critical points of the bi-f -energy functional

Vf,2 (ϑ̇) = 1
2

∫
M

∣∣∣τ̇f (ϑ̇)
∣∣∣2 vg

for maps ϑ̇ : (M, g) → (N, h). The Euler-Lagrange equation provides the bi-f -harmonic map equation
[5]:

τ̇f,2
(
ϑ̇

)
≡ f J ϑ̇(τ̇f (ϑ̇)) − ∇ϑ̇

gradf τ̇f (ϑ̇) (1.1)

where J ϑ̇ is the Jacobi operator of the map defined by

J ϑ̇(X ) = −Tr (∇ϑ̇∇ϑ̇X − ∇ϑ̇
∇MX − RN(dϑ̇, X )dϑ̇)

It is obvious that if f is a constant function, then f -biharmonic and bi-f -harmonic maps become
biharmonic maps. Bi-f -harmonic and f -biharmonic maps which are not biharmonic are called proper
bi-f -harmonic and proper f -biharmonic maps, respectively. For more details about bi-f -harmonic
maps, see [4–6].

The notion of generalized Sasakian space forms was introduced by Alegre et al. [7]. Sarkar et.al. [8]
studied Legendre curves in 3-dimensional trans-Sasakian manifolds. Then, Fetcu [9] handled bihar-
monic Legendre curves in Sasakian space forms. Moreover, Güvenç and Özgür [10, 11] investigated
some classes of biharmonic Legendre curves in generalized Sasakian space forms and f -biharmonic
Legendre curves in Sasakian space forms. In addition, for recent studies, see [12–14].

In this paper, we study bi-f -harmonic Legendre curves in (α, β)-trans-Sasakian generalized Sasakian
space forms and provide some characterizations for bi-f -harmonicity of such curves under some special
assumptions.

2. Generalized Sasakian Space Forms

In this section, we provide some basic definitions about almost contact metric manifolds and general-
ized Sasakian space forms in [7, 15].

M(2n+1) is defined as an almost contact manifold with the almost contact structure (ϑ̇, ς, η̇) if a tensor
field ϑ̇ of type (1, 1), a vector field ς, and a 1−form η̇ satisfy the followings

ϑ̇2 = −I + η̇ ⊗ ς (2.1)

and
η̇(ς) = 1
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Here, I denotes the identity transformation. As an consequence of the conditions (2.1), ϑ̇ς = 0 and
η̇ ◦ ϑ̇ = 0.

Let M(2n+1) be an almost contact manifold with an almost contact structure (ϑ̇, ς, η̇). If it admits a
Riemannian metric g such that

g(ϑ̇X , ϑ̇Y) = g(X , Y) − η̇(X )η̇(Y), X , Y ∈ Γ(TM) (2.2)

then it becomes an almost contact metric manifold with an almost contact metric structure (ϑ̇, ς, η̇, g).
From (2.2),

g(X , ϑ̇Y) = −g(ϑ̇X , Y)

and
g(X , ς) = η̇(X )

for any X , Y ∈ TM. The fundamental 2-form of M is defined by

Φ(X , Y) = g(X , ϑ̇Y)

An almost contact metric structure becomes a contact metric structure if

g(X , ϑ̇Y) = dη̇(X , Y)

for all vector fields X , Y ∈ Γ(TM), where

dη̇(X , Y) = 1
2{X η̇(Y) − Y η̇(X ) − η̇([X , Y])}

A contact metric manifold with a Killing Reeb vector field ς is called a K -contact manifold. An almost
contact metric manifold is called normal if

Nϑ̇(X , Y) + 2dη̇(X , Y)ς = 0

where N is the Nijenhuis torsion tensor of ϑ̇ given by

Nϑ̇(X , Y) = ϑ̇2[X , Y] +
[
ϑ̇X , ϑ̇Y

]
− ϑ̇

[
ϑ̇X , Y

]
− ϑ̇

[
X , ϑ̇Y

]
for all X , Y ∈ Γ(TM). A contact normal metric manifold is said to be a Sasakian manifold. Besides,
an almost contact metric manifold is called a Sasakian manifold if and only if

(∇X ϑ̇)Y = g(X , Y)ς − η̇(Y)X

for any X , Y ∈ Γ(TM).

An almost contact metric manifold is called a Kenmotsu manifold if and only if dη̇ = 0 and dΦ = 2η̇∧Φ,
or equivalently

(∇X ϑ̇)Y = −η̇(Y)ϑ̇X − g(X , ϑ̇Y)ς

Hence,
∇X ς = X − η̇(X )ς

Finally, an almost contact metric manifold is called a cosymplectic manifold if and only if dη̇ = 0 and
dΦ = 0, or equivalently ∇ϑ̇ = 0 and thus ∇ς = 0.

As a generalization of Kenmotsu and Sasakian manifolds, (α, β)-trans-Sasakian manifolds were intro-
duced by Oubiña [16]. If there exist two functions α and β on an almost contact metric manifold M
satisfying (

∇X ϑ̇
)

Y = α (g(X , Y)ς − η̇(Y)X ) + β
(
g

(
ϑ̇X , Y

)
ς − η̇(Y)ϑ̇X

)
for any X , Y ∈ Γ(TM), then M is called a trans-Sasakian manifold.
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Here,

i. if β = 0, then M is called a α-Sasakian manifold,

ii. if β = 0 and α = 1, then M is called a Sasakian manifold,

iii. if α = 0, then M is called a β-Kenmotsu manifold,

iv. if β = 1 and α = 0, then M is called a Kenmotsu manifolds, and

v. if α = β = 0, then M is a cosymplectic manifold.

For a trans-Sasakian manifold,

∇X ς = −αϑ̇X + β (X − η̇(X )ς)

and
dη̇ = αΦ

De and Tripathi [17] showed that on an (α, β)-trans-Sasakian manifold the following relation is hold:

ς(α) + 2αβ = 0

It was shown in [18] that an (α, β)-trans-Sasakian manifold with dimension ≥ 5 is either α-Sasakian,
β-Kenmotsu or cosymplectic.

A ϑ̇-section of an almost contact metric manifold (M, ϑ̇, ς, η̇, g) at a point p ∈ M is a section Π ⊆ TpM
spanned by a unit vector field Xp orthogonal to ςp and ϑ̇Xp. The ϑ̇-sectional curvature K(X ∧ ϑ̇X ) is
defined by

K(X ∧ ϑ̇X ) = R(X , ϑ̇X , ϑ̇X , X )

If ϑ̇-sectional curvature of M is constant, then it is called a space form.

Moreover, an almost contact metric manifold is called a generalized Sasakian space form [7] if there
exist functions ρ1, ρ2, and ρ3 on M such that

R(X , Y)Z = ρ1 {g(Y, Z)X − g(X , Z)Y} + ρ2
{

g(X , ϑ̇Z)ϑ̇Y − g(Y, ϑ̇Z)ϑ̇X + 2g(X , ϑ̇Y)ϑ̇Z
}

+ρ3 {η̇(X )η̇(Z)Y − η̇(Y)η̇(Z)X + g(X , Z)η̇(Y)ς − g(Y, Z)η̇(X )ς}
(2.3)

for any vector fields on M, where R denotes the curvature tensor of M.

For a generalized Sasakian-space-form;

i. if ρ1 = c+3
4 and ρ2 = ρ3 = c−1

4 , then it becomes a Sasakian-space-form,

ii. if ρ1 = c−3
4 and ρ2 = ρ3 = c+1

4 , then it becomes a Kenmotsu-space-form, and

iii. if ρ1 = ρ2 = ρ3 = c
4 , then it becomes a cosymplectic-space-form

where c is the constant ϑ̇-sectional curvature. The contact distribution of an almost contact metric
manifold (M, ϑ̇, ς, η̇, g) is defined by

{X ∈ Γ(TM) : η̇(X ) = 0}

and an integral curve of the contact distribution is called a Legendre curve [15].

3. Bi-f-Harmonic Curves

Recall the bi-f -harmonic map equation for curves in Riemannian and start with the important propo-
sition for Euler-Lagrange equation of bi-f -harmonic maps [5].
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Proposition 3.1. Let ϑ̇ : (M, g) → (N, h) be a smooth map between Riemannian manifolds. Then,
ϑ̇ is a bi-f -harmonic map if and only if its bi-f -tension field

τ̇f,2(ϑ̇) = ∆2
f τ̇f

(
ϑ̇

)
− f tracegRN

(
τ̇f

(
ϑ̇

)
, dϑ̇

)
dϑ̇ (3.1)

vanishes, where
∆2

f τ̇f

(
ϑ̇

)
= −traceg

(
∇ϑ̇f

(
∇ϑ̇τ̇f

(
ϑ̇

))
− f ∇ϑ̇

∇M τ̇f

(
ϑ̇

))
(3.2)

and τ̇f

(
ϑ̇

)
is the f -tension field given by (1.1).

By considering a curve, from (3.1) and (3.2), from [6], the following proposition is hold:

Proposition 3.2. Let σ : I → (N, h) be a curve parameterized by arclenght on a Riemannian
manifold (N, h) and σ′ = T . Then, σ is a bi-f -harmonic curve if and only if

(ff ′′) ′T +
(
2

(
f ′)2 + 3f ′′f

)
∇N

T T + 4f ′f ∇2
T T + f 2∇3

T T + f 2RN
(
∇N

T T, T
)

T = 0

where f : I → R+, I is an interval, ∇2
T T = ∇N

T ∇N
T T , and ∇3

T T = ∇N
T ∇N

T ∇N
T T .

Assume that σ : I → (N, h) is a arclenght parameterized curve in an n−dimensional Riemannian
manifold (N, h). If there exist ortonormal vector fields V1, V2, · · · , Vr along σ such that

∇T V1 = k1V2

∇T V2 = −k1V1 + k2V3
...

∇T Vr = −kr−1Vr−1

(3.3)

then σ is called a Frenet curve of osculating order r, for 1 ≤ r ≤ n. Here, V1 = σ′ = T is the unit
tangent vector field of σ, V2 is the unit normal vector field of σ with the same direction as ∇T V1,
and the vectors V3, V4, · · · , Vr are the unit vectors obtained from the Frenet equations for σ, where
k1 = ∥∇T V1∥ and k2, k3, · · · , kr−1 are real-valued positive functions.

From (3.3),
∇2

T T = ∇N
T ∇N

T T = −k2
1V1 + k′

1V2 + k1k2V3

∇3
T T = ∇N

T ∇N
T ∇N

T T = −3k1k′
1V1 +

(
k′′

1 − k3
1 − k1k2

2

)
V2 +

(
2k′

1k2 + k1k′
2
)

V3 + k1k2k3V4

and
RN

(
∇N

T T, T
)

T = k1RN (V2, T ) T

Then,

τ̇f,2 (σ)=
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T +

((
−k3

1 − k1k2
2 + k′′

1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2)

V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + k1f 2RN(V2, T )T

Theorem 3.3. Let σ : I → (N, h) be a arclenght parameterized curve on a Riemannian manifold
(N, h). Then, σ is a bi-f -harmonic curve if and only if

0=
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T +

((
−k3

1 − k1k2
2 + k′′

1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2)

V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + k1f 2RN (V2, T )T
(3.4)
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4. Bi-f-harmonic Curves in (α, β)-Trans-Sasakian Generalized Sasakian Space
Forms

In this section, we first obtain bi-f -harmonic equation of a curve σ : I → (M, ϑ̇, ς, η̇, g) on an (α, β)-
trans-Sasakian generalized Sasakian space form. Note that, throughout this paper, we use (α, β)-
TSGSSF instead of (α, β)-trans-Sasakian generalized Sasakian space form and cons instead of constant
in equations for the sake of simplicity. By using (2.3),

RM(V2, T )T = ρ1 {g(T, T )V2 − g(V2, T )T} + ρ2
{

g(V2, ϑ̇T )ϑ̇T − g(T, ϑ̇T )ϑ̇V2 − 2g(T, ϑ̇V2)ϑ̇T
}

+ρ3 {η̇(V2)η̇(T )T − η̇(T )η̇(T )V2 + g(V2, T )η̇(T )ς − g(T, T )η̇(V2)ς}

which implies

RM(V2, T )T = ρ3η̇(T )η̇(V2)T +
(
ρ1 − ρ3 (η̇(T ))2

)
V2 − 3ρ2g(T, ϑ̇V2)ϑ̇T − ρ3η̇(V2)ς

From (3.4), we get bi-f -tension field of σ.

Theorem 4.1. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

0 =
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ + k1f 2ρ3η̇(T )η̇(V2)

)
T

+
((

−k3
1 − k1k2

2 + k′′
1
)

f 2 + 4k′
1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2

(
ρ1 − ρ3 (η̇(T ))2

))
V2

+
(
4k1k2ff ′ + f2 (2k2k′

1 + k1k′
2)

)
V3 +

(
k1k2k3f 2)

V4 + 3ρ2k1f 2g(ϑ̇T, V2)ϑ̇T − ρ3k1f 2η̇(V2)ς

For the remaining parts of this study, we consider that σ : I → (M, ϑ̇, ς, η̇, g) is a Legendre curve in
an (α, β)-TSGSSF. If σ is a Legendre curve, then

η̇(V2) = − β

k1
(4.1)

Since σ is a Legendre curve, from (4.1), it is obvious that V2 ⊥ ς if and only if β = 0 [19].

Corollary 4.2. Let σ : I → (M, ϑ̇, ς, η̇, g) be a Legendre curve parameterized by its arclenght on an
(α, β)-TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

0 =
(
(ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′) T(

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2(f ′)2k1 + k1f 2ρ1
)

V2

+f (2k2k′
1f + k1k′

2f + 4k1k2f ′) V3 +
(
k1k2k3f 2)

V4 + 3ρ2k1f 2g(ϑ̇T, V2)ϑ̇T + βρ3f 2ς

(4.2)

Let m = min{r, 4}. From (4.2), σ is a bi-f -harmonic Legendre curve if and only if

i. ρ2 = 0 or ϑ̇T ⊥ V2 or ϑ̇T ∈ span {V2, V3, · · · , Vm}

ii. ρ3 = 0 or ς ∈ span {V2, V3 · · · , Vm}

iii. g(τ̇f,2 (σ) , Vi) = 0, for all i ∈ {1, 2, · · · , m}

Theorem 4.3. Let σ : I → (M, ϑ̇, ς, η̇, g) be a Legendre curve parameterized by its arclenght on an
(α, β)-TSGSSF. Then, σ is a bi-f -harmonic curve if and only if

i. ρ2 = 0 or ϑ̇T ⊥ V2 or ϑ̇T ∈ span {V2, V3, · · · , Vm}

ii. ρ3 = 0 or ς ∈ span {V2, V3, · · · , Vm}

iii. The following equations are satisfied:
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0{
(k′′

1 − k3
1 − k1k2

2 + k1ρ1)f 2 + 4k′
1f ′f + 3k1f ′′f + 2(f ′)2k1

+3f 2k1ρ2g(ϑ̇T, V2)2 + f 2ρ3βη̇(V2)
= 0

4k1k2ff ′ + f2 (2k2k′
1 + k1k′

2) + 3ρ2k1f 2g(ϑ̇T, V2)g(ϑ̇T, V3) + βρ3f 2η̇(V3) = 0

k1k2k3 + 3ρ2k1g(ϑ̇T, V2)g(ϑ̇T, V4) + βρ3η̇(V4) = 0

(4.3)

CASE I. Let ρ2 = ρ3 = 0. Then, the manifold M is a Riemannian space form of constant sectional
curvature ρ2. In this case, σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic Legendre curve if and only
if 

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(k′′
1 − k3

1 − k1k2
2 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

4k1k2f ′ + 2k2k′
1f + k1k′

2f = 0

k1k2k3 = 0

(4.4)

Theorem 4.4. There is no any proper bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
(α, β)-TSGSSF with ρ2 = ρ3 = 0.

From (4.4), if σ is a geodesic curve, then it is a bi-f -harmonic curve if and only if ff ′′ = cons.

Theorem 4.5. A geodesic curve in an (α, β)-TSGSSF is bi-f -harmonic if and only if ff ′′ = cons.

This theorem proves that there are bi-f harmonic curves that are not harmonic. Afterward, we
investigate bi-f -harmonicity of σ : I → (M, ϑ̇, ς, η̇, g) considering some special subcases:

CASE I. 1. If k1 = cons ̸= 0 and k2 = 0, then, from (4.4), (ff ′′) ′ − 4k2
1ff ′ = 0,

(ρ1 − k2
1)f2 + 2(f ′)2 + 3f ′′f = 0

(4.5)

From the second equation of (4.5), ff ′′ = (k2
1−ρ1)f2−2(f ′)2

3 which implies

10k2
1ff ′ + ρ′

1f2 + 2ρ1ff ′ + 4f ′f ′′ = 0 (4.6)

via the first equation of (4.5).

Theorem 4.6. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = 0. Then, σ is a bi-f -harmonic Legendre curve if
and only if f, k1, and ρ1 satisfy following differential equation

10k2
1ff ′ + ρ′

1f2 + 2ρ1ff ′ + 4f ′f ′′ = 0

Further, if (4.6) is solved by assuming ρ1 constant, the the following result is obtained.

Theorem 4.7. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an α-Sasakian
generalized Sasakian space form dimension ≥ 5 with ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = 0. Then,
σ is a proper bi-f -harmonic Legendre curve if and only if f is a function defined by

f(s) = c1 cos

√
5k2

1 + ρ1
2 s

 + c2 sin

√
5k2

1 + ρ1
2 s


where s ∈ I and ρ1 is a constant.
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CASE I. 2. If k1 = cons ̸= 0 and k2 = cons ̸= 0, then (4.4) reduces to

(ff ′′) ′ − 4k2
1ff ′ = 0

f 2(−k2
1 − k2

2 + ρ1) + 3f ′′f + 2(f ′)2 = 0

f ′ = 0

k3 = 0

which implies 
f = cons

k2
1 + k2

2 = ρ1

k3 = 0

Theorem 4.8. There is no any proper bi-f -harmonic Legendre curve on an (α, β)-TSGSSF with
ρ2 = ρ3 = 0, k1 = cons ̸= 0, and k2 = cons ̸= 0.

CASE I. 3. If k1 ̸= cons and k2 = cons ̸= 0, then (4.4) reduces to

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1ρ1f 2 = 0

2k1f ′ + k′
1f = 0

k3 = 0

Theorem 4.9. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 ̸= cons, and k2 = cons ̸= 0. Then, σ is a bi-f -harmonic Legendre curve
if and only if

f = ±ck
− 1

2
1

for some real constant c, k3 = 0, and the curvature k1 solves the following second order non-linear
differential equations system 9(k′

1)3 + 4k′
1k4

1 − 10k′′
1k′

1k1 + 2k′′′
1 k2

1 = 0

−3(k′
1)2 + 4k4

1 + 4k2
1k2

2 + 2k′′
1k1 − 4k2

1ρ1 = 0

CASE I. 4. If k1 ̸= cons and k2 ̸= cons, then by using the third equation in (4.4),

f = ±ck
− 1

2
1 k

− 1
4

2

for some real constant c. Besides, from the last equation in (4.4), k3 = 0.

Theorem 4.10. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = ρ3 = 0, k1 ̸= cons, and k2 ̸= cons. Then, σ is a bi-f -harmonic Legendre curve if
and only if f = ±ck

− 1
2

1 k
− 1

4
2 , c is a constant, k3 = 0, and k1 and k2 satisfy the following second order

non-linear differential equation system (ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

Before calculating Case II, we recall the following results [20]:

Proposition 4.11. Let (M, ϑ̇, ς, η̇, g) be an α-Sasakian generalized Sasakian space form. Therefore,
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α is independent of the direction of ς and the following equation is valid

ρ1 − ρ3 = α2

Moreover, if M is connected, then α is a constant.

Theorem 4.12. Let (M, ϑ̇, ς, η̇, g) be a connected α-Sasakian generalized Sasakian space form with
dimension m ≥ 5. Then, ρ1, ρ2, and ρ3 are constant functions related as follows:

i. If α = 0, then ρ1 = ρ2 = ρ3 and M is a cosymplectic manifold of constant ϑ̇-sectional curvature

ii. If α ̸= 0, then ρ1 − α2 = ρ2 = ρ3

CASE II. Let ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς. Then, from (4.1), it is obvious that the manifold M is
an α-Sasakian generalized Sasakian space form. By using Proposition 4.11, σ : I → (M, ϑ̇, ς, η̇, g) is a
proper bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2 (
ρ3 + α2)

= 0

4k1k2f ′ + (2k2f k′
1 + k1k′

2)f = 0

k1k2k3 = 0.

(4.7)

Theorem 4.13. There is no any bi-f -harmonic Legendre curve of osculating order r > 3 satisfying
ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς in an α-Sasakian generalized Sasakian space form.

Theorem 4.14. There is no any bi-f -harmonic Legendre curve satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς

in a connected α-Sasakian generalized Sasakian space form with dimension ≥ 5.

CASE II.1. Let ρ2 = 0, ρ3 ̸= 0, V2 ⊥ ς, and α ̸= 0.

In this case, we consider bi-f -harmonic Legendre curves satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς in a
connected 3-dimensional α-Sasakian generalized Sasakian space forms. In a 3-dimensional α-Sasakian
manifold, a Legendre curve is a Frenet curve of osculating order 3 and its torsion is always α [21].
Then, (4.7) reduces to

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 + k1f 2 (
ρ3 + α2)

= 0

2k1f ′ + f k′
1 = 0

(4.8)

Theorem 4.15. Let (M, ϑ̇, ς, η̇, g) be a 3-dimensional connected α-Sasakian generalized Sasakian
space form satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς. Then, σ : I → (M, ϑ̇, ς, η̇, g) is a bi-f -harmonic
Legendre curve if and only if f = ±ck

− 1
2

1 , where c is a constant and k1 solves the following second
order non-linear differential equation system 9(k′

1)3 + 4k′
1k4

1 − 10k′′
1k′

1k1 + 2k′′′
1 k2

1 = 0

−3(k′
1)2 + 4k4

1 + 4k2
1k2

2 + 2k′′
1k1 − 4k2

1(ρ3 + α2) = 0

If k1 = cons ̸= 0, then f is constant from the third equation in (4.8).

Corollary 4.16. There is no any proper bi-f -harmonic Legendre helix in a 3-dimensional connected
α-Sasakian generalized Sasakian space form satisfying ρ2 = 0, ρ3 ̸= 0, and V2 ⊥ ς.

CASE II.2. Let ρ2 = 0, ρ3 ̸= 0, V2 ⊥ ς, and α = 0.

Theorem 4.17. Let (M, ϑ̇, ς, η̇, g) be a cosymplectic generalized Sasakian space form satisfying ρ2 = 0,
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ρ3 ̸= 0, and V2 ⊥ ς. Then, σ : I → (M, ϑ̇, ς, η̇, g) is a bi-f -harmonic Legendre curve if and only if
ρ1 = ρ3 and the following differential equation system is satisfied

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 + k1f 2 (
ρ3 + α2)

= 0

4k1k2f ′ + (2k2f k′
1 + k1k′

2)f = 0

k1k2k3 = 0

CASE III. Let ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3, · · · , Vm}. Then, from (4.2),
σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1f 2k′
1 − 4k2

1f f ′ = 0{
(−k3

1 − k1k2
2 + k′′

1)f 2 + 4f k′
1f ′ + 3f ′′f k1 + 2(f ′)2k1

+k1f 2ρ1 + f 2βρ3η̇(V2) = 0

2k2f k′
1 + k1f k′

2 + 4k1k2f ′ + βρ3f η̇(V3) = 0

k1k2k3 + βρ3η̇(V4) = 0

Let m = min{r, 4} = 4, which implies r ≥ 4. Then,

ς = cos θ1V2 + sin θ1 cos θ2V3 + sin θ1 sin θ2V4

which implies

η̇(V2) = cos θ1, η̇(V3) = sin θ1 cos θ2, and η̇(V4) = sin θ1 sin θ2

Here, θ1 : I → R denotes the angle function between ς and V2 and θ2 : I → R is the angle function
between V3 and the orthogonal projection of ς onto span{V3, V4}.

Theorem 4.18. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0 and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1f 2k′
1 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 + k1f 2ρ1 + f 2βρ3 cos θ1 = 0

2k2f k′
1 + k1f k′

2 + 4k1k2f ′ + β sin θ1 cos θ2ρ3f = 0

k1k2k3 + β sin θ1 sin θ2ρ3 = 0

(4.9)

provided r ≥ 4.

As a particular case, if β = 0, that is, (M, ϑ̇, ς, η̇, g) is an α-Sasakian generalized Sasakian space form,
then the following results is obtained:

Corollary 4.19. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in
an α-Sasakian generalized Sasakian space form, satisfying ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and
ς ∈ span {V2, V3, · · · , Vm}.

If ρ1, ρ3, and the first three curvatures of σ are constants, then the following result is valid:

Theorem 4.20. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0 and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a
bi-f -harmonic Legendre curve if and only if f is one of the followings:



Journal of New Theory 48 (2024) 24-39 / Bi-f -Harmonic Legendre Curves on (α, β)-Trans-Sasakian Generalized Sasakian · · · 34

f(s) = c1 cos

√
−5k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2

2 s

 + c2 sin

√
−5k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2

2 s

 (4.10)

f(s) = c3s + c4 (4.11)

and

f(s) = c5e−
√

5k2
1−k2

2+ρ1+ρ3(cosθ1)2

2 s + c6e

√
5k2

1−k2
2+ρ1+ρ3(cosθ1)2

2 s (4.12)

provided that
5k2

1 − k2
2 + ρ1 + ρ3(cosθ1)2 > 0

5k2
1 − k2

2 + ρ1 + ρ3(cosθ1)2 = 0

and
5k2

1 − k2
2 + ρ1 + ρ3(cosθ1)2 < 0

respectively, and
f(s) = e

k3
4

∫
cot θ2 ds (4.13)

where c1, c2, · · · , c6, θ1 and θ2 are constants.

Proof. By using (4.9),

(ff ′′) ′ − 4k2
1f f ′ = 0

3f ′′f + 2(f ′)2 + f 2
(
−k2

1 − k2
2 + ρ1 − ρ3 (cosθ1)2

)
= 0

4k1k2f ′ + β sin θ1 cos θ2ρ3f = 0

k1k2k3 + β sin θ1 sin θ2ρ3 = 0

(4.14)

From the second equation of (4.14),

f ′′f = −2(f ′)2 +
(
k2

1 + k2
2 − ρ1 + ρ3(cosθ1)2)

f2

3 (4.15)

If (4.15) is used in the first equation of (4.14),

2f ′′ +
(
5k2

1 − k2
2 + ρ1 − ρ3(cosθ1)2

)
f = 0 (4.16)

By solving the differential equation (4.16), the first assertion of the theorem is obtained. Besides,

βρ3 sin θ1
(
cos θ2k3f − 4 sin θ2f ′) = 0

via the last two equations of (4.14) which implies (4.13).

Let r = 3. This implies that ς ∈ span {V2, V3} and by choosing θ2 = 0, ς = cos θ1V2 + sin θ1V3 where
θ1 : I → R denotes the angle function between ς and V2.

Theorem 4.21. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3}. Then, σ is a bi-f -harmonic Legendre
curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(3f ′′f + 2(f ′)2)k1 + +4k′
1f f ′ + f 2(−k3

1 − k1k2
2 + k′′

1 + k1ρ1 + βρ3 cos θ1) = 0

4k1k2f ′ + f(2k2f k′
1 + k1k′

2 + β sin θ1ρ3) = 0

provided r = 3.
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If ρ1, ρ3, and the first two curvatures of σ are constants, then the following result is obtained:

Corollary 4.22. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3}. Then, σ is a bi-f -harmonic
Legendre curve if and only if f is defined by one of the form given in (4.10), (4.11), or (4.12) and

f(s) = e
ρ3
4

∫
sin θ1 cos θ1 ds

where s ∈ I.

Let r = 2. Then, ς ∈ span {V2} which implies ς = ±V2 by taking θ1 ∈ {0, π} and θ2 = 0.

Theorem 4.23. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 ̸= 0, η̇(V2) ̸= 0, and ς = ±V2. Then, σ is a bi-f -harmonic Legendre curve if
and only if  (ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ = 0

(3f ′′f + 2(f ′)2)k1 + 4k′
1f f ′ + f 2(−k3

1 + k′′
1 + k1ρ1 + βρ3 cos θ1) = 0

provided r = 2.

If ρ1, ρ3, and the first curvature of σ are constants, then the following result is obtained:

Corollary 4.24. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 = 0, ρ3 = cons ̸= 0, η̇(V2) ̸= 0, and ς = ±V2. Then, σ is a bi-f -harmonic curve if
and only if f is defined by one of the form given in (4.10), (4.11), or (4.12).

CASE IV. Let ρ2 ̸= 0, ρ3 = 0, and V2 ⊥ ϑ̇T . Then, from (4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a proper
bi-f -harmonic Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2(f ′)2k1 = 0

4k1k2f ′ + ( 2k2k′
1 + k1k′

2)f = 0

k1k2k3 = 0

Corollary 4.25. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
(α, β)-TSGSSF, satisfying ρ2 ̸= 0, ρ3 = 0, and V2 ⊥ ϑ̇T .

Note that because the conditions obtained in Cases I and IV are the same, it is not necessary to
investigate the subcases for Case IV.

CASE V: Let ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and m = min{r, 4} = 4,
which implies r ≥ 4. Then,

ϑ̇T = cos a1V2 + sin a1 cos a2V3 + sin a1 sin a2V4 (4.17)

which implies
g(ϑ̇T, V2) = cos a1

g(ϑ̇T, V3) = sin a1 cos a2

and
g(ϑ̇T, V4) = sin a1 sin a2 (4.18)

Here, a1 : I → R denotes the angle function between ϑ̇T and V2 and a2 : I → R is the angle function
between V3 and the orthogonal projection of ϑ̇T onto span{V3, V4}. Thus, the following result is
obtained:
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Theorem 4.26. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, V4}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0(
−k3

1 − k1k2
2 + k′′

1 + k1ρ1 + 3k1ρ2(cos a1)2)
f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 cos a2 sin a1 = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 = 0

If the first three curvatures are constants, the following result is obtained:

Theorem 4.27. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -
harmonic Legendre curve if and only if k1, k2, and k3 satisfy the following differential equations (ff ′′) ′ − 4k2

1f f ′ = 0

(−k2
1 − k2

2 + ρ1 + 3ρ2(cos a1)2)f 2 + 3f ′′f + 2(f ′)2 = 0

where
f(s) = e

k3
4

∫
cot a2 ds

and a1 and a2 are constants.

Let r = 3. Therefore,
ϑ̇T = cos a1V2 + sin a1V3

Hence, g(ϑ̇T, V2) = cos a1, g(ϑ̇T, V3) = sin a1, a2 = 0, and k3 = 0.

Theorem 4.28. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, ϑ̇T ∈ span {V2, V3}, and g(ϑ̇T, V2) ̸= 0. Then, σ is a bi-f -harmonic
Legendre curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 sin a1 = 0

provided r = 3.

Let r = 2. Therefore, ϑ̇T = ±V2. Hence, g(ϑ̇T, V2) = ±1, g(ϑ̇T, V3) = 0, a1 = a2 = 0, and k2 = k3 = 0.

Theorem 4.29. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
TSGSSF with ρ2 ̸= 0, ρ3 = 0, and ϑ̇T = ±V2. Then, σ is a bi-f -harmonic Legendre curve if and only
if  (ff ′′) ′ − 3k1k′

1f 2 − 4k2
1f f ′ = 0

(−k3
1 + k′′

1 + k1ρ1 ± 3k1ρ2)f 2 + 4f k′
1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

provided r = 2.

CASE VI. Let ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , and V2 ⊥ ς. Then, from (4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a
proper bi-f -harmonic Legendre curve if and only if
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(k′′
1 − k3

1 − k1k2
2 + k1ρ1)f 2 + 4k′

1f f ′ + 3k1f ′′f + 2k1(f ′)2 = 0

4k1k2f ′ + 2k2k′
1f + k1k′

2f = 0

k1k2k3 = 0

Corollary 4.30. There is no any bi-f -harmonic Legendre curve of osculating order r ≥ 4 in an
α-Sasakian generalized Sasakian space form, satisfying ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , and V2 ⊥ ς.

Note that because the conditions obtained in Cases I and VI are the same, it is not necessary to
investigate the subcases for Case VI.

CASE VII. Let ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , ς ∈ span {V2, V3, · · · , Vm}, and η̇(V2) ̸= 0. Then, from
(4.3), σ : I → (M, ϑ̇, ς, η̇, g) is a proper bi-f -harmonic curve if and only if

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + βρ3(cos θ1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

4k1k2ff ′ + f2(2k2k′
1 + k1k′

2 + βρ3 sin θ1 cos θ2) = 0

k1k2k3 + βρ3k1 sin θ1 sin θ2 = 0

Corollary 4.31. There is no any bi-f -harmonic curve of osculating order r ≥ 4 in an α-Sasakian
generalized Sasakian space form, satisfying ρ2 ̸= 0, ρ3 ̸= 0, V2 ⊥ ϑ̇T , ς ∈ span {V2, V3, · · · , Vm}, and
η̇(V2) ̸= 0.

Note that because the conditions obtained in Cases III and VII are the same, we omit to investigate
the subcases for Case VII.

CASE VIII. Let ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and ς ⊥ V2. Then, from
(4.17) and (4.18), the following result is obtained:

Theorem 4.32. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an α-Sasakian
generalized Sasakian space form with ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, and
ς ⊥ V2. Then, σ is a bi-f -harmonic Legendre curve if and only if k1, k2, and k3 satisfy the following
differential equations:

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0

(−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2)f 2 + 4f k′

1f ′ + 3f ′′f k1 + 2(f ′)2k1 = 0

f (2k2f k′
1 + k1f k′

2 + 4k1k2f ′) + 3ρ2k1f 2 cos a1 cos a2 sin a1 + βρ3η̇(V3) = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 + βρ3η̇(V4) = 0

(4.19)

If r = 3, then the first three equations of the (4.19) are satisfied, taking a2 = 0.

If r = 2, then the first two equations of the (4.19) are satisfied, taking a1 ∈ {0, π}.

CASE IX. Let ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm}, g(ϑ̇T, V2) ̸= 0, η̇(V2) ̸= 0, and ς ∈
span {V2, V3, · · · , Vm}. Then, the following result is obtained:

Theorem 4.33. Let σ : I → (M, ϑ̇, ς, η̇, g) be a curve parameterized by its arclenght on an (α, β)-
trans-Sasakian generalized Sasakian space form with ρ2 ̸= 0, ρ3 ̸= 0, ϑ̇T ∈ span {V2, V3, · · · , Vm} ,

g(ϑ̇T, V2) ̸= 0, η̇(V2) ̸= 0, and ς ∈ span {V2, V3, · · · , Vm}. Then, σ is a bi-f -harmonic curve if and only
if k1, k2, and k3 satisfy the following differential equations:
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

(ff ′′) ′ − 3k1k′
1f 2 − 4k2

1f f ′ = 0 (−k3
1 − k1k2

2 + k′′
1 + k1ρ1 + 3k1ρ2(cos a1)2 + βρ3 cos θ1)f 2 + 4f k′

1f ′

+(3f ′′f + 2(f ′)2)k1 = 0
4k1k2ff ′ + f 2(2k2k′

1 + k1k′
2 + 3ρ2k1 cos a1 cos a2 sin a1 + βρ3 sin θ1 cos θ2) = 0

k1k2k3 + 3ρ2k1 sin a1 sin a2 cos a1 + βρ3 sin θ1 sin θ2 = 0

(4.20)

If r = 3, then the first three equations of the (4.20) are satisfied, taking a2 = 0 and θ2 = 0.

If r = 2, then the first two equations of the (4.20) are satisfied, taking θ1 ∈ {0, π} and a1 ∈ {0, π}.

5. Conclusion

This study has obtained the necessary and sufficient conditions for a curve to be bi-f -harmonic Legen-
dre in the (α, β)-trans-Sasakian generalized Sasakian space form. While conducting this investigation,
the functions from the manifold’s curvature tensor, curvature and torsion of the curve, and the relative
positions of the basis vectors have been considered. Future studies could focus on different curves,
such as Slant, in the (α, β)-trans-Sasakian generalized Sasakian space form. Additionally, research can
be conducted on special cases of the (α, β)-trans-Sasakian manifold, including α-Sasakian, Sasakian,
β-Kenmotsu, Kenmotsu, and cosymplectic manifold types.
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[13] Ş. N. Bozdağ, On bi–f–harmonic Legendre curves in Sasakian space forms, Fundamentals of
Contemporary Mathematical Sciences 3 (2) (2022) 132–145.
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