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Enhancing Cybersecurity against Ransomware Attacks Using 

LSTM Deep Learning Method: A Case Study on Android 

Devices 

LSTM Derin Öğrenme Yöntemi Kullanarak Fidye Yazılımı Saldırılarına Karşı Siber 

Güvenliğin Geliştirilmesi: Android Cihazlarda Bir Vaka Çalışması 

Highlights 

 Detecting Android ransomware using the LSTM model. 

 Applying dataset analysis and feature engineering. 

 Detailing the model training and validation processes. 

 Analyzing results with performance evaluation metrics. 

Graphical Abstract 
In this study, the LSTM deep learning model was used to detect Android-based ransomware. Dataset analysis, 

feature engineering, model training, and performance evaluations were conducted, achieving a 99% accuracy 

rate. 

 
Figure. Proposed Methodology 

Aim 

To investigate the effectiveness of LSTM deep learning methods in detecting Android-based ransomware 

Design & Methodology 

Steps included dataset analysis, feature engineering, model training, and performance evaluation 

Originality 

This study is one of the rare works successfully applying LSTM models to detect Android ransomware. 

Findings 

Android ransomware was detected with 99% accuracy with LSTM. 

Conclusion 

LSTM has proven the effectiveness of deep learning in security by successfully detecting Android ransomware. 
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ABSTRACT 

The rapid advancement of technology brings new threats to the digital world. One of these threats is malicious ransomware 

attacks. Ransomware is malicious software that demands ransom from innocent users by blocking access to information 

systems. Since traditional methods are limited to predefined blacklists, they may be ineffective against unknown 

ransomware types. On the other hand, deep learning methods offer a sensitive defense mechanism against anomalies by 

learning standard behavior patterns. This study studied the Internet logs of Android devices consisting of 392,034 rows and 

86 columns using the Long Short-Term Memory (LSTM) model. The dataset contains 14 different Android ransomware 

families and harmless traffic. Data preprocessing steps include missing data management, outlier analysis, feature selection, 

coding operations, and data normalization/standardization. The dataset was split at 80% training 20% test ratio, and it was 

determined that the 80% training 20% test split had the highest accuracy. The developed LSTM-based classification model 

achieved successful results with a 99% accuracy rate and 0.99 F1 score. 

Keywords: Android, Ransomware, Deep Learning 

LSTM Derin Öğrenmeyi Kullanarak Fidye Yazılımı 

Saldırılarına Karşı Siber Güvenliğin Geliştirilmesi: 

Android Cihazlarda Bir Vaka Çalışması 

ÖZ 

Teknolojinin hızla ilerlemesi dijital dünyada yeni tehditleri de beraberinde getiriyor. Bu tehditlerden biri kötücül fidye 

yazılımı saldırılarıdır. Fidye yazılımları, bilgi sistemlerine erişimi engelleyerek masum kullanıcılardan fidye talep eden 

kötü amaçlı yazılımlardır. Geleneksel yöntemler önceden tanımlanmış kara listelerle sınırlı olduğundan, bilinmeyen fidye 

yazılımı türlerine karşı etkisiz kalabilir. Derin öğrenme yöntemleri ise normal davranış kalıplarını öğrenerek anormalliklere 

karşı hassas bir savunma mekanizması sunar. Bu çalışmada Uzun Kısa Süreli Bellek (LSTM) modeli kullanılarak, 392.034 

satır ve 86 sütundan oluşan Android cihazların İnternet günlükleri üzerinde çalışılmıştır. Veri seti, 14 farklı Android fidye 

yazılımı ailesi ve zararsız trafik içermektedir. Veri ön işleme adımları arasında eksik verilerin yönetimi, aykırı değer analizi, 

özellik seçimi, kodlama işlemleri ve veri normalleştirme/standartlaştırma bulunmaktadır. Veri kümesi %80 eğitim - %20 

test oranında bölünmüş ve %80 eğitim - %20 test ayrımının en yüksek doğruluğa sahip olduğu belirlenmiştir. Geliştirilen 

LSTM tabanlı sınıflandırma modeli %99 doğruluk oranı ve 0,99 F1-skoru ile başarılı sonuçlar elde etmiştir 

Anahtar Kelimeler: Android, Fidye Yazılımı, Derin Öğrenme 

 

1. INTRODUCTION 

Ransomware is malicious software that aims to 

damage or gain unauthorized access to computer 

systems, posing a severe threat to individual users, 

businesses, and government institutions. 

Ransomware can often take various forms, such as 

viruses, worms, trojans, spyware, and malicious 

adware. Ransomware is malicious software that 
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infiltrates information systems, encrypts files, and 

then demands a ransom. It is one of the most common 

types of malicious software in the world [1]. 

Ransomware attacks have become a severe problem 

regarding information and computer security in 

recent years. These attacks can affect individuals and 

companies and cause significant financial losses. 

Ransomware attacks often have specific 



 

 

characteristics, such as anomaly network traffic or 

suspicious file behavior. Some events that occur as a 

result of ransomware attacks can be listed as follows. 

WannaCry ransomware infected an estimated 

300,000 people in more than 150 countries in 2016 by 

exploiting a vulnerability in the Windows operating 

system. The cost of the WannaCry attack is $4 billion. 

According to a 2017 report from Verizon, 72% of all 

healthcare malware attacks in 2017 were ransomware 

[2]. In 2022, an airport operator suffered a 

ransomware attack that caused planes to be grounded 

and flight delays at Zurich International Airport. The 

attack on the airport operator, which provides air 

cargo operations and ground handling services, 

caused the delay of 22 flights [3]. More than $61 

million in total ransoms were paid due to Ryuk 

malware attacks in 2018-2019. Between 2019 and 

2020, US hospitals in the United Kingdom and 

Germany, California, New York, and Oregon were 

affected by Ryuk malware, resulting in difficulties 

accessing patient records and even disruption of 

intensive care [4]. 

The increase in ransomware attacks has led to the 

development of detection methods against malicious 

attacks. Antivirus programs are generally used to 

protect IT infrastructures from ransomware attacks. 

Using signature-based approaches in antivirus 

software cannot detect zero-day and complex 

malicious attacks [5]. Deep learning methods are 

artificial deep neural networks that can learn by 

training with large datasets. In this way, the complex 

and variable structures of ransomware can be 

effectively analyzed by deep learning networks. Deep 

learning provides more sensitive and successful 

results than signature-based approaches in file 

features, behavioral analysis, and anomaly detection. 

Deep learning networks can automatically detect the 

features of malicious files, and this is more effective 

than the blacklist creation process. Thus, deep 

learning provides a more flexible detection ability 

against constantly updated and evolving threats. In 

addition, deep learning models can predict unknown 

or zero-day threats thanks to the diversity of the 

dataset in the training processes. The use of deep 

learning models in ransomware detection has the 

potential to provide security that is more effective and 

more resistant to future threats compared to 

traditional methods. Deep learning algorithms are 

used to analyze malicious file behavior and classify 

anomalies. In particular, advances in this area can 

help cybersecurity experts detect ransomware 

effectively. 

Deep learning models such as Convolutional Neural 

Networks (CNN), Long-Short-Term Memory 

(LSTM), and trainable feature extraction algorithms 

are used for ransomware detection. Additionally, 

deep learning models trained using large-scale 

datasets can detect ransomware's complex and 

variable nature. Transfer learning methods effectively 

detect ransomware threats and better generalize 

against new variants. Research in this area shows that 

deep learning methods can be used successfully in 

ransomware detection. Ransomware attackers 

constantly update their evasion methods by 

developing new tactics and attempting to bypass 

detection systems. Therefore, it is essential that deep 

learning-based ransomware detection systems can 

quickly adapt to these variable threats and operate 

with high accuracy rates. In this study, an LSTM-

based experimental study was conducted to detect 

ransomware attacks on mobile devices. 

 

2. LITERATURE REVIEW 

Various ransomware detection models have been 

proposed in the literature. Zahoora and his team have 

developed a method that uses deep learning and zero-

shot learning to detect ransomware. This method uses 

an autoencoder network to learn original data features 

and applies a voting-based ensemble learning 

technique for detection. However, this method 

requires obtaining seven dynamic functions in virtual 

environments such as Cuckoo Sandbox to run 

ransomware. This makes it challenging to meet early 

detection requirements and significantly extends the 

detection time [6]. The EldeRan model is based on the 

principle that ransomware behaves differently than 

regular software. In the feature selection of the 

EldeRan model, the mutual information criterion is 

used to obtain distinctive features. It detects 

ransomware using logistic regression, linear SVM, 

and Bayesian methods. While the detection rate of the 

EldeRan model is 96.34%, the accuracy rate is 

92.19% for SVM and 94.53% for Naïve Bayes [7]. 

RansHunt is a framework that uses SVM to detect 

ransomware. RansHunt uses both dynamic and static 

features of 21 different ransomware families. The 

dataset includes 360 ransomware, 532 malware types, 

and 460 benign files. RansHunt uses SVM with 

normalized polynomial kernel and compares with 

Naïve Bayes and Decision Trees results. The 

RansHunt system reached an accuracy rate of 93.5% 

with the static data set, 96.1% with the dynamic data 

set, and 97.1% with the hybrid data set [8]. 

AbdulsalamYa'u et al. used a computer-monitoring 

deep learning technique to detect anomaly processes 

that could initiate suspicious movements in the 

computer's files and directories. The authors 

proposed a deep neural network algorithm using an 

autoencoder network to train the deep learning model 

they developed. Experiments have shown that the 

model has a classification rate of 99.7% [9]. Guo et 

al. proposed a visualization-based ransomware 

detection method. First, they converted the 

ransomware binaries and harmless programs into 

grayscale images. Then, the authors extracted image 

features with the VGG 16 neural network using 

transfer learning. Finally, they used the SVM 

machine learning model for classification. The 

proposed method achieved 96.7% classification 



 
 

 

accuracy [10]. Moreira et al. converted Portable 

Executable (PE) header files into color images in a  

sequential vector pattern to block ransomware 

attacks. Using the Xception Convolutional Neural 

Network (CNN) model, the authors applied static 

analysis to detect ransomware. Two separate data sets 

were created in the study [11]. Manavi et al. also 

proposed a ransomware detection method based on 

the PE header of an executable file and leveraging the 

LSTM network. As a result, their method achieved an 

accuracy rate of 93.25% [12]. Using the hybrid 

analysis technique, A. Gharib and A. Gharbani 

developed a DNA-Droid tool to detect ransomware. 

The tool developed by the authors performs static 

analysis before running and checks whether the 

application contains ransomware, then terminates the 

program if signs of ransomware are found. The results 

showed that this tool achieved high performance, and 

the false negative rate was below 1.5%, even for 

unknown ransomware [13]. Bae et al. proposed a 

method for ransomware detection between malware 

and trustworthy data. They used six machine learning 

algorithms to perform their experiments: RF, LR, NB, 

SGD, KNN, and SVM. The study used a dataset of 

900 ransomware files and 300 harmless executables. 

Regarding ransomware detection, the obtained results 

reached a good level of accuracy between 97% and 

98.65% [14]. 

Algorithms, attributes, datasets, and data 

preprocessing steps influence the success of 

ransomware detection. Complex algorithms, such as 

deep learning models, generally provide better results 

but require large amounts of labeled data, and training 

times can be extended. However, traditional machine 

learning algorithms can also be practical and require 

less data, but they often have lower levels of success. 

Data preprocessing steps can also significantly affect 

the results. Properly implementing data cleaning, 

feature selection, dimensionality reduction, and 

unbalanced class problems can improve the model's 

performance. 

This study proposes a ransomware detection model 

for Android mobile applications. The study aims to 

develop an LSTM-based ransomware detection 

model, considering the latest technological 

developments in the field. The model developed 

using LSTM has been proven to have a higher 

accuracy rate than the methods proposed in previous 

studies. Since the ransomware dataset used in the 

study has not been used in any other studies before 

and is used for the first time in this study, the success 

of the proposed method cannot be compared to other 

methods in the literature. However, according to 

experimental results, the proposed model has 

achieved a success rate as high as 99%. 

 

3. MATERIAL AND METHOD 

Processes are followed to create a model or approach 

in data science. It is essential to use a similar approach 

to data mining processes in studies carried out in data 

science and data mining fields, such as deep learning 

[15]. The model proposed in this study, in which 

ransomware attacks on Android mobile devices were 

audited, is given in Figure 1. Android Ransomware 

Detection Dataset, available in the Kaggle data 

library, was used in the study. In the first stage of the 

pre-processing phase, data distribution analysis was 

performed. Then, the missing data was analyzed, and 

the missing data was completed. If some data has 

incomplete data that cannot be completed, this data is 

completely deleted. Redundant and repetitive data 

were removed from the dataset. Outliers were then 

analyzed to detect deviating data. After data 

encoding, feature selection was made to use the data 

in deep learning training. To make the data more 

stable, it is ready for classification through 

normalization and standardization processes. 

According to experimental studies, the best result in 

the classification process was obtained with the 

model in which the data was divided into 80% 

training and 20% testing. 

 

3.1. Dataset 

Android Ransomware Detection Dataset includes 

network monitoring records of Android devices to 

identify types of ransomware and malicious software 

operating on the user network. The dataset contains 

392,034 rows and 86 columns, and all data has 10 

kinds of Android Ransomware and Benign traffic. 

Ransomware types include SVpeng, PornDroid, 

Koler, RansomBO, Charger, Simplocker, 

WannaLocker, Jisut, Lockerpin, and Pletor [16]. The 

"Unnamed: 0" column in the dataset contains a unique 

identifier for each data point. The "Flow ID" column 

contains an identification number that uniquely 

identifies network flows. The "Source IP" and 

"Destination IP" columns specify the source and 

destination IP addresses that are communicating. The 

"Source Port" and "Destination Port" columns define 

the communication's source and destination port 

numbers. The “Protocol” column indicates the 

protocol type used in network communication and 

usually represents a numerical value. The most 

commonly used protocols have numerical codes. 

These codes are used in network traffic analysis and 

data sets (for example, 6: TCP, 17:UDP). The 

"Timestamp" column contains the timestamp of the 

communication event. The "Flow Duration" column 

shows the duration of a flow in milliseconds. The 

"Total Fwd Packets" and "Total Backward Packets" 

columns contain the forward and reverse packet 

counts, respectively. The "Total Length of Fwd 

Packets" and "Total Length of Bwd Packets" columns 

show the total lengths of forward and reverse packets. 

The “Fwd Packet Length Max,” “Fwd Packet Length 

Min,” “Fwd Packet Length Mean,” and “Fwd Packet 



 

 

Length Std” columns represent the statistical 

properties of forward packet lengths. Similarly, the 

"Bwd Packet Length Max," "Bwd Packet Length 

Min," "Bwd Packet Length Mean," and "Bwd Packet 

Length Std" columns show the statistical properties 

for backpacker lengths. Other columns include 

network characteristics such as communication rates, 

time intervals, flag counts, statistics on packet 

lengths, flow routings, and event processes. The 

"Label" column contains label information 

determining whether each data point is ransomware. 

 

 

Figure 1. Proposed Methodology 

3.2. Data Preprocess 

Data preprocessing is the fundamental step in data 

analytics and machine learning applications, and this 

stage affects the accuracy of analysis and modeling 

processes by improving the quality of the dataset 

used. This process begins with examining the dataset 

and includes stages such as identifying missing 

values, cleaning unnecessary information, and 

organizing the dataset [17]. Correctly handling 

missing data, identifying outliers, and cleaning 

unnecessary information ensures reliable results in 

the analysis and modeling processes of the dataset. 

Additionally, making the dataset more meaningful 

and effective through feature engineering is essential 

to the data preprocessing process. Some data 

preprocessing steps were applied to the dataset used 

in the study. Data distribution analysis, understanding 

the distribution of variables in a data set, determining 

the central tendency, measures of spread, and shape 

of the distribution of the variables. Understanding the 

distribution of variables helps determine the correct 

approach in subsequent modeling processes. The 

variables' distribution in the study's data set was 

examined in this step, and how close they were to the 

normal distribution was evaluated. Examining and 

processing missing data is fundamental in data 

science and analysis processes. It helps obtain more 

reliable results by improving the dataset's quality 

when implemented correctly. Missing data is when 

empty or null values represent some observations or 

variables in a data set. When the data set used in the 

study was checked with the null function, no action 

was taken in this step since there were no missing 

values. The dataset is organized and optimized by 

deleting unnecessary and duplicate data. The study 

checked duplicate lines in the dataset with Pandas' 

duplicated() function. Since there are no repeating 

rows, no action was taken in this step. Outlier analysis 

is a method used to identify and understand abnormal 

or unexpected values in the dataset (Figure 2). 

Outliers are observations that generally do not follow 

a normal distribution, fall outside statistical criteria, 

or deviate significantly from other observations [18]. 

These values can mislead analysis and modeling 

processes, so identifying outliers is essential for 

developing a successful AI model. 



 
 

 

 

Figure 2. Outlier Analysis [19] 

This study used two outlier analysis methods: IQR 

(Interquartile Range) and Z-Score. The two 

techniques were applied separately, and their effects 

on the model's success were compared during the 

model evaluation. According to the results obtained, 

the Z-score is more successful. 

3.2.1. IQR 

The dataset has four parts: Q1, Q2 (median), Q3 and 

Q4. The first quartile (Q1) represents the range from 

the smallest value to the median of the dataset. The 

median (Q2) divides the dataset into two equal parts 

and represents half of the total dataset. The third 

quartile (Q3) represents the first 75% of the dataset, 

covering the range from the median to the maximum 

value. The last quarter (Q4) refers to the entire 

dataset. That is, it represents the most significant 

value [20]. The term that describes the difference 

between the 75th and 25th percentiles of the data set 

is called the interquartile range. In other words, the 

Q1 and Q2 interquartile width represents the middle 

50% of the data [21]. According to the IQR method, 

values 1.5 times less than the 25% quartile value and 

1.5 times more than the 75% quartile value are 

classified as outliers. 

 

Figure 3. IQR box plot [22] 

The vertical lines in the box plot (Figure 3) show Q1, 

median, and Q3. The lines at the ends show the 

highest and lowest values. The width of the box 

indicates the interquartile range. A small width means 

it has less dispersion, while a large width means it has 

more dispersion. 

 

3.2.2. Z-Score 

Z-score is a measure that expresses how far a value is 

from the mean in terms of standard deviation [23]. 

The Z-score indicates the position of a data point 

within the overall distribution. 

 

µ= Mean 

σ= Standard Deviation 

𝑧 =
𝑥−µ

𝜎
                                                              (1) 

The Z-score calculates how many standard deviations 

a value is from the mean [23]. This criterion, widely 

used in outlier definitions, is usually a limit set as 

∣z∣>3. If a value's z-score is more significant or less 

than 3, it is an outlier. This study applied suppression 

and deletion processes for outliers determined by IQR 

and z-score methods. In the suppression method, a 

minimum value is assigned to values that are less than 

the minimum value determined as the outlier limit. In 

contrast, a maximum value is assigned to values that 

are larger than the maximum value determined as the 

outlier limit. In particular, since the statistical 

measures of outliers can be misleading, it is aimed to 

make these measures more representative by 

suppressing these values. By deleting outliers, the 

statistical criteria in the data set are made more 

reliable, and the accuracy of the analyses is increased. 

Outliers can mislead the mean and standard deviation, 

so deleting outliers helps make the dataset more 

reliable. Both methods have advantages as well as 

some disadvantages. It was seen that the deletion 

method gave better results when applied to the data 

set separately, and it was decided to use this method 

in the final version of the model. 

3.2.3. Encoding 

Categorical variables can contain non-numeric 

categorical values. Such variables are converted to 

categorical numeric format. Because non-numeric 

categorical variables are not understood by 

algorithms [24]. Encoding operations are the methods 

used to perform these transformations. Commonly 

used encoding methods are one-hot, label, and race. 

The label encoding method assigns a unique number 

to each category. It is a preferred method, especially 

when working with ordered categorical variables. The 

model may misunderstand the category order when 

used on unordered categorical variables. In the one-

hot encoding method, each category is represented by 

creating a new column, and each data point receives 



 

 

a value of 1 only in the column of the relevant 

category and a value of 0 in the other columns. In this 

way, each category is represented wholly and 

independently. One-hot encoding is especially 

suitable for working with unordered categorical 

variables, and thanks to this method, the model learns 

categorical information effectively. This study 

applied the one-hot encoding method to categorical 

variables in the data set. The one-hot encoding 

method was applied to all categorical variables except 

the target variable with the help of a function. After 

distinguishing between dependent and independent 

variables, a one-hot encoding process was applied to 

the target variable. 

 

3.2.4. Feature selection 

Feature selection is the process of selecting a subset 

of the features in a data set or determining the weight 

of the features based on specific criteria. This process 

is carried out to improve the model's performance, 

eliminate unnecessary or low-impact features, or 

reduce the computational cost [25]. Feature selection 

makes the model more straightforward and effective 

and helps prevent overfitting by reducing complexity 

[26]. There are different methods for feature 

selection. The chi-square method was preferred 

within the scope of the study. This test helps purify 

the model from unnecessary features, ensuring that 

the model is more straightforward, more meaningful, 

and has higher generalization ability. When the chi-

square test was applied for each feature, the p-value 

was used to determine which features would be more 

effective in the modeling process. Features with low 

p-values significantly connect with the target variable 

and are added to the selected features. The p-value is 

evaluated based on a specified significance level 

(alpha level). Since the significance level is generally 

taken as 0.05 in the studies, this value was used first 

in the project. Then, the same processes were repeated 

with different values, and the results were compared. 

 

3.2.5. Normalization and standardization 

Normalization is scaling feature values to a range 

between 0 and 1. Standardization is accomplished by 

subtracting feature values from the mean and dividing 

by the standard deviation. Standardization makes 

feature values distributed more like a normal 

distribution. Standardization makes the model more 

resilient to outliers and large feature values. Both 

methods may be preferred depending on the structure 

of the dataset and the model used. Normalization and 

standardization increase model performance and 

contribute to faster and more effective operation of 

optimization algorithms. Therefore, using these 

techniques in the data preprocessing stage is essential 

to obtain more reliable and consistent results. 

The standardization process centers feature values 

around the mean and scales them by standard 

deviation units. In this way, feature values are 

distributed more similarly, and the model becomes 

more effective in training. Many data analysis 

libraries, such as a scikit-learn library, provide ready-

made functions for the standardization process. 

MinMax Scaling is a type of data normalization that 

refers to scaling feature values to a specific range. 

This method generally scales between 0 and 1 [27]. 

MinMax Scaling rescales property values based on 

minimum and maximum values. So, all property 

values fit within a specific range. The scikit-learn 

library in Python was used for MinMax Scaling in the 

project. Its formula is shown in Equation 2. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                          (2) 

In the study, both the standardization process and the 

MinMax Scaling process were applied. Observations 

have shown that the MinMax Scaling process gives 

better results. 

3.3. Classification 

The data set was divided in this study step, and the 

model to be used was determined. 

 

3.3.1. Partitioning the dataset 

Dividing the dataset is essential to detect and prevent 

problems of overfitting and underfitting, measure the 

model's overall performance, and obtain reliable 

results. Dividing the data set ensures the model can 

work accurately on real-world data and produce 

reliable results [28]. The method to be chosen may 

vary depending on the project's characteristics, the 

data set's size, and the problem type. A good dataset 

split ensures the model is reliable, generalizing, and 

can work successfully on real-world data. Within the 

scope of the study, the data set was divided into 

different proportions and tested. These divisions 

include various ratios such as 75% training, 25% 

testing, 70% training, 30% testing, and 80% training, 

20% testing. As a result of the experiments, the most 

effective results were obtained in the 80% training 

and 20% test section. 

 

3.3.2. Model 

This step involves determining the most appropriate 

model according to the study's aims and the dataset's 

characteristics. When deciding between different 

model types, the dataset's structure and the problem 

type are considered. The model selection process 

includes trial and error methods and aims to select the 

model that best suits the project's requirements. 

Performance metrics are determined, and the 

performance of the selected models is evaluated using 

these metrics. The model's overall performance is 

evaluated using tuning hyperparameters and cross-

validation techniques. 



 
 

 

LSTM models provide significant advantages thanks 

to their ability to effectively maintain long-term 

connections, successfully learn patterns that change 

over time, and remember important information 

through memory cells. Since these features increase 

the effectiveness of LSTM and allow it to be preferred 

in various application areas, especially in areas where 

dynamic and hidden patterns need to be detected, such 

as security threats, it was chosen to use LSTM neural 

network, which is one of the deep learning methods, 

in the study. First, the data was suitable for LSTM, 

and the time series window size was determined. 

Different layer numbers were tried by trial and error, 

and the model that gave the best results was selected. 

As a result, a 5-layer LSTM model was used. LSTM 

is a recurrent neural network (RNN) cell for time 

series analysis, natural language processing, and other 

sequential data problems. Unlike traditional neural 

networks, LSTM includes feedback connections that 

can process entire data sequences and individual data 

points. This unique cell structure was explicitly 

developed to manage information storage and transfer 

[29]. 

 

Figure 4. LSTM cell [30] 

The LSTM cell shown in Figure 4 consists of three 

essential components: forget gates, input gates, and 

output gates. These components perform different 

functions. The cell contains two states, Cell State and 

Hidden State. These states are constantly updated and 

carry past information to current time steps. The cell 

state represents long-term memory, while the latent 

state represents short-term memory. Each row of 

LSTM cells in each layer is fed with the output of the 

previous cell. This allows the cell to retrieve previous 

entries and sequence information. The following 

steps occur in each LSTM cell: 

 The forgetting gate is calculated. 

 The entrance door value is calculated. 

 Cell status is updated using the above two 

outputs. 

 The output (hidden state) is calculated using 

the output gate [30]. 

 

Figure 5. LSTM architecture [30] 

Forget gates determine the information to be deleted 

from the cell state. This is used to clear the cell state 

when historical information is no longer needed [30]. 

LSTM architecture is given in Figure 5. 

𝑓𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓)                           (3) 

Equation 3 In the forgetting gate equation, 

Xt = Input current timestamp 

U = Input weight 

Ht-1 = Hidden state of the previous timestamp 

Wf = Weight matrix for hidden state [30]. 

Then, the Sigmoid activation function is applied to 

determine which information will be forgotten [30]. 

Entry gates control the addition of new information. 

A candidate value processed by the sigmoid 

activation function and scaled by the tanh activation 

function is checked by this gate before being added to 

the cell state. 

𝑖𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑖 + 𝐻𝑡−1 ∗ 𝑊𝑖)                              (4) 

Eşitlik 4’deki Giriş kapısı denkleminde; 

Xt = Input at current timestamp t 

Uİ = Input weight matrix 

Ht-1 = Hidden state of the previous timestamp 

Wt = Hidden state weight matrix [30]. 

Output gates determine the information that emerges 

from the cell state. The tanh function normalizes the 

cell state processed by the sigmoid function and then 

goes through the control of the output gate [30]. The 

equation of the exit door, which is very similar to the 

previous two doors, is given in equation 5. 

 𝑜𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜)                            (5) 

Cells are a type of memory that saves information. 

This memory contains essential information from the 

past and is updated over time [30]. The equation of 

the cell state is given in Equation 6. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1, 𝑖𝑡 ∗ �̅�𝑡                                         (6) 



 

 

3.4. Performance Evaluation 

Performance evaluation is carried out with test data 

and is tested to determine the extent to which the 

created model meets the specified success criteria. 

Depending on the values obtained, the study can be 

terminated or returned to the first stage to review all 

stages. Evaluation with test data includes 

performance measures of the model such as accuracy, 

sensitivity, specificity, and sensitivity [31]. 

Evaluation helps check that the model avoids 

overfitting the training data; that is, it does not make 

learnings that are too specific to the training data. It is 

also essential to evaluate the generalization ability of 

the model to understand how it can deal with new and 

unknown data. Evaluation with test data is also used 

to identify potential errors or weaknesses in the 

model's performance. Understanding these errors 

guides developing and improving the model. Test 

data increases the model's reliability in application by 

determining how effective the model is in real-world 

scenarios. In this study, accuracy rate (Accuracy), 

sensitivity (Recall), loss function (Loss Function), 

and F1 score performance metrics were used to 

evaluate the classification success of the proposed 

model. A complexity matrix (Confusion Matrix) was 

created to calculate these performance metrics. In 

terms of performance metrics, metrics such as 

accuracy, sensitivity, recall, and F1 score are used to 

evaluate the performance of deep learning-based 

ransomware detection systems. Factors such as 

timing and resource utilization are also crucial 

because providing real-time protection and keeping 

the false alarm rate low is critical to minimizing risk. 

 

3.4.1. Confusion matrix 

The confusion matrix is a type of matrix used to 

evaluate the model's performance in classification 

problems. This matrix helps visualize different 

performance metrics by comparing the classification 

predictions made by a model to their actual classes. 

 

Figure 6. Confusion matrix [32] 

The confusion matrix consists of four basic 

categories: True Positives (TP), the number of 

samples the model classifies as true positives; true 

Negatives (TN), the number of samples the model 

classifies as true negatives; false Positives (FP), the 

number of samples the model classifies as positive 

when they are harmful, and False Negatives (FN) 

refer to the number of samples that the model 

classifies as negative but positive. 

3.4.2. Accuracy 

Accuracy is a performance metric that measures how 

accurately a classification model makes predictions. 

As seen in Equation 7, the accuracy rate expresses the 

ratio of correctly predicted samples to the total 

number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                               (7) 

The accuracy metric is usually expressed as a 

percentage. A high accuracy rate means the model 

classifies the data correctly, but more than the 

accuracy rate is required to reflect the model's 

performance fully. The accuracy rate can be 

misleading, mainly if the dataset consists of 

unbalanced classes, that is, if there are significant 

differences in the number of samples between classes. 

Other performance metrics and evaluation methods, 

such as classification matrix, should also be 

considered in this case. 

3.4.3. Recall 

Sensitivity evaluates the performance of 

classification models, measuring the ability to 

correctly classify all truly positive examples as 

positive. Sensitivity is especially considered when 

detecting a class, as it is essential and the potential 

cost of false negatives is high. In Equation 8, 

sensitivity expresses the ratio of true positives to the 

sum of total true positives and false negatives. 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   (8) 

Sensitivity indicates that the model recognizes truly 

positive examples and effectively identifies examples 

from this class.  

3.4.4. Loss function 

The loss function is a performance metric showing the 

difference between the model's actual and predicted 

outputs. The purpose of the loss function is to guide 

and optimize the learning process of the model. It 

produces a score that measures how close the model 

is to its targeted output. The choice of loss function 

significantly impacts the model's learning process and 

generalization ability. Choosing a correct loss 

function can help the model learn desired behaviors 



 
 

 

and generalize. For this reason, choosing the 

appropriate loss function for a specific problem and 

minimizing this function can increase the model's 

performance. 

 

3.4.5. F1 score 

The F1 score is the metric that balances the accuracy, 

precision, and sensitivity performance measurements 

of the classification model. It is used to evaluate the 

model's performance more comprehensively, 

especially in data sets with unbalanced classes. The 

F1 score formula is shown in Equation 9. 

 𝐹1 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                 (9) 

The F1 score is used to evaluate the model's overall 

performance with a single metric in classification 

problems, especially when there is an imbalance in 

the number of samples between classes. F1 score 

takes values between 0 and 1. 1 represents the best 

performance, and 0 represents the worst performance. 

A high F1 score indicates the model's ability to 

minimize false positives and negatives. Therefore, it 

is an important measure that shows the model's 

overall performance. The main reason why F1 Score 

is preferred over accuracy is the ability to evaluate 

model performance more balancedly in unevenly 

distributed datasets. Additionally, F1 Score is used in 

cases that cover all error types, not just False Negative 

or False Positive errors [32]. 

4. RESULT and DISCUSSION 

In this study, the LSTM neural network, one of the 

deep learning methods, was preferred. After model 

training was completed, classification success was 

evaluated with the test dataset. 

In this study, different LSTM models were created 

and tested according to various features, and the most 

effective model was selected. The selected model 

contains five repeating LSTM layers. The first LSTM 

layer has 256 units and produces output for 

consecutive time series. It also includes a 20% 

Dropout layer to reduce the risk of overfitting. The 

second layer has the same characteristics as the 512 

LSTM unit. The third and fourth layers have 256 and 

512 LSTM units operating on sequential time series. 

The fifth and final layer contains 256 LSTM units. 

The output layer of the model is designed to solve a 

multi-class problem, and the 'softmax' activation 

function is used in this layer. Once the model is 

created, parameters are selected to train the model. In 

the model step, 'Adam' was chosen as the optimizer 

because Adam is an effective optimization algorithm 

that combines the adaptive momentum method and 

the root mean square error (RMSprop) method. This 

algorithm can speed up the training process and allow 

the model to learn faster and more effectively. 

Additionally, 'categorical_crossentropy' was chosen 

as the loss function because it was stated that a multi-

class classification problem was addressed in the 

project. This loss function measures the differences 

between multiple classes and encourages the model to 

perform correct classification. Finally, 'accuracy' was 

chosen as the metric because this metric measures the 

accuracy of the model and is stated as one of the 

project's success criteria. 

Different epoch values were tested for the proposed 

model to learn the patterns in the data set and improve 

its generalization ability, and training was performed 

with 100 epochs. Again, different batch sizes were 

tried, and the batch size was 64 in the final model. 

These choices were made considering the project's 

specific requirements and the dataset's characteristics, 

thus ensuring the model was effectively trained and 

its performance evaluated. Evaluation of the F1 score, 

accuracy, and sensitivity success of the created model 

is shown in Table 1. 

 

Table 1. Model Performance Results 

Accuracy Recall F1 Score 

%99.3 0.99 0.99 

A comparison of the results of this study with other 

studies in the literature is presented in Table 2. Since 

the dataset used in this study has yet to be used in any 

previous study, the comparison in Table 2 was made 

with studies using different datasets. 

Table 2. Comparison of studies 

Study Dataset Methods Results 

(Accuracy) 

Zahoora et 

al.[6] 

VirusSh

are4  

Zero-shot 

Learning 

(ZSL) 

%92 

Sgandurra 

et al. [7] 

Unpubli

shed 

Dataset 

Lojistic 

Regressio

n 

 %96,34 

Hasan, 

M.; 

Rahman, 

M. 

RansHunt 

[8] 

VirusSh

are 

SVM Statik 

dataset: 

%93,5,  

Dinamic 

Dataset: 

%96,1, 

Hibrit 

Dataset: 

%97,1 

Abdulsala

mYa'u  et 

al. [9] 

Resilient 

Informat

ion 

Security 

System 

(RISS)  

Deep 

Neural 

Network 

%99.7 

Guo et al. 

[10] 

Unpubli

shed 

Dataset 

SVM %96.7 



 

 

Bae et al. 

[14] 

Unpubli

shed 

Dataset 

RF, LR, 

NB, SGD, 

KNN and 

SVM 

%98.65 

Manavi, 

F., 

Hamzeh, 

A [12] 

Unpubli

shed 

Dataset 

LSTM %93 

Moreira et 

al. [11] 

Unpubli

shed 

Dataset 

Random 

Forest 

%93.73  

Proposed 

Study 

Android 

Ransom

ware 

Detectio

n [16] 

LSTM %99.3  

The dataset contains 392034 rows and 85 columns 

and 10 types of Android Ransomware and Malicious 

traffic in all types. After the data preprocessing 

process, 292753 data remained. The types of 

Ransomware include SVpeng, PornDroid, Koler, 

RansomBO, Charger, Simplocker, WannaLocker, 

Jisut, Lockerpin, and Pletor and Benign. The 

confusion matrix only shows test results. 

 

Figure 7. Confusion matrix of the proposed model 

The confusion matrix is shown in Figure 7. 

The preferred loss function in the project is the 

Categorical cross-entropy loss function, which is 

suitable for a multi-class classification task. 

Categorical Cross entropy is a loss function that 

measures the difference between the classes predicted 

by the model and the actual labels. It calculates how 

accurate the model's predictions are and how many 

errors it makes by evaluating the difference in the 

probability distribution for each class. Categorical 

Crossentropy also shows optimal performance when 

used with the softmax activation function. This 

combination transforms the model's outputs into 

probability distributions, and the loss function 

evaluates how well these probabilities match the 

actual labels. As a result of training with 100 epochs, 

the loss value, accuracy, and val_loss values for the 

last 10 epochs are shown in Table 3. 

 

Table 3. Loss Function Evaluation of the Model 

Epoch Loss Accuracy Loss 

90 0.018 0.9944 0.01 

91 0.017 0.9948 0.0096 

92 0.017 0.9949 0.0089 

93 0.017 0.9949 0.0099 

94 0.017 0.9948 0.0102 

95 0.018 0.9943 0.017 

96 0.017 0.9946 0.0123 

97 0.016 0.9949 0.0093 

98 0.016 0.9949 0.008 

99 0.017 0.9947 0.015 

100 0.016 0.9949 0.0082 

The difference between loss and loss values shows 

how well the model fits the training dataset and 

performs its generalization ability on the validation 

dataset. Therefore, loss is generally the values that 

reflect training performance, and val_loss is the value 

that reflects validation performance. A good model 

should achieve low loss during training and exhibit 

good generalization ability on the validation set. 

The fact that the val_loss value is lower than the loss 

value (the better the val_loss value is) indicates that 

this model can successfully generalize the patterns 

from the training dataset to the test dataset. This 

indicates that the model is trying to better fit real-

world data without overfitting. The accuracy graph is 

the graph that shows the accuracy values on the 

training set and validation set during the training of 

the model. The loss graph is the graph that shows the 

loss values on the training set and validation set 

during the training of the model. These graphs are 

used to understand how well the model has learned 

and gained generalization ability. 



 
 

 

 

Figure 8. Accuracy graph of the model 

The accuracy graph of the model created in the study 

is shown in Figure 8. 

 

Figure 9. Loss graph of the model 

The loss graph of the model created in the study is 

shown in Figure 9. 

 

Figure 10. ROC curve of model 

The ROC curve of the model created in the study is 

shown in Figure 10. 

5. CONCLUSION 

In this study, ransomware attacks on mobile devices 

were audited with the Android Ransomware 

Detection dataset using the LSTM neural network, 

one of the deep learning methods. The proposed 

model was trained on a complex dataset containing 

ten different classes, and the F1 Score, accuracy, and 

sensitivity metric values show that the model 

successfully classifies ransomware types. In addition, 

low loss values in the training set of the model 

indicate that the learned patterns are comprehended 

and the model adapts appropriately to the training 

data. The low loss values obtained in the test data set 

indicate that the model's generalization ability is 

strong and can perform effectively for new data sets. 

Experimental studies show that deep learning 

techniques have an important role in cyber security 

and can be used in critical tasks such as detecting 

malicious software such as ransomware that threatens 

mobile applications. Future studies may further 

expand the potential in this field by including in-depth 

research in areas such as different deep learning 

architectures, larger data sets, and integrating 

different features into models. This study reveals that 

deep learning models have significant potential in 

terms of cyber security. 
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