

POLİTEKNİK DERGİSİ

JOURNAL of POLYTECHNIC

ISSN: 1302-0900 (PRINT), ISSN: 2147-9429 (ONLINE)

URL: http://dergipark.org.tr/politeknik

Enhancing cybersecurity against ransomware

attacks using LSTM deep learning method: A

case study on android devices

LSTM derin öğrenmeyi kullanarak fidye yazılımı

saldırılarına karşı siber güvenliğin

geliştirilmesi: Android cihazlarda bir vaka

çalışması

(Author(s)): Hatice KARACA1, Adem TEKEREK2

ORCID1: 0009-0000-0294-816X

ORCID2: 0000-0002-0880-7955

To cite to this article: Karaca H., Tekerek A., “Enhancing Cybersecurity against Ransomware Attacks Using

LSTM Deep Learning: A Case Study on Android Devices”, Journal of Polytechnic, *(*): *, (*).

Bu makaleye şu şekilde atıfta bulunabilirsiniz: Karaca H., Tekerek A., “LSTM Derin Öğrenmeyi Kullanarak

Fidye Yazılımı Saldırılarına Karşı Siber Güvenliğin Geliştirilmesi: Android Cihazlarda Bir Vaka Çalışması”,

Politeknik Dergisi, *(*): *, (*).

Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive

DOI: 10.2339/politeknik.1508722

http://dergipark.org.tr/politeknik
http://dergipark.org.tr/politeknik/archive

Enhancing Cybersecurity against Ransomware Attacks Using

LSTM Deep Learning Method: A Case Study on Android

Devices

LSTM Derin Öğrenme Yöntemi Kullanarak Fidye Yazılımı Saldırılarına Karşı Siber

Güvenliğin Geliştirilmesi: Android Cihazlarda Bir Vaka Çalışması

Highlights

 Detecting Android ransomware using the LSTM model.

 Applying dataset analysis and feature engineering.

 Detailing the model training and validation processes.

 Analyzing results with performance evaluation metrics.

Graphical Abstract
In this study, the LSTM deep learning model was used to detect Android-based ransomware. Dataset analysis,

feature engineering, model training, and performance evaluations were conducted, achieving a 99% accuracy

rate.

Figure. Proposed Methodology

Aim

To investigate the effectiveness of LSTM deep learning methods in detecting Android-based ransomware

Design & Methodology

Steps included dataset analysis, feature engineering, model training, and performance evaluation

Originality

This study is one of the rare works successfully applying LSTM models to detect Android ransomware.

Findings

Android ransomware was detected with 99% accuracy with LSTM.

Conclusion

LSTM has proven the effectiveness of deep learning in security by successfully detecting Android ransomware.

Declaration of Ethical Standards

The authors of this article declare that the materials and methods used in this study do not require ethical

committee permission and/or legal-special permission

Enhancing Cybersecurity against Ransomware

Attacks Using LSTM Deep Learning: A Case Study

on Android Devices

Research Article

Hatice KARACA, Adem TEKEREK*

Computer Engineering Department, Technology Faculty, Gazi University, Ankara, Türkiye

 (Received : 02.07.2024 ; Accepted : 06.08.2024 ; Early View : 09.08.2024)

ABSTRACT

The rapid advancement of technology brings new threats to the digital world. One of these threats is malicious ransomware

attacks. Ransomware is malicious software that demands ransom from innocent users by blocking access to information

systems. Since traditional methods are limited to predefined blacklists, they may be ineffective against unknown

ransomware types. On the other hand, deep learning methods offer a sensitive defense mechanism against anomalies by

learning standard behavior patterns. This study studied the Internet logs of Android devices consisting of 392,034 rows and

86 columns using the Long Short-Term Memory (LSTM) model. The dataset contains 14 different Android ransomware

families and harmless traffic. Data preprocessing steps include missing data management, outlier analysis, feature selection,

coding operations, and data normalization/standardization. The dataset was split at 80% training 20% test ratio, and it was

determined that the 80% training 20% test split had the highest accuracy. The developed LSTM-based classification model

achieved successful results with a 99% accuracy rate and 0.99 F1 score.

Keywords: Android, Ransomware, Deep Learning

LSTM Derin Öğrenmeyi Kullanarak Fidye Yazılımı

Saldırılarına Karşı Siber Güvenliğin Geliştirilmesi:

Android Cihazlarda Bir Vaka Çalışması

ÖZ

Teknolojinin hızla ilerlemesi dijital dünyada yeni tehditleri de beraberinde getiriyor. Bu tehditlerden biri kötücül fidye

yazılımı saldırılarıdır. Fidye yazılımları, bilgi sistemlerine erişimi engelleyerek masum kullanıcılardan fidye talep eden

kötü amaçlı yazılımlardır. Geleneksel yöntemler önceden tanımlanmış kara listelerle sınırlı olduğundan, bilinmeyen fidye

yazılımı türlerine karşı etkisiz kalabilir. Derin öğrenme yöntemleri ise normal davranış kalıplarını öğrenerek anormalliklere

karşı hassas bir savunma mekanizması sunar. Bu çalışmada Uzun Kısa Süreli Bellek (LSTM) modeli kullanılarak, 392.034

satır ve 86 sütundan oluşan Android cihazların İnternet günlükleri üzerinde çalışılmıştır. Veri seti, 14 farklı Android fidye

yazılımı ailesi ve zararsız trafik içermektedir. Veri ön işleme adımları arasında eksik verilerin yönetimi, aykırı değer analizi,

özellik seçimi, kodlama işlemleri ve veri normalleştirme/standartlaştırma bulunmaktadır. Veri kümesi %80 eğitim - %20

test oranında bölünmüş ve %80 eğitim - %20 test ayrımının en yüksek doğruluğa sahip olduğu belirlenmiştir. Geliştirilen

LSTM tabanlı sınıflandırma modeli %99 doğruluk oranı ve 0,99 F1-skoru ile başarılı sonuçlar elde etmiştir

Anahtar Kelimeler: Android, Fidye Yazılımı, Derin Öğrenme

1. INTRODUCTION

Ransomware is malicious software that aims to

damage or gain unauthorized access to computer

systems, posing a severe threat to individual users,

businesses, and government institutions.

Ransomware can often take various forms, such as

viruses, worms, trojans, spyware, and malicious

adware. Ransomware is malicious software that

*
Corresponding Author

e-mail: atekerek@gazi.edu.tr

infiltrates information systems, encrypts files, and

then demands a ransom. It is one of the most common

types of malicious software in the world [1].

Ransomware attacks have become a severe problem

regarding information and computer security in

recent years. These attacks can affect individuals and

companies and cause significant financial losses.

Ransomware attacks often have specific

characteristics, such as anomaly network traffic or

suspicious file behavior. Some events that occur as a

result of ransomware attacks can be listed as follows.

WannaCry ransomware infected an estimated

300,000 people in more than 150 countries in 2016 by

exploiting a vulnerability in the Windows operating

system. The cost of the WannaCry attack is $4 billion.

According to a 2017 report from Verizon, 72% of all

healthcare malware attacks in 2017 were ransomware

[2]. In 2022, an airport operator suffered a

ransomware attack that caused planes to be grounded

and flight delays at Zurich International Airport. The

attack on the airport operator, which provides air

cargo operations and ground handling services,

caused the delay of 22 flights [3]. More than $61

million in total ransoms were paid due to Ryuk

malware attacks in 2018-2019. Between 2019 and

2020, US hospitals in the United Kingdom and

Germany, California, New York, and Oregon were

affected by Ryuk malware, resulting in difficulties

accessing patient records and even disruption of

intensive care [4].

The increase in ransomware attacks has led to the

development of detection methods against malicious

attacks. Antivirus programs are generally used to

protect IT infrastructures from ransomware attacks.

Using signature-based approaches in antivirus

software cannot detect zero-day and complex

malicious attacks [5]. Deep learning methods are

artificial deep neural networks that can learn by

training with large datasets. In this way, the complex

and variable structures of ransomware can be

effectively analyzed by deep learning networks. Deep

learning provides more sensitive and successful

results than signature-based approaches in file

features, behavioral analysis, and anomaly detection.

Deep learning networks can automatically detect the

features of malicious files, and this is more effective

than the blacklist creation process. Thus, deep

learning provides a more flexible detection ability

against constantly updated and evolving threats. In

addition, deep learning models can predict unknown

or zero-day threats thanks to the diversity of the

dataset in the training processes. The use of deep

learning models in ransomware detection has the

potential to provide security that is more effective and

more resistant to future threats compared to

traditional methods. Deep learning algorithms are

used to analyze malicious file behavior and classify

anomalies. In particular, advances in this area can

help cybersecurity experts detect ransomware

effectively.

Deep learning models such as Convolutional Neural

Networks (CNN), Long-Short-Term Memory

(LSTM), and trainable feature extraction algorithms

are used for ransomware detection. Additionally,

deep learning models trained using large-scale

datasets can detect ransomware's complex and

variable nature. Transfer learning methods effectively

detect ransomware threats and better generalize

against new variants. Research in this area shows that

deep learning methods can be used successfully in

ransomware detection. Ransomware attackers

constantly update their evasion methods by

developing new tactics and attempting to bypass

detection systems. Therefore, it is essential that deep

learning-based ransomware detection systems can

quickly adapt to these variable threats and operate

with high accuracy rates. In this study, an LSTM-

based experimental study was conducted to detect

ransomware attacks on mobile devices.

2. LITERATURE REVIEW

Various ransomware detection models have been

proposed in the literature. Zahoora and his team have

developed a method that uses deep learning and zero-

shot learning to detect ransomware. This method uses

an autoencoder network to learn original data features

and applies a voting-based ensemble learning

technique for detection. However, this method

requires obtaining seven dynamic functions in virtual

environments such as Cuckoo Sandbox to run

ransomware. This makes it challenging to meet early

detection requirements and significantly extends the

detection time [6]. The EldeRan model is based on the

principle that ransomware behaves differently than

regular software. In the feature selection of the

EldeRan model, the mutual information criterion is

used to obtain distinctive features. It detects

ransomware using logistic regression, linear SVM,

and Bayesian methods. While the detection rate of the

EldeRan model is 96.34%, the accuracy rate is

92.19% for SVM and 94.53% for Naïve Bayes [7].

RansHunt is a framework that uses SVM to detect

ransomware. RansHunt uses both dynamic and static

features of 21 different ransomware families. The

dataset includes 360 ransomware, 532 malware types,

and 460 benign files. RansHunt uses SVM with

normalized polynomial kernel and compares with

Naïve Bayes and Decision Trees results. The

RansHunt system reached an accuracy rate of 93.5%

with the static data set, 96.1% with the dynamic data

set, and 97.1% with the hybrid data set [8].

AbdulsalamYa'u et al. used a computer-monitoring

deep learning technique to detect anomaly processes

that could initiate suspicious movements in the

computer's files and directories. The authors

proposed a deep neural network algorithm using an

autoencoder network to train the deep learning model

they developed. Experiments have shown that the

model has a classification rate of 99.7% [9]. Guo et

al. proposed a visualization-based ransomware

detection method. First, they converted the

ransomware binaries and harmless programs into

grayscale images. Then, the authors extracted image

features with the VGG 16 neural network using

transfer learning. Finally, they used the SVM

machine learning model for classification. The

proposed method achieved 96.7% classification

accuracy [10]. Moreira et al. converted Portable

Executable (PE) header files into color images in a

sequential vector pattern to block ransomware

attacks. Using the Xception Convolutional Neural

Network (CNN) model, the authors applied static

analysis to detect ransomware. Two separate data sets

were created in the study [11]. Manavi et al. also

proposed a ransomware detection method based on

the PE header of an executable file and leveraging the

LSTM network. As a result, their method achieved an

accuracy rate of 93.25% [12]. Using the hybrid

analysis technique, A. Gharib and A. Gharbani

developed a DNA-Droid tool to detect ransomware.

The tool developed by the authors performs static

analysis before running and checks whether the

application contains ransomware, then terminates the

program if signs of ransomware are found. The results

showed that this tool achieved high performance, and

the false negative rate was below 1.5%, even for

unknown ransomware [13]. Bae et al. proposed a

method for ransomware detection between malware

and trustworthy data. They used six machine learning

algorithms to perform their experiments: RF, LR, NB,

SGD, KNN, and SVM. The study used a dataset of

900 ransomware files and 300 harmless executables.

Regarding ransomware detection, the obtained results

reached a good level of accuracy between 97% and

98.65% [14].

Algorithms, attributes, datasets, and data

preprocessing steps influence the success of

ransomware detection. Complex algorithms, such as

deep learning models, generally provide better results

but require large amounts of labeled data, and training

times can be extended. However, traditional machine

learning algorithms can also be practical and require

less data, but they often have lower levels of success.

Data preprocessing steps can also significantly affect

the results. Properly implementing data cleaning,

feature selection, dimensionality reduction, and

unbalanced class problems can improve the model's

performance.

This study proposes a ransomware detection model

for Android mobile applications. The study aims to

develop an LSTM-based ransomware detection

model, considering the latest technological

developments in the field. The model developed

using LSTM has been proven to have a higher

accuracy rate than the methods proposed in previous

studies. Since the ransomware dataset used in the

study has not been used in any other studies before

and is used for the first time in this study, the success

of the proposed method cannot be compared to other

methods in the literature. However, according to

experimental results, the proposed model has

achieved a success rate as high as 99%.

3. MATERIAL AND METHOD

Processes are followed to create a model or approach

in data science. It is essential to use a similar approach

to data mining processes in studies carried out in data

science and data mining fields, such as deep learning

[15]. The model proposed in this study, in which

ransomware attacks on Android mobile devices were

audited, is given in Figure 1. Android Ransomware

Detection Dataset, available in the Kaggle data

library, was used in the study. In the first stage of the

pre-processing phase, data distribution analysis was

performed. Then, the missing data was analyzed, and

the missing data was completed. If some data has

incomplete data that cannot be completed, this data is

completely deleted. Redundant and repetitive data

were removed from the dataset. Outliers were then

analyzed to detect deviating data. After data

encoding, feature selection was made to use the data

in deep learning training. To make the data more

stable, it is ready for classification through

normalization and standardization processes.

According to experimental studies, the best result in

the classification process was obtained with the

model in which the data was divided into 80%

training and 20% testing.

3.1. Dataset

Android Ransomware Detection Dataset includes

network monitoring records of Android devices to

identify types of ransomware and malicious software

operating on the user network. The dataset contains

392,034 rows and 86 columns, and all data has 10

kinds of Android Ransomware and Benign traffic.

Ransomware types include SVpeng, PornDroid,

Koler, RansomBO, Charger, Simplocker,

WannaLocker, Jisut, Lockerpin, and Pletor [16]. The

"Unnamed: 0" column in the dataset contains a unique

identifier for each data point. The "Flow ID" column

contains an identification number that uniquely

identifies network flows. The "Source IP" and

"Destination IP" columns specify the source and

destination IP addresses that are communicating. The

"Source Port" and "Destination Port" columns define

the communication's source and destination port

numbers. The “Protocol” column indicates the

protocol type used in network communication and

usually represents a numerical value. The most

commonly used protocols have numerical codes.

These codes are used in network traffic analysis and

data sets (for example, 6: TCP, 17:UDP). The

"Timestamp" column contains the timestamp of the

communication event. The "Flow Duration" column

shows the duration of a flow in milliseconds. The

"Total Fwd Packets" and "Total Backward Packets"

columns contain the forward and reverse packet

counts, respectively. The "Total Length of Fwd

Packets" and "Total Length of Bwd Packets" columns

show the total lengths of forward and reverse packets.

The “Fwd Packet Length Max,” “Fwd Packet Length

Min,” “Fwd Packet Length Mean,” and “Fwd Packet

Length Std” columns represent the statistical

properties of forward packet lengths. Similarly, the

"Bwd Packet Length Max," "Bwd Packet Length

Min," "Bwd Packet Length Mean," and "Bwd Packet

Length Std" columns show the statistical properties

for backpacker lengths. Other columns include

network characteristics such as communication rates,

time intervals, flag counts, statistics on packet

lengths, flow routings, and event processes. The

"Label" column contains label information

determining whether each data point is ransomware.

Figure 1. Proposed Methodology

3.2. Data Preprocess

Data preprocessing is the fundamental step in data

analytics and machine learning applications, and this

stage affects the accuracy of analysis and modeling

processes by improving the quality of the dataset

used. This process begins with examining the dataset

and includes stages such as identifying missing

values, cleaning unnecessary information, and

organizing the dataset [17]. Correctly handling

missing data, identifying outliers, and cleaning

unnecessary information ensures reliable results in

the analysis and modeling processes of the dataset.

Additionally, making the dataset more meaningful

and effective through feature engineering is essential

to the data preprocessing process. Some data

preprocessing steps were applied to the dataset used

in the study. Data distribution analysis, understanding

the distribution of variables in a data set, determining

the central tendency, measures of spread, and shape

of the distribution of the variables. Understanding the

distribution of variables helps determine the correct

approach in subsequent modeling processes. The

variables' distribution in the study's data set was

examined in this step, and how close they were to the

normal distribution was evaluated. Examining and

processing missing data is fundamental in data

science and analysis processes. It helps obtain more

reliable results by improving the dataset's quality

when implemented correctly. Missing data is when

empty or null values represent some observations or

variables in a data set. When the data set used in the

study was checked with the null function, no action

was taken in this step since there were no missing

values. The dataset is organized and optimized by

deleting unnecessary and duplicate data. The study

checked duplicate lines in the dataset with Pandas'

duplicated() function. Since there are no repeating

rows, no action was taken in this step. Outlier analysis

is a method used to identify and understand abnormal

or unexpected values in the dataset (Figure 2).

Outliers are observations that generally do not follow

a normal distribution, fall outside statistical criteria,

or deviate significantly from other observations [18].

These values can mislead analysis and modeling

processes, so identifying outliers is essential for

developing a successful AI model.

Figure 2. Outlier Analysis [19]

This study used two outlier analysis methods: IQR

(Interquartile Range) and Z-Score. The two

techniques were applied separately, and their effects

on the model's success were compared during the

model evaluation. According to the results obtained,

the Z-score is more successful.

3.2.1. IQR

The dataset has four parts: Q1, Q2 (median), Q3 and

Q4. The first quartile (Q1) represents the range from

the smallest value to the median of the dataset. The

median (Q2) divides the dataset into two equal parts

and represents half of the total dataset. The third

quartile (Q3) represents the first 75% of the dataset,

covering the range from the median to the maximum

value. The last quarter (Q4) refers to the entire

dataset. That is, it represents the most significant

value [20]. The term that describes the difference

between the 75th and 25th percentiles of the data set

is called the interquartile range. In other words, the

Q1 and Q2 interquartile width represents the middle

50% of the data [21]. According to the IQR method,

values 1.5 times less than the 25% quartile value and

1.5 times more than the 75% quartile value are

classified as outliers.

Figure 3. IQR box plot [22]

The vertical lines in the box plot (Figure 3) show Q1,

median, and Q3. The lines at the ends show the

highest and lowest values. The width of the box

indicates the interquartile range. A small width means

it has less dispersion, while a large width means it has

more dispersion.

3.2.2. Z-Score

Z-score is a measure that expresses how far a value is

from the mean in terms of standard deviation [23].

The Z-score indicates the position of a data point

within the overall distribution.

µ= Mean

σ= Standard Deviation

𝑧 =
𝑥−µ

𝜎
 (1)

The Z-score calculates how many standard deviations

a value is from the mean [23]. This criterion, widely

used in outlier definitions, is usually a limit set as

∣z∣>3. If a value's z-score is more significant or less

than 3, it is an outlier. This study applied suppression

and deletion processes for outliers determined by IQR

and z-score methods. In the suppression method, a

minimum value is assigned to values that are less than

the minimum value determined as the outlier limit. In

contrast, a maximum value is assigned to values that

are larger than the maximum value determined as the

outlier limit. In particular, since the statistical

measures of outliers can be misleading, it is aimed to

make these measures more representative by

suppressing these values. By deleting outliers, the

statistical criteria in the data set are made more

reliable, and the accuracy of the analyses is increased.

Outliers can mislead the mean and standard deviation,

so deleting outliers helps make the dataset more

reliable. Both methods have advantages as well as

some disadvantages. It was seen that the deletion

method gave better results when applied to the data

set separately, and it was decided to use this method

in the final version of the model.

3.2.3. Encoding

Categorical variables can contain non-numeric

categorical values. Such variables are converted to

categorical numeric format. Because non-numeric

categorical variables are not understood by

algorithms [24]. Encoding operations are the methods

used to perform these transformations. Commonly

used encoding methods are one-hot, label, and race.

The label encoding method assigns a unique number

to each category. It is a preferred method, especially

when working with ordered categorical variables. The

model may misunderstand the category order when

used on unordered categorical variables. In the one-

hot encoding method, each category is represented by

creating a new column, and each data point receives

a value of 1 only in the column of the relevant

category and a value of 0 in the other columns. In this

way, each category is represented wholly and

independently. One-hot encoding is especially

suitable for working with unordered categorical

variables, and thanks to this method, the model learns

categorical information effectively. This study

applied the one-hot encoding method to categorical

variables in the data set. The one-hot encoding

method was applied to all categorical variables except

the target variable with the help of a function. After

distinguishing between dependent and independent

variables, a one-hot encoding process was applied to

the target variable.

3.2.4. Feature selection

Feature selection is the process of selecting a subset

of the features in a data set or determining the weight

of the features based on specific criteria. This process

is carried out to improve the model's performance,

eliminate unnecessary or low-impact features, or

reduce the computational cost [25]. Feature selection

makes the model more straightforward and effective

and helps prevent overfitting by reducing complexity

[26]. There are different methods for feature

selection. The chi-square method was preferred

within the scope of the study. This test helps purify

the model from unnecessary features, ensuring that

the model is more straightforward, more meaningful,

and has higher generalization ability. When the chi-

square test was applied for each feature, the p-value

was used to determine which features would be more

effective in the modeling process. Features with low

p-values significantly connect with the target variable

and are added to the selected features. The p-value is

evaluated based on a specified significance level

(alpha level). Since the significance level is generally

taken as 0.05 in the studies, this value was used first

in the project. Then, the same processes were repeated

with different values, and the results were compared.

3.2.5. Normalization and standardization

Normalization is scaling feature values to a range

between 0 and 1. Standardization is accomplished by

subtracting feature values from the mean and dividing

by the standard deviation. Standardization makes

feature values distributed more like a normal

distribution. Standardization makes the model more

resilient to outliers and large feature values. Both

methods may be preferred depending on the structure

of the dataset and the model used. Normalization and

standardization increase model performance and

contribute to faster and more effective operation of

optimization algorithms. Therefore, using these

techniques in the data preprocessing stage is essential

to obtain more reliable and consistent results.

The standardization process centers feature values

around the mean and scales them by standard

deviation units. In this way, feature values are

distributed more similarly, and the model becomes

more effective in training. Many data analysis

libraries, such as a scikit-learn library, provide ready-

made functions for the standardization process.

MinMax Scaling is a type of data normalization that

refers to scaling feature values to a specific range.

This method generally scales between 0 and 1 [27].

MinMax Scaling rescales property values based on

minimum and maximum values. So, all property

values fit within a specific range. The scikit-learn

library in Python was used for MinMax Scaling in the

project. Its formula is shown in Equation 2.

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (2)

In the study, both the standardization process and the

MinMax Scaling process were applied. Observations

have shown that the MinMax Scaling process gives

better results.

3.3. Classification

The data set was divided in this study step, and the

model to be used was determined.

3.3.1. Partitioning the dataset

Dividing the dataset is essential to detect and prevent

problems of overfitting and underfitting, measure the

model's overall performance, and obtain reliable

results. Dividing the data set ensures the model can

work accurately on real-world data and produce

reliable results [28]. The method to be chosen may

vary depending on the project's characteristics, the

data set's size, and the problem type. A good dataset

split ensures the model is reliable, generalizing, and

can work successfully on real-world data. Within the

scope of the study, the data set was divided into

different proportions and tested. These divisions

include various ratios such as 75% training, 25%

testing, 70% training, 30% testing, and 80% training,

20% testing. As a result of the experiments, the most

effective results were obtained in the 80% training

and 20% test section.

3.3.2. Model

This step involves determining the most appropriate

model according to the study's aims and the dataset's

characteristics. When deciding between different

model types, the dataset's structure and the problem

type are considered. The model selection process

includes trial and error methods and aims to select the

model that best suits the project's requirements.

Performance metrics are determined, and the

performance of the selected models is evaluated using

these metrics. The model's overall performance is

evaluated using tuning hyperparameters and cross-

validation techniques.

LSTM models provide significant advantages thanks

to their ability to effectively maintain long-term

connections, successfully learn patterns that change

over time, and remember important information

through memory cells. Since these features increase

the effectiveness of LSTM and allow it to be preferred

in various application areas, especially in areas where

dynamic and hidden patterns need to be detected, such

as security threats, it was chosen to use LSTM neural

network, which is one of the deep learning methods,

in the study. First, the data was suitable for LSTM,

and the time series window size was determined.

Different layer numbers were tried by trial and error,

and the model that gave the best results was selected.

As a result, a 5-layer LSTM model was used. LSTM

is a recurrent neural network (RNN) cell for time

series analysis, natural language processing, and other

sequential data problems. Unlike traditional neural

networks, LSTM includes feedback connections that

can process entire data sequences and individual data

points. This unique cell structure was explicitly

developed to manage information storage and transfer

[29].

Figure 4. LSTM cell [30]

The LSTM cell shown in Figure 4 consists of three

essential components: forget gates, input gates, and

output gates. These components perform different

functions. The cell contains two states, Cell State and

Hidden State. These states are constantly updated and

carry past information to current time steps. The cell

state represents long-term memory, while the latent

state represents short-term memory. Each row of

LSTM cells in each layer is fed with the output of the

previous cell. This allows the cell to retrieve previous

entries and sequence information. The following

steps occur in each LSTM cell:

 The forgetting gate is calculated.

 The entrance door value is calculated.

 Cell status is updated using the above two

outputs.

 The output (hidden state) is calculated using

the output gate [30].

Figure 5. LSTM architecture [30]

Forget gates determine the information to be deleted

from the cell state. This is used to clear the cell state

when historical information is no longer needed [30].

LSTM architecture is given in Figure 5.

𝑓𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓) (3)

Equation 3 In the forgetting gate equation,

Xt = Input current timestamp

U = Input weight

Ht-1 = Hidden state of the previous timestamp

Wf = Weight matrix for hidden state [30].

Then, the Sigmoid activation function is applied to

determine which information will be forgotten [30].

Entry gates control the addition of new information.

A candidate value processed by the sigmoid

activation function and scaled by the tanh activation

function is checked by this gate before being added to

the cell state.

𝑖𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖) (4)

Eşitlik 4’deki Giriş kapısı denkleminde;

Xt = Input at current timestamp t

Uİ = Input weight matrix

Ht-1 = Hidden state of the previous timestamp

Wt = Hidden state weight matrix [30].

Output gates determine the information that emerges

from the cell state. The tanh function normalizes the

cell state processed by the sigmoid function and then

goes through the control of the output gate [30]. The

equation of the exit door, which is very similar to the

previous two doors, is given in equation 5.

 𝑜𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜) (5)

Cells are a type of memory that saves information.

This memory contains essential information from the

past and is updated over time [30]. The equation of

the cell state is given in Equation 6.

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1, 𝑖𝑡 ∗ �̅�𝑡 (6)

3.4. Performance Evaluation

Performance evaluation is carried out with test data

and is tested to determine the extent to which the

created model meets the specified success criteria.

Depending on the values obtained, the study can be

terminated or returned to the first stage to review all

stages. Evaluation with test data includes

performance measures of the model such as accuracy,

sensitivity, specificity, and sensitivity [31].

Evaluation helps check that the model avoids

overfitting the training data; that is, it does not make

learnings that are too specific to the training data. It is

also essential to evaluate the generalization ability of

the model to understand how it can deal with new and

unknown data. Evaluation with test data is also used

to identify potential errors or weaknesses in the

model's performance. Understanding these errors

guides developing and improving the model. Test

data increases the model's reliability in application by

determining how effective the model is in real-world

scenarios. In this study, accuracy rate (Accuracy),

sensitivity (Recall), loss function (Loss Function),

and F1 score performance metrics were used to

evaluate the classification success of the proposed

model. A complexity matrix (Confusion Matrix) was

created to calculate these performance metrics. In

terms of performance metrics, metrics such as

accuracy, sensitivity, recall, and F1 score are used to

evaluate the performance of deep learning-based

ransomware detection systems. Factors such as

timing and resource utilization are also crucial

because providing real-time protection and keeping

the false alarm rate low is critical to minimizing risk.

3.4.1. Confusion matrix

The confusion matrix is a type of matrix used to

evaluate the model's performance in classification

problems. This matrix helps visualize different

performance metrics by comparing the classification

predictions made by a model to their actual classes.

Figure 6. Confusion matrix [32]

The confusion matrix consists of four basic

categories: True Positives (TP), the number of

samples the model classifies as true positives; true

Negatives (TN), the number of samples the model

classifies as true negatives; false Positives (FP), the

number of samples the model classifies as positive

when they are harmful, and False Negatives (FN)

refer to the number of samples that the model

classifies as negative but positive.

3.4.2. Accuracy

Accuracy is a performance metric that measures how

accurately a classification model makes predictions.

As seen in Equation 7, the accuracy rate expresses the

ratio of correctly predicted samples to the total

number of samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (7)

The accuracy metric is usually expressed as a

percentage. A high accuracy rate means the model

classifies the data correctly, but more than the

accuracy rate is required to reflect the model's

performance fully. The accuracy rate can be

misleading, mainly if the dataset consists of

unbalanced classes, that is, if there are significant

differences in the number of samples between classes.

Other performance metrics and evaluation methods,

such as classification matrix, should also be

considered in this case.

3.4.3. Recall

Sensitivity evaluates the performance of

classification models, measuring the ability to

correctly classify all truly positive examples as

positive. Sensitivity is especially considered when

detecting a class, as it is essential and the potential

cost of false negatives is high. In Equation 8,

sensitivity expresses the ratio of true positives to the

sum of total true positives and false negatives.

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8)

Sensitivity indicates that the model recognizes truly

positive examples and effectively identifies examples

from this class.

3.4.4. Loss function

The loss function is a performance metric showing the

difference between the model's actual and predicted

outputs. The purpose of the loss function is to guide

and optimize the learning process of the model. It

produces a score that measures how close the model

is to its targeted output. The choice of loss function

significantly impacts the model's learning process and

generalization ability. Choosing a correct loss

function can help the model learn desired behaviors

and generalize. For this reason, choosing the

appropriate loss function for a specific problem and

minimizing this function can increase the model's

performance.

3.4.5. F1 score

The F1 score is the metric that balances the accuracy,

precision, and sensitivity performance measurements

of the classification model. It is used to evaluate the

model's performance more comprehensively,

especially in data sets with unbalanced classes. The

F1 score formula is shown in Equation 9.

 𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
 (9)

The F1 score is used to evaluate the model's overall

performance with a single metric in classification

problems, especially when there is an imbalance in

the number of samples between classes. F1 score

takes values between 0 and 1. 1 represents the best

performance, and 0 represents the worst performance.

A high F1 score indicates the model's ability to

minimize false positives and negatives. Therefore, it

is an important measure that shows the model's

overall performance. The main reason why F1 Score

is preferred over accuracy is the ability to evaluate

model performance more balancedly in unevenly

distributed datasets. Additionally, F1 Score is used in

cases that cover all error types, not just False Negative

or False Positive errors [32].

4. RESULT and DISCUSSION

In this study, the LSTM neural network, one of the

deep learning methods, was preferred. After model

training was completed, classification success was

evaluated with the test dataset.

In this study, different LSTM models were created

and tested according to various features, and the most

effective model was selected. The selected model

contains five repeating LSTM layers. The first LSTM

layer has 256 units and produces output for

consecutive time series. It also includes a 20%

Dropout layer to reduce the risk of overfitting. The

second layer has the same characteristics as the 512

LSTM unit. The third and fourth layers have 256 and

512 LSTM units operating on sequential time series.

The fifth and final layer contains 256 LSTM units.

The output layer of the model is designed to solve a

multi-class problem, and the 'softmax' activation

function is used in this layer. Once the model is

created, parameters are selected to train the model. In

the model step, 'Adam' was chosen as the optimizer

because Adam is an effective optimization algorithm

that combines the adaptive momentum method and

the root mean square error (RMSprop) method. This

algorithm can speed up the training process and allow

the model to learn faster and more effectively.

Additionally, 'categorical_crossentropy' was chosen

as the loss function because it was stated that a multi-

class classification problem was addressed in the

project. This loss function measures the differences

between multiple classes and encourages the model to

perform correct classification. Finally, 'accuracy' was

chosen as the metric because this metric measures the

accuracy of the model and is stated as one of the

project's success criteria.

Different epoch values were tested for the proposed

model to learn the patterns in the data set and improve

its generalization ability, and training was performed

with 100 epochs. Again, different batch sizes were

tried, and the batch size was 64 in the final model.

These choices were made considering the project's

specific requirements and the dataset's characteristics,

thus ensuring the model was effectively trained and

its performance evaluated. Evaluation of the F1 score,

accuracy, and sensitivity success of the created model

is shown in Table 1.

Table 1. Model Performance Results

Accuracy Recall F1 Score

%99.3 0.99 0.99

A comparison of the results of this study with other

studies in the literature is presented in Table 2. Since

the dataset used in this study has yet to be used in any

previous study, the comparison in Table 2 was made

with studies using different datasets.

Table 2. Comparison of studies

Study Dataset Methods Results

(Accuracy)

Zahoora et

al.[6]

VirusSh

are4

Zero-shot

Learning

(ZSL)

%92

Sgandurra

et al. [7]

Unpubli

shed

Dataset

Lojistic

Regressio

n

 %96,34

Hasan,

M.;

Rahman,

M.

RansHunt

[8]

VirusSh

are

SVM Statik

dataset:

%93,5,

Dinamic

Dataset:

%96,1,

Hibrit

Dataset:

%97,1

Abdulsala

mYa'u et

al. [9]

Resilient

Informat

ion

Security

System

(RISS)

Deep

Neural

Network

%99.7

Guo et al.

[10]

Unpubli

shed

Dataset

SVM %96.7

Bae et al.

[14]

Unpubli

shed

Dataset

RF, LR,

NB, SGD,

KNN and

SVM

%98.65

Manavi,

F.,

Hamzeh,

A [12]

Unpubli

shed

Dataset

LSTM %93

Moreira et

al. [11]

Unpubli

shed

Dataset

Random

Forest

%93.73

Proposed

Study

Android

Ransom

ware

Detectio

n [16]

LSTM %99.3

The dataset contains 392034 rows and 85 columns

and 10 types of Android Ransomware and Malicious

traffic in all types. After the data preprocessing

process, 292753 data remained. The types of

Ransomware include SVpeng, PornDroid, Koler,

RansomBO, Charger, Simplocker, WannaLocker,

Jisut, Lockerpin, and Pletor and Benign. The

confusion matrix only shows test results.

Figure 7. Confusion matrix of the proposed model

The confusion matrix is shown in Figure 7.

The preferred loss function in the project is the

Categorical cross-entropy loss function, which is

suitable for a multi-class classification task.

Categorical Cross entropy is a loss function that

measures the difference between the classes predicted

by the model and the actual labels. It calculates how

accurate the model's predictions are and how many

errors it makes by evaluating the difference in the

probability distribution for each class. Categorical

Crossentropy also shows optimal performance when

used with the softmax activation function. This

combination transforms the model's outputs into

probability distributions, and the loss function

evaluates how well these probabilities match the

actual labels. As a result of training with 100 epochs,

the loss value, accuracy, and val_loss values for the

last 10 epochs are shown in Table 3.

Table 3. Loss Function Evaluation of the Model

Epoch Loss Accuracy Loss

90 0.018 0.9944 0.01

91 0.017 0.9948 0.0096

92 0.017 0.9949 0.0089

93 0.017 0.9949 0.0099

94 0.017 0.9948 0.0102

95 0.018 0.9943 0.017

96 0.017 0.9946 0.0123

97 0.016 0.9949 0.0093

98 0.016 0.9949 0.008

99 0.017 0.9947 0.015

100 0.016 0.9949 0.0082

The difference between loss and loss values shows

how well the model fits the training dataset and

performs its generalization ability on the validation

dataset. Therefore, loss is generally the values that

reflect training performance, and val_loss is the value

that reflects validation performance. A good model

should achieve low loss during training and exhibit

good generalization ability on the validation set.

The fact that the val_loss value is lower than the loss

value (the better the val_loss value is) indicates that

this model can successfully generalize the patterns

from the training dataset to the test dataset. This

indicates that the model is trying to better fit real-

world data without overfitting. The accuracy graph is

the graph that shows the accuracy values on the

training set and validation set during the training of

the model. The loss graph is the graph that shows the

loss values on the training set and validation set

during the training of the model. These graphs are

used to understand how well the model has learned

and gained generalization ability.

Figure 8. Accuracy graph of the model

The accuracy graph of the model created in the study

is shown in Figure 8.

Figure 9. Loss graph of the model

The loss graph of the model created in the study is

shown in Figure 9.

Figure 10. ROC curve of model

The ROC curve of the model created in the study is

shown in Figure 10.

5. CONCLUSION

In this study, ransomware attacks on mobile devices

were audited with the Android Ransomware

Detection dataset using the LSTM neural network,

one of the deep learning methods. The proposed

model was trained on a complex dataset containing

ten different classes, and the F1 Score, accuracy, and

sensitivity metric values show that the model

successfully classifies ransomware types. In addition,

low loss values in the training set of the model

indicate that the learned patterns are comprehended

and the model adapts appropriately to the training

data. The low loss values obtained in the test data set

indicate that the model's generalization ability is

strong and can perform effectively for new data sets.

Experimental studies show that deep learning

techniques have an important role in cyber security

and can be used in critical tasks such as detecting

malicious software such as ransomware that threatens

mobile applications. Future studies may further

expand the potential in this field by including in-depth

research in areas such as different deep learning

architectures, larger data sets, and integrating

different features into models. This study reveals that

deep learning models have significant potential in

terms of cyber security.

ACKNOWLEDGEMENT

TÜBİTAK supports this work under grant number

1919B012303087.

DECLARATION OF ETHICAL STANDARDS

There is no need to obtain permission from the ethics

committee for the article prepared. The article

prepared has no conflict of interest with any

person/institution.

AUTHORS’ CONTRIBUTIONS

Hatice KARACA: Methodology, software,

performed the experiments and analysis of the results,

validation, visualization, writing-original draft

preparation.

Adem TEKEREK: Methodology, analysis of the

results, supervision.

CONFLICT OF INTEREST

There is no conflict of interest in this study.

REFERENCES
[1] Teymourlouei, H., “Preventative measures in cyber &

ransomware attacks for home & small businesses’

data”, Proceedings of the International Conference

on Scientific Computing (CSC), 87–93 (2018).

[2] Verizon. Data Breach Investigations Report. (2017).

[3] Ransomware Attacks on European Transportation

Targets, I-HLS, (2022).

[4] Barry, Ellen; Perlroth, Nicole "Patients of a Vermont

Hospital Are Left 'in the Dark' After a Cyberattack".

New York Times, (2020).

[5] Masdari, Mohammad, and Hemn Khezri. "A survey

and taxonomy of the fuzzy signature-based intrusion

detection systems." Applied Soft Computing 92

(2020).

[6] Zahoora, Umme, et al. "Zero-day ransomware attack

detection using deep contractive autoencoder and

voting based ensemble classifier." Applied

Intelligence 52.12 (2022).

[7] Sgandurra, Daniele, et al. "Automated dynamic

analysis of ransomware: Benefits, limitations and use

for detection." arXiv preprint (2016).

[8] Hasan, Md Mahbub, and Md Mahbubur Rahman.

"RansHunt: A support vector machines based

ransomware analysis framework with integrated

feature set." 2017 20th international conference of

computer and information technology (ICCIT).

IEEE, (2017).

[9] AbdulsalamYa'u, Gital, et al. "Deep learning for

detecting ransomware in edge computing devices

based on autoencoder classifier." 2019 4th

International Conference on Electrical, Electronics,

Communication, Computer Technologies and

Optimization Techniques (ICEECCOT). IEEE,

(2019).

[10] Chen, C.-Q., Cuo, C., Shen, G.-W.: “A ransomware

classification method based on visualization”,

Netinfo Security. 20(4), 31–39, (2020).

[11] Moreira, Caio C., Davi C. Moreira, and Claudomiro

de S. de Sales Jr. "Improving ransomware detection

based on portable executable header using xception

convolutional neural network." Computers &

Security 130, 103265, (2023).

[12] Manavi, Farnoush, and Ali Hamzeh. "Static detection

of ransomware using LSTM network and PE header."

2021 26th international computer conference,

Computer Society of Iran (CSICC). IEEE, (2021).

[13] Gharib, Amirhossein, and Ali Ghorbani. "Dna-droid:

A real-time android ransomware detection

framework." Network and System Security: 11th

International Conference, NSS 2017, Helsinki,

Finland, August 21–23, 2017, Proceedings 11.

Springer International Publishing, (2017).

[14] Bae, Seong Il, Gyu Bin Lee, and Eul Gyu Im.

"Ransomware detection using machine learning

algorithms." Concurrency and Computation:

Practice and Experience 32.18 (2020).

[15] Mansyur, M., Indra Budi, and Yova Ruldeviyani.

"Utilization of Data Mining Classification Technique

for Civil Servant Mutation Pattern: A Case Study of

Pangkajene and Kepulauan District Government."

2018 International Conference on Applied

Information Technology and Innovation (ICAITI).

IEEE, (2018).

[16] Internet: “Android Ransomware Detection”,

https://www.kaggle.com/datasets/subhajournal/andro

id-ransomware-detection, (2024).

[17] Agarwal, V., “Research on data preprocessing and

categorization technique for smartphone review

analysis”, International Journal of Computer

Applications, 131(4), 30-36, (2015).

[18] Modi, Krishna, and Bhavesh Oza. "Outlier analysis

approaches in data mining." International Journal of

Innovative Research in Technology, 3(7), 6-12,

(2016).

[19] Liu, J., Cao, Y., Li, Y., Guo, Y., & Deng, W.,

“Analysis and prediction of power distribution

network loss based on machine learning”,

International Journal of Numerical Modelling:

Electronic Networks, Devices and Fields, 36(4),

(2023).

[20] Singh, N., & Oorkavalan, U. (2018). “Triple

Threshold Statistical Detection filter for removing

high density random-valued impulse noise in

images”, EURASIP Journal on Image and Video

Processing, 1-16, (2018).

[21] Perez, H., & Tah, J. H. M. “Improving the Accuracy

of Convolutional Neural Networks by Identifying and

Removing Outlier Images in Datasets Using t-SNE”,

Mathematics, 8, 662, (2020).

[22] Whaley III, “Dewey Lonzo. The interquartile range:

Theory and estimation”, MS thesis. East Tennessee

State University, (2005).

[23] Anggoro, D. A., & Supriyanti, W., “Improving

accuracy by applying Z-score normalization in linear

regression and polynomial regression model for real

estate data”, International Journal of Emerging

Trends in Engineering Research, 7(11), 549-555,

(2019).

[24] Nurnoby, M. Faisal, and El-Sayed M. El-Alfy.

"Overview and Case Study for Ransomware

Classification Using Deep Neural Network." 2019

2nd IEEE Middle East and North Africa

COMMunications Conference (MENACOMM).

IEEE, (2019).

[25] Li, Zhida, Ana Laura Gonzalez Rios, and Ljiljana

Trajković. "Machine learning for detecting the

WestRock ransomware attack using BGP routing

records." IEEE Communications Magazine, 61(3),

20-26, (2022).

[26] Anusha, Peruri Venkata, et al. "Detecting outliers in

high dimensional data sets using Z-score

methodology", International Journal of Innovative

Technology and Exploring Engineering 9.1, 48-53,

(2019).

[27] Singh, Amardeep, et al. "Enhancing ransomware

attack detection using transfer learning and deep

learning ensemble models on cloud-encrypted data."

Electronics, 12.18, 3899, (2023).

[28] Kahloot, Khalid M., and Peter Ekler. "Algorithmic

splitting: A method for dataset preparation." IEEE

Access, 9, 125229-125237, (2021).

[29] Homayoun, Sajad, et al. "DRTHIS: Deep ransomware

threat hunting and intelligence system at the fog

layer." Future Generation Computer Systems, 90,

94-104, (2019).

[30] Saxena, Shipra. "Introduction to long short term

memory (LSTM)." Analytics Vidhya (2021).

[31] Ciaramella, Giovanni, et al. "Explainable

ransomware detection with deep learning

techniques." Journal of Computer Virology and

Hacking Techniques 20(2), 317-330, (2024).

[32] Almomani, I., Alkhayer, A., & El-Shafai, W., “E2E-

RDS: Efficient End-to-End ransomware detection

system based on Static-Based ML and Vision-Based

DL approaches”. Sensors, 23(9), 4467, (2023).

