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ABSTRACT 
Evaporation is a critical component in the management of water 

resources. Due to the complex interactions between various 

meteorological variables involved in evaporation calculations, numerous 

nonlinear models have been developed. The applicability and 

performance of these models vary depending on the specific climatic 

conditions of each region. This study evaluates the impacts of climate 

change on evaporation and precipitation patterns in the Quri Gol Wetland, 

located in East Azerbaijan, Iran, using machine learning models and 

climate change projections. Evaporation values for the present period 

(1991-2020) were estimated using six machine learning models: Random 

Forest (RF), Gradient Boosted Tree (GBT), Generalized Linear Model 

(GLM), Support Vector Machine (SVM), Gaussian Process Regression 

(GPR), and deep learning (DL). Future projections (2021-2050, 2051-

2080, 2081-2100) were based on the LARS-WG and SDSM models under 

three climate scenarios (RCP 2.6, RCP 4.5, and RCP 8.5). The 

performance of the machine learning models was assessed using 

statistical metrics including R2, Scatter Index (SI), Mean Absolute Error 

(MAE), Willmott’s Index (WI), and Kling-Gupta Efficiency (KGE). The 

RF and DL models provided the most accurate predictions, with RF 

achieving an R2 of 0.821 and an MAE of 0.902, while DL reached an R2 

of 0.822 and an MAE of 0.915 in the validation phase. Results from 

climate change projections indicated a significant increase in evaporation 

over the next century, with cumulative evaporation rising by up to 50.01% 

under the RCP 8.5 scenario by 2081-2100. In contrast, the projected 

increase in precipitation was much smaller, reaching a maximum of 16% 

in the same period. This imbalance between evaporation and precipitation 

highlights the potential for increasing water stress in the Quri Gol 

Wetland. The findings emphasize the need for adaptive water 

management strategies to mitigate the effects of increased evaporation 

and maintain ecological stability in the region. 
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1. Introduction 
 

Climate change is a critical challenge facing our planet in the 21st century, necessitating effective evaluation and prediction of 

its impacts, particularly on water resources. The adverse effects of climate change on water availability not only threaten 

ecosystems but also have significant environmental, economic, and social consequences. Each year, vast quantities of freshwater 

are stored in reservoirs; however, evaporation contributes to water quality degradation by increasing salinity levels. To address 

these challenges, understanding and accurately estimating surface water evaporation is crucial for sustainable water management 

in a changing climate. 

 

Various methods have been developed for estimating surface water evaporation, typically classified into four main categories: 

(1) Pan evaporation measurement, (2) water balance, (3) energy balance, and (4) mass transfer (Gianniou & Antonopoulos 2007). 

Among these, the pan evaporation method is often preferred due to its simplicity, cost-effectiveness, and relatively high accuracy 

compared to more complex energy balance methods (Hamel 2009; Anderson 2004). This preference underscores the importance 

of reliable evaporation estimation techniques, particularly in light of the escalating impacts of climate change on hydrological 

cycles. 

 

As noted, evaporation prediction is critical due to the increasing challenges posed by climate change and water resource 

depletion. Early research, such as Terzi (2010), employed genetic programming to model daily evaporation from Lake Egirdir, 

Turkey, showing its potential as a replacement for traditional methods. Kim et al. (2012) applied generalized regression neural 

networks (GRNN), support vector machines (SVM), and multilayer perceptron (MLP) to predict pan evaporation in arid and 

temperate zones, with artificial neural network (ANN) models outperforming empirical and multiple linear regression (MLR) 
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methods. Similarly, Guven & Kisi (2013) compared the Stephens-Stewart (SS) model, ANN, adaptive neuro-fuzzy inference 

system (ANFIS), fuzzy genetic (FG), and linear genetic programming (LGP) for estimating pan evaporation. They found LGP 

to be the most accurate model using meteorological data from Turkey. Goyal et al. (2014) extended the use of machine learning 

by comparing ANFIS, fuzzy logic, ANN, and least squares support vector regression (LS-SVR) for daily pan evaporation in 

India’s subtropical climate, with LS-SVR and fuzzy logic providing more accurate predictions. Kisi (2015) employed M5 Model 

Trees (M5Tree), multivariate adaptive regression splines (MARS), and LSSVM at Turkish stations, with MARS proving 

superior. Similarly, Keshtegar et al. (2016) modeled pan evaporation using meteorological inputs in Iran, with their proposed 

models outperforming M5Tree and ANFIS. Wang et al. (2017a) applied six heuristic computing techniques across various 

climates in China, finding MLP superior to other models in most cases. Lu et al. (2018) also demonstrated the effectiveness of 

gradient boosted decision trees (GBDT) for daily pan evaporation in China’s Poyang Lake Basin, with GBDT outperforming RF 

and M5Tree models. 

 

Further advancements in machine learning and hybrid techniques are evident in Ghorbani et al. (2018), who integrated MLP 

with the firefly algorithm (MLP-FFA) for daily pan evaporation, showing it outperformed single models. Zounemat-Kermani et 

al. (2019) explored optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), and others 

based on ANFIS, finding GA and PSO most effective. Shiri (2019) assessed ANN and ANFIS for pan evaporation in the U.S., 

recommending supplementary information for areas lacking local climatological data. Kisi & Heddam (2019) compared M5Tree, 

MARS, and MLP, with MARS proving to be the most accurate. Majhi et al. (2020) demonstrated that deep neural networks 

(DNN) provided superior accuracy in estimating daily pan evaporation in India, while Ghaemi et al. (2019) coupled M5Tree and 

MARS with the maximum overlap discrete wavelet transform (MODWT) to improve prediction performance in Turkey. Wang 

et al. (2020) introduced a hybrid technique combining kernel-based nonlinear Arps decline (KNEA) and the salp swarm 

algorithm (SSA) for evaporation prediction in China’s arid regions, showing SSA-KNEA’s high potential compared to MARS 

and M5Tree. Seifi & Soroush (2020) employed whale optimization algorithm (WOA), grey wolf optimization (GWO), and GA 

in combination with ANNs to predict daily pan evaporation across Iranian stations, finding hybrid models superior to single 

methods in most locations. Shaker Sureh et al. (2024) used data-driven models and atmospheric circulation indices to improve 

meteorological drought prediction in the Lake Urmia basin, finding that the M5 Tree model provided the most accurate results. 

 

Climate change significantly influences hydrological processes, as evidenced by various studies utilizing climate models to 

evaluate its effects. Zarghami et al. (2011) investigated the impact of climate change on runoff in East Azerbaijan province using 

General Circulation Models (GCM) alongside statistical data from six meteorological stations. By applying the LARS-WG 

method and simulating flow through artificial neural networks, they demonstrated a substantial projected reduction in flow across 

three basins in the region. Similarly, Helfer et al. (2012) examined temperature and evaporation trends in Australia, revealing 

that rising temperatures during spring and summer correspondingly increase annual average air temperature and evaporation 

rates. Goyal & Ojha (2014) utilized GCMs to assess the effects of climate change on temperature extremes and evaporation in 

the Rajasthan River Basin, India. Their analysis of historical data from 1948 to 2000 and projections for 2001 to 2100 indicated 

that the modified M5 decision tree model exhibited the highest accuracy in predicting both minimum and maximum temperature. 

 

In the context of Lake Urmia, Azizi et al. (2017) evaluated the role of climate change in reducing water levels, highlighting 

the combined effects of increased agricultural water demands, which contributed to a 46% reduction in total inflow, alongside a 

16% impact from climatic variables. Ahmadaali et al. (2018) further explored the consequences of climate change on sustainable 

agricultural development in the Lake Urmia region by employing the WEAP21 model to assess five water management scenarios. 

Their findings indicated that the scenario integrating improved crop patterns and enhanced irrigation efficiency yielded the most 

favorable environmental indicators for agricultural sustainability. These studies underscore the critical need for robust climate 

models to inform water resource management strategies amid the ongoing challenges posed by climate change. 

 

In light of the ongoing global climate crisis, this study aims to address the significant challenge of accurately predicting 

evaporation rates in sensitive ecological zones, specifically the Quri Gol Wetland in Iran. The primary goal is to assess the 

impacts of climate change on evaporation by employing GCM and various diffusion scenarios (A2, B1, A1B). Furthermore, the 

research investigates the efficiency of statistical downscaling methods (SDSM and LARS-WG) for microscale evaporation 

simulation, a crucial step in understanding localized climate impacts. In addition, this study develops advanced data mining 

methods such as Gaussian process regression and support vector machine, comparing their performance against other robust 

machine learning models like random forest, gradient boosted tree, generalized linear model, and deep learning methods. The 

evaluation of these models through multiple performance metrics represents a comprehensive effort to improve the accuracy and 

reliability of evaporation forecasts. 

 

The novelty of this study stems from the integration of advanced machine learning techniques with GCM projections to 

predict future evaporation under varying climate scenarios. Unlike previous studies that predominantly relied on empirical 

models or singular machine learning approaches, this research leverages a hybrid methodology that integrates GCM output with 

the best-performing machine learning model, offering a novel approach for regional climate adaptation strategies. This dual-

method comparison contributes to filling a gap in the existing literature where the combination of statistical downscaling and 

cutting-edge data mining techniques has not been thoroughly explored. By focusing on the Quri Gol Wetland, the study not only 

provides valuable insights for local environmental and water management but also offers a model that can be adapted to other 
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regions globally. This research advances the science of hydrology by offering a scalable framework that can enhance climate 

resilience planning, especially in regions vulnerable to evaporation changes driven by climate variability. 

 

2. Methods and Material 
 

2.1 Study area 

 

Quri Gol Wetland is located in the East Azerbaijan province of Iran, approximately 40 kilometers southeast of the provincial 

capital, Tabriz. Situated at an altitude of 1890 meters above sea level, the wetland covers an area of about 200 hectares. 

Geographically, it lies between 37°55′N latitude and 46°42′E longitude. This wetland is surrounded by the Sahand Mountain 

range, which significantly influences its climate and hydrology. 

 

Quri Gol Wetland is located in a semi-arid to arid climate zone, characterized by cold winters and warm, dry summers. The 

region experiences significant temperature variations due to its altitude and geographic location. Annual precipitation is relatively 

low, averaging around 300-400 mm, with the bulk of rainfall occurring in the spring and autumn months. Winter precipitation is 

primarily in the form of snow, contributing to the wetland’s water supply as it melts in the warmer months. The wetland is 

primarily fed by seasonal rainfall, snowmelt, and a few small streams originating from the surrounding mountains. Evaporation 

rates are high during the summer, significantly influencing the water balance of the wetland, especially under the pressures of 

climate change. 

 

Quri Gol is a freshwater, endorheic (closed basin) wetland, meaning it does not drain into any sea or ocean. Its hydrology is 

heavily dependent on the balance between precipitation, runoff, and evaporation. The wetland’s water level fluctuates seasonally, 

with higher levels in spring and early summer due to snowmelt and precipitation, followed by a reduction during the hot, dry 

summer months due to increased evaporation. One of the key environmental challenges facing Quri Gol Wetland is water loss 

through evaporation. Due to its relatively shallow depth and open surface area, the wetland is highly susceptible to evaporative 

water loss, which is exacerbated by rising temperatures and changing precipitation patterns associated with climate change. 

 

Quri Gol Wetland’s unique hydrological and climatic conditions, coupled with its ecological significance and vulnerability 

to climate change, make it a crucial area for studying evaporation and water resource management. Understanding the impacts 

of climate variability on this wetland will contribute valuable insights for managing similar ecosystems facing the pressures of 

changing environmental conditions. In this study, the meteorological data of maximum and minimum temperature, solar 

radiation, precipitation, and evaporation on a daily scale from Tabriz weather station were used over a 30-year period (1991-

2020) to provide a comprehensive understanding of the evaporation dynamics in the wetland. Figure 1 illustrates the study area, 

highlighting the geographical context of this research. 
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Figure1- Geographical context of the study area, (Sourced from ASTER GDEM) 
 

In this study, the input parameters for evaporation modeling were selected based on their correlation with evaporation rates, 

ensuring that the most relevant meteorological variables were chosen to optimize model accuracy. The combinations of input 

parameters are structured to progressively increase complexity, starting with the most basic meteorological data and expanding 

to include additional variables that influence evaporation. The first combination (I) uses maximum (Tmax) and minimum (Tmin) 

temperatures as inputs, which are essential for evaporation as temperature directly influences energy availability for the 

evaporation process. In the second combination (II), solar radiation (Radi.) is added to account for the additional energy input 

from the sun, a critical factor driving the evaporation rate. The third and most comprehensive combination (III) includes Tmax, 

Tmin, solar radiation, and precipitation (Prec.), which introduces the role of water availability and atmospheric moisture. The 

combination of these parameters was determined by evaluating their correlation coefficients with evaporation, ensuring that the 

selected variables have the highest predictive power for the evaporation process. This approach allows for a systematic 

exploration of how adding more meteorological data impacts the accuracy of the model, providing a thorough understanding of 

the most significant contributors to evaporation in the study area. The specific combinations of input variables are detailed in 

Table 1. 
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Table1- Input combinations for evaporation modeling using machine learning methods 

 

Combination number Input Output 

I Tmax, Tmin Evap. 

II Tmax, Tmin, Radi. Evap. 

III Tmax, Tmin, Radi., Prec. Evap. 

 

To strengthen the study’s robustness, LARS-WG (Long Ashton Research Station Weather Generator) and SDSM (Statistical 

DownScaling Model) models were implemented to estimate future meteorological data. The LARS-WG model generates 

synthetic weather data that retain the essential statistical characteristics of historical climatic observations on a daily scale. The 

SDSM model downscales large-scale atmospheric data to local meteorological variables, thereby increasing the spatial resolution 

of future climate projections. To ensure the models’ accuracy, a rigorous validation process was conducted, comparing the 

generated data to historical records using performance metrics. This validation demonstrated the models’ reliability in capturing 

key climatic trends. Additionally, an uncertainty analysis was performed to account for potential discrepancies arising from 

model assumptions, parameter choices, and the inherent variability in climate scenarios. By thoroughly discussing the 

implementation, accuracy, and uncertainties of the LARS-WG and SDSM models, the robustness of the results is underscored. 

The predictive meteorological data obtained from these models were subsequently utilized as inputs for the best-performing 

machine learning model, enabling precise calculations of future evaporation rates under various climate change scenarios. This 

comprehensive approach bolsters the credibility and reliability of our findings. 

 

2.2 Methods 

 

2.2.1 Random forest (RF) 

 

RF is a technique that utilizes an ensemble of tree-based algorithms to generate repeated forecasts for individual instances. Single 

decision trees often suffer from overfitting and limited generalizability. Minor changes in training data can significantly alter the 

structure of a decision tree (Quinlan, 1993). In contrast, RF is adept at learning complex patterns and accounting for the nonlinear 

relationships between explanatory and dependent variables. Additionally, RF’s ability to handle non-normally distributed data 

allows it to incorporate and integrate diverse data types in the analysis. 

 

The process of combining multiple decision trees is known as ensemble learning. An ensemble consists of several base 

learners, which are individual models typically generated from training data using base learning algorithms, such as decision 

trees, neural networks, or other methods. The generalizability of an ensemble model generally surpasses that of its individual 

base learners. Ensemble methods are particularly valued for their capacity to enhance the performance of weaker models 

(Schapire 1990). 

 

RF, an advanced method derived from decision tree algorithms, combines the predictions of multiple individual models by 

employing predefined rules. The fundamental principle of ensemble learning techniques is based on the hypothesis that they are 

more accurate than single-model training algorithms. This increased accuracy arises from the idea that a collection of predictive 

models outperforms any single model. Furthermore, ensembles amplify the strengths of individual models while simultaneously 

mitigating their weaknesses (Kostantis & Pintelas 2004). 

 

2.2.2 Gradient boosted tree (GBT) 

 

The GBT procedure is one of the best learning algorithms and performs categorization with excellent exactitude for many 

datasets. In this method, the trees are trained one after the other. Each individual tree is mainly instructed with records that were 

misclassified by the foregoing tree (Malohlava & Candel 2018). This causes the model to concentrate more on intricate cases 

and less on problems that are straightforward to forecast. Consequently, this approach yields superior outcomes compared to 

numerous methods, including the linear regression technique and the bagging approach (Breiman 2001). The basic idea of this 

method was proposed by Breiman (1999) as a method that can interpret the optimization algorithm on a suitable cost function. 

 

2.2.3 Support vector machine (SVM) 

 

Support vector machine is among the directed learning techniques applicable for both categorization and regression tasks. This 

approach is grounded in the statistical learning framework proposed by Vapnik (1995). SVM is a technique for binary 

categorization in any given feature space, making it an appropriate technique for forecasting issues (Vapnik 1998). The SVM 

fundamentally operates as a binary classifier that distinguishes classes with a linear separator. In this technique, the examples 

nearest to the decision margin are termed support vectors. These vectors define the formula of the decision margin Traditional 

intelligent modeling techniques, like artificial neural networks, typically aim to reduce the absolute size of the error or the 

cumulative sum of the squared errors of the training data, whereas SVM models employ the concept of minimal structural error. 

Using the concept of internal product multiplication, Vapnik demonstrated that the input vector x could first be transferred by a 

nonlinear conversion to a space with a large dimension, in which space performed the internal product and proved that if a kernel 

were symmetric, the condition of the theorem could be reviewed. Applying this kernel in a low-dimensional input space can 
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greatly reduce the product. If the input vector xi is mapped to the specific space by the nonlinear function Φ(x), the decision 

function will look like Eq (1): 

 

f(w.x)=w.Φ(x)+b                                                                                                                                                                           (1) 

 

Where; w and b are the function parameter vectors. The problem of nonlinear regression can be like the problem of 

optimization as Eq. (2) 

 

min 1/2 ∑_ij^1〖(∂_i-〖∂_i〗^*)(〗 ∂_j-〖∂_j〗^*)×⟨Φ(x_i).Φ(x_j)⟩ 

 

+ε∑_(i=1)^1〖(∂_i-〖∂_i〗^*)〗-∑_(i=1)^1〖y_i (∂_i=〖∂_i〗^*)〗                                                                                            (2) 

 

Express with the following limitations (Hamel 2009): 

 

∑_ij^1〖(∂_i-〖∂_i〗^*)=0〗 

0≤∂_i≤C,      i=1,2,…l 

0≤〖∂_i〗^*≤C,    i=1,2,…l                                                                                                                                                           (3) 

 

Where; ε is the error tolerances, ∂i and ∂i* are the LaGrange coefficients, C is the cost constant, and <Φ(xi).Φ(xj)> is the 

internal multiplication of the Φ(xi) and Φ(xj) functions. 

 

2.2.4 Gaussian process regression (GPR) 

 

Gaussian processes represent intricate machine learning algorithms employed for predictive modeling (Williams & Rasmussen 

1996) and classification (Williams & Barber 1998). The Gaussian process comprises a collection of random variables, any finite 

number of which adhere to Gaussian distributions. The Gaussian process is entirely defined by its mean function m(x) and its 

covariance function k(x, x’). It naturally extends the Gaussian distribution, wherein the mean and covariance are represented by 

a vector and a matrix, respectively (refer to Eq 4). 

 

 f∼GP(m,k)                                                                                                                                                                                     (4) 

 

Regression models utilizing Gaussian processes operate on the premise that observations are mutually informative. Gaussian 

processes specify priors directly within the function space, thereby extending Gaussian distribution principles, where the mean 

and covariance are represented as vectors and matrices, respectively. Unlike Gaussian distributions which apply to vectors, 

Gaussian processes apply to functions. Consequently, models based on Gaussian processes inherently comprehend functional 

and data interdependencies, obviating the need for a separate validation process for generalization. This inherent understanding 

facilitates the testing of GPR models. 

 

2.2.5 Deep learning (DL) 

 

Deep Belief Networks (DBNs) are recognized as some of the most powerful algorithms in the field of DL. These networks are 

constructed by combining multiple nonlinear transformations designed to provide a richer and more useful representation of 

existing data (Bengio 2009). As the number of layers in a neural network increases, the complexity of the optimization problem 

also escalates (Keyvanrad & Homayounpour 2015). To address this challenge, one of the training methods used for these 

networks involves unsupervised pre-training algorithms. In this approach, each layer is trained individually at first, followed by 

a precise and integrated fine-tuning of the entire network (Bengio 2009). In addition to structural differences, Deep Belief 

Networks and MLPs differ significantly in their training methodologies. For instance, employing backpropagation in training 

Deep Belief Networks can result in the vanishing gradient problem (Hinton & Osindero 2006). 

 

In Deep Belief Networks, the training process begins with a Restricted Boltzmann Machine (RBM). Once trained, the hidden 

layer of the RBM becomes the input for the next RBM. This sequential training continues, with each layer being trained based 

on the output of the previous layer (Glorot & Bengio 2010). 

 

2.2.6 Generalized linear model (GLM) 

 

GLMs are analytical tools for different types of data, and their mathematical relationships were developed by Nelder & Baker 

(1972). The theory of this model was developed by McCullagh (1984) and applied to hydrology and meteorology by Chandler 

& Wheater (2002). GLMs include a wide range of statistical models such as linear regression for normally distributed responses, 

logistic models for binary data, linear models for counting data, and many other useful statistical models through their general 

method. GLMs can be used when observations of the normal distribution do not exist and when other regression model methods 
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are not appropriate. This model’s effectiveness is satisfactory when compared to conventional modeling techniques (Pregibon & 

Hastie 2017). These models have been developed with the aim of reducing limiting assumptions in linear regression and can 

consider dependent variables from any probabilistic distribution of the exponential family (such as binomial distribution, gamma 

distribution, Poisson distribution, or normal distribution). In GLMs, instead of a response variable, a transformation of the 

response variable is modeled using a link function. 

 

2.2.7 Statistical down scaling model (SDSM) 

 

The statistical downscaling model employs a dual-step conditional resampling approach for downscaling purposes (Wilby et al. 

2007). Initially, this technique downscales predictor variables like temperature and precipitation through integrated regression 

and stochastic weather generation methods, followed by replication at the station’s site (Tatsumi et al. 2013). In fact, SDSM is 

a combination of the generative method of statistical meteorology and transformed functions. This model was first prepared by 

Wilby et al. (2002) under the title of version 2.1 in England. This approach relies on employing a mix of regression techniques 

and the creation of artificial weather data to achieve downscaling. In this model, the local climate is expressed by the macro-

scale climate of the region in the form R = F(X), where R represents the small-scaled local climate variable, X is an array of 

large-scale climatic factors, and F is a subordinate of determination conditional on X, which is obtained based on training and 

validation of historical data. This model is one of the most widely used downscaling statistical tools that has many applications 

in meteorological, hydrological, geographical, and environmental studies (Wilby & Harris 2006). Because in this method, large-

scale daily circulation templates, such as atmospheric humidity variables, are used on a station scale, it is used when quick and 

low-cost estimation of climate changes is needed, and in the case of random weather generators and methods of transformed 

functions, the results can be obtained. This program performs statistical downscaling in five separate steps (Wilby et al. 2002): 

1) Screening predictor variables, 2) Model calibration, 3) Feedback of producing observational data artificially, 4) Production of 

climate change scenarios, and 5) Troubleshooting test and statistical analysis. Figure 2 illustrates the SDSM model’s method for 

downscaling and creating climate scenarios. 

 

 
 
 

Figure 2- Process of downscaling and climate scenario generation by the SDSM model 
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2.2.8 Long ashton research station weather generator (LARS-WG) 

 

The Long Ashton Research Station Weather Generator model stands out as a renowned tool for producing stochastic weather 

data, offering greater utility through iterative computations, minimal data requirements, and straightforward, effective operation 

(Hay et al. 2000; Dibike & Coulibaly 2005; Kilsby et al. 2007). This model was first presented by Roscoe et al. (1991) and then 

amended and advanced by Semnoff et al. (1998) at the Langston Research Center. The main reason for producing this model 

was to surmount the weaknesses of the Markov chain. The 6th version of this model (LARS-WG6) was updated and published 

in 2018 to microscale the data of the fifth report (CIMP5). Currently, this model is used for two purposes: producing future daily 

data artificially and generating data for a time frame or stations without statistics. 

 

To generate synthetic data, the model compares long-term daily data (at least 30 years) related to the station (temperature, 

precipitation, sunshine hours) as inputs. If these two categories of data match, the model is able to produce future time series. 

For the second function, i.e., generating data for stations without information, the model uses the data of the closest station to 

the unknown station, checks these data and their statistical characteristics, and due to the same climatic characteristics of these 

two stations’ proximity to each other, uses the data of the known station and their statistical characteristics to generate data for 

the unknown station. Despite its simpler simulation process and data requirements, this microscaling model possesses a strong 

predictive capacity for climate change (Semenov & Stratonovitch 2010). 

 

This model’s inputs include daily average low and high temperatures, mean precipitation, and hours of sunlight per day. The 

process of predicting future data is done by this model in four stages: 

 

1. Basic data analysis: Analyzing the statistical characteristics of observational data for the purpose of establishing the 

statistical characteristics of the data. 

 

2. Initial data generation: Artificially generating data by the model in the base period and determining the statistical attributes 

of the generated artificial data. 

 

3. Statistical comparison: Matching and comparing the analytical characteristics of observational data and synthetic data. 

 

4. Production of daily data in the future: Using the statistical characteristics of basic data, greenhouse gas emission scenarios, 

and the output of GCM in the production of daily time series projected into the future with identical statistical characteristics of 

the basic data. 

 

2.3 Error evaluation indicators 

 

To evaluate the performance of various models, several statistical indicators were employed: the coefficient of determination 

(R2), mean absolute error (MAE) to assess the consistency between observed and modeled data, the scatter index (SI) to compare 

measured values with computed values, Willmott’s index (WI) to evaluate the agreement between observed and estimated data, 

and the Kling-Gupta efficiency (KGE), which provides a comprehensive measure of model performance by accounting for 

correlation, bias, and variability. The equations for these indicators are presented in Equations (5) to (10). 

 

R^2=1-(∑_(i=1)^N〖(O_i-P_i)^2〗)/(∑_(i=1)^N〖(O_i-¯O)^2〗)                                                                                                                  (5) 

 

MAE=(∑_(i=1)^N(|O_i-P_i |) )/N                                                                                                                                                  (6) 

 

SI=√((∑_(i=1)^N〖(O_i-P_i )^2 〗)/n)/¯O                                                                                                                                   (7) 

 

WI=1-[(∑_(i=1)^N〖(O_i-P_i)^2〗)/(∑_(i=1)^N(|P_i-¯O|+|O_i-¯O|)^2)]                                                                                                    (8) 

 

KGE=1-√((r-1)^2+(α-1)^2+(β-1)^2 )                                                                                                                                             (9) 

     

In equations (5) to (9), Oi and Pi represent the observed and predicted (calculated) values, respectively, while O̅ denotes the 

average of the observed values, and N is the total number of observations. For equation (9), which corresponds to the KGE, r is 

the linear correlation coefficient between the observed and simulated data, measuring the strength of their relationship. α 

represents the ratio of the standard deviation of the simulated data (σsim) to the standard deviation of the observed data (σobs), 

indicating variability. Additionally, β denotes the ratio of the mean of the simulated data to the mean of the observed data, 

representing the bias between the two datasets. 

 

The machine learning models employed in this study were developed using RapidMiner Studio 9.10 software, which provides 

a robust platform for data analysis and predictive modeling. 
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Figure 3 shows a schematic structure of methods adopted in this study. 

  

 

 
 

 
Figure 3- Schematic structure of methods adopted in this study 

   

3. Results 
 

In this study, daily evaporation values for the Quri Gol Wetland were estimated using six machine learning models: RF, GBT, 

SVM, GPR, GLM, and DL over a 30-year period (1991-2020). The input data included minimum and maximum temperatures, 

precipitation, and solar radiation, which were combined into three different scenarios. A 70-30% data split was applied, with 

70% of the data used for model calibration and 30% for validation. In addition, climate change models were employed to predict 

future meteorological parameters under three Representative Concentration Pathway scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) 

for future periods (2021-2050, 2051-2080, and 2081-2100). The estimated meteorological values from these climate change 

models were then used as inputs to the best-performing machine learning model to predict evaporation for future periods, and 

the results were compared to the observed evaporation values of the base period. 

 

In this section, the results first evaluate the performance of the machine learning models for the base period, followed by an 

assessment of the combined machine learning-climate change models. 

 

3.1 Performance of machine learning models 

 

Table 2 presents the statistical parameters, including the coefficient of determination, mean absolute error, scatter index, 

Willmott’s index, and Kling-Gupta efficiency for the machine learning models during the calibration phase. 
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Table 2- Statistical parameters (R2, SI, MAE, WI and KGE) values of studied machine learning models in calibration section 

 

Method Scenario R2 SI MAE WI KGE 

RF 

I 0.811 0.425 0.879 0.946 0.152 

II 0.829 0.405 0.838 0.951 0.143 

III 0.839 0.394 0.822 0.954 0.139 

GBT 

I 0.808 0.540 1.391 0.874 0.448 

II 0.833 0.523 1.349 0.883 0.441 

III 0.839 0.519 1.339 0.885 0.439 

GLM 

I 0.720 0.517 1.221 0.915 0.215 

II 0.729 0.508 1.192 0.919 0.208 

III 0.730 0.507 1.191 0.919 0.207 

SVM 

I 0.755 0.485 1.005 0.930 0.175 

II 0.759 0.481 0.996 0.931 0.171 

III 0.761 0.479 0.993 0.932 0.170 

GPR 

I 0.751 0.489 1.019 0.929 0.174 

II 0.736 0.507 1.053 0.924 0.175 

III 0.755 0.489 1.040 0.928 0.176 

DL 

I 0.771 0.466 0.979 0.934 0.180 

II 0.776 0.462 0.988 0.934 0.186 

III 0.779 0.459 0.964 0.938 0.161 

 

Table 2 shows the performance of the machine learning models during the calibration phase across three different scenarios. 

For all methods, the results demonstrate relatively strong performance across the statistical metrics, with RF and GBT generally 

showing higher R2 values, indicating better model fit during the calibration phase. Particularly, the RF method achieves the 

highest R2 values across all three scenarios, reaching a maximum of 0.839, which suggests a strong correlation between predicted 

and actual evaporation rates. Additionally, the DL model exhibits competitive performance, with R2 values ranging from 0.771 

to 0.779, showing its ability to capture complex patterns in the data. Moreover, WI values for all methods are consistently above 

0.90, indicating high agreement between observed and predicted values. However, models such as the GLM and SVM show 

slightly lower performance, with higher SI and MAE values. Despite this, the KGE values indicate that all models, while varied 

in their predictive abilities, perform reasonably well, with RF and GBT models being the most effective overall during 

calibration. Table 3 presents the statistical parameters (R2, SI, MAE, WI, and KGE) for the machine learning models in the 

validation phase, providing an assessment of the models’ performance on unseen data. This phase of the analysis is crucial as it 

reflects the models’ ability to generalize beyond the training data, ensuring they are reliable for real-world applications such as 

evaporation prediction. 

 
Table 3- Statistical parameters (R2, SI, MAE, WI and KGE) values of studied machine learning models in validation section 

 

Method Scenario R2 SI MAE WI KGE 

RF 

I 0.809 0.426 0.924 0.943 0.196 

II 0.820 0.417 0.902 0.946 0.200 

III 0.821 0.414 0.902 0.946 0.196 

GBT 

I 0.802 0.558 1.489 0.861 0.478 

II 0.810 0.554 1.478 0.863 0.478 

III 0.814 0.550 1.471 0.865 0.475 

GLM 

I 0.764 0.473 1.190 0.927 0.226 

II 0.775 0.467 1.159 0.928 0.237 

III 0.774 0.467 1.160 0.928 0.237 

SVM 

I 0.799 0.436 0.956 0.943 0.170 

II 0.807 0.428 0.933 0.945 0.180 

III 0.809 0.426 0.932 0.945 0.179 

GPR 

I 0.770 0.471 1.029 0.931 0.213 

II 0.746 0.500 1.090 0.922 0.231 

III 0.766 0.477 1.044 0.927 0.233 

DL 

I 0.816 0.420 0.932 0.944 0.206 

II 0.813 0.433 0.972 0.938 0.239 

III 0.822 0.411 0.915 0.947 0.193 

 

According to Table 3, in the validation phase, RF and DL emerge as the best-performing models across all statistical 

parameters. Both models maintain high R2 values, with RF showing values between 0.809 and 0.821, and DL performing 

similarly well with R2 values ranging from 0.813 to 0.822. This indicates that both models exhibit a strong correlation between 

predicted and observed values, confirming their ability to accurately predict evaporation rates. Additionally, the low SI values 

for both models, ranging from 0.411 to 0.426, demonstrate minimal error spread, which further supports their precision. These 

low SI values indicate a tight clustering of predicted data around the observed values, highlighting the high predictive capability 

of these models in evaporation forecasting. 
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The MAE values, which measure the average magnitude of the errors between predicted and observed values, also favor RF 

and DL models. DL models consistently record low MAE values between 0.915 and 0.972, while RF models show slightly lower 

error margins, ranging from 0.902 to 0.924. These results suggest that DL and RF are particularly adept at minimizing the 

deviation between predicted and observed evaporation values, making them highly reliable for accurate predictions. Furthermore, 

the WI values for these models are exceptionally high, with RF scoring between 0.943 and 0.946 and DL between 0.938 and 

0.947. The near-perfect WI values indicate strong agreement between the predicted and observed values, reinforcing the 

reliability of these models. 

 

A significant feature of the analysis is the KGE, which combines aspects of correlation, variability, and bias to offer a 

comprehensive assessment of model performance. RF and DL again demonstrate balanced performance, with KGE values 

ranging from 0.193 to 0.239, indicating that these models not only predict evaporation accurately but also capture the overall 

variability and distribution of the data. 

 

On the other hand, models like GBT and GLM show moderate performance. While the R2 values for GBT (0.802-0.814) and 

GLM (0.764-0.775) indicate reasonable correlation, they fall short of the performance seen in RF and DL. This limitation is 

further reflected in their SI values, where GBT shows higher error spreads (0.550-0.558), signalling reduced precision. Also, the 

MAE values for GBT (1.471-1.489) are significantly higher than those for RF and DL, indicating that GBT struggles to minimize 

errors as effectively. Similarly, GLM’s MAE values (1.159-1.190) show a lower degree of accuracy compared to the top models. 

Despite these weaknesses, GLM maintains relatively high WI values (0.927-0.928), indicating that while it may struggle with 

error minimization, it still demonstrates reasonable agreement between predicted and observed values. 

 

SVM and GPR models occupy an intermediate position in terms of performance. Both models perform reasonably well, with 

R2 values close to 0.8, which suggests they can adequately capture the relationship between the inputs and evaporation. SVM 

models perform particularly well in terms of error minimization, with low MAE values (0.932-0.956) and SI values comparable 

to those of RF and DL. However, both SVM and GPR models exhibit slightly lower KGE values, indicating potential challenges 

in balancing bias and variability. 

 

With a general review of the results, RF and DL emerge as the most reliable models for predicting evaporation, demonstrating 

superior performance across all metrics. The best RF model, particularly in Scenario III, displayed a high R2 (0.821), low SI 

(0.414), and a minimal MAE (0.902). Similarly, the DL model, especially in Scenario III, achieved the highest R2 (0.822), a low 

SI (0.411), and the lowest MAE (0.915). Both models offer accurate, consistent, and reliable predictions, with low error margins 

and strong agreement between predicted and observed values. The slightly weaker performance of GBT and GLM suggests that 

these models may not be as suited for tasks requiring high precision in evaporation prediction, though they still offer a reasonable 

degree of accuracy. SVM and GPR, while not as robust as RF or DL, offer solid performance but may require further refinement 

to handle variability and bias more effectively. Overall, the validation results highlight the capability of machine learning models 

to accurately predict complex hydrological processes like evaporation, with RF and DL proving to be the most effective 

approaches for this task. 

 

The comparison of calibration and validation results reveals the consistency and reliability of the machine learning models 

across different phases of evaluation. During the calibration phase, all models demonstrated satisfactory performance, with RF 

and DL models emerging as the most effective, achieving higher values for metrics such as R2, WI, and KGE, alongside lower 

MAE and SI. This strong performance was maintained in the validation phase, where RF and DL models continued to exhibit 

superior predictive accuracy, though there was a slight decrease in performance compared to the calibration phase, which is 

common in model testing on unseen data. The consistent performance across both phases indicates that these models can 

generalize well beyond the training data, offering reliable predictions even under new conditions. Other models, such as GBT 

and GLM, showed moderate performance, particularly in validation, where a slight increase in MAE and SI was observed, 

signaling that they may be more prone to overfitting. Overall, as stated above, the results indicate that RF and DL are the most 

robust and adaptable models for predicting evaporation. Figure 4 provides a comparative visual representation of the simulated 

and observed evaporation values for the superior scenarios across all six machine learning models. The primary aim of this figure 

is to evaluate how effectively each model captures the temporal dynamics of evaporation rates over the study period. 
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Figure 4- Variation diagrams of simulated and observed evaporation values for the superior scenarios in all six methods 

 

As illustrated in Figure 4, the alignment between the observed and simulated values demonstrates the ability of each model 

to track real-world variations in evaporation. Both RF and DL show strong agreement with the observed data, reflecting minimal 

deviations and closely following the seasonal fluctuations of evaporation. This is particularly significant, as it indicates that these 

models can accurately capture the complex nonlinear interactions between meteorological variables that influence evaporation. 

The consistent performance of RF and DL, with their ability to maintain accuracy across different time scales and scenarios, 

underscores their robustness and reliability in modeling evaporation processes. In contrast, models like GLM and SVM exhibit 

more noticeable discrepancies between observed and simulated values. This suggests that these methods may struggle with 

capturing the full complexity of evaporation patterns, particularly during peak evaporation periods or abrupt changes in climatic 

conditions. The larger deviations observed with these models could be attributed to their relatively linear nature (in the case of 

GLM) or their sensitivity to specific parameter choices (in the case of SVM), which may limit their flexibility in modeling 

evaporation dynamics. Furthermore, the overall trend illustrated in Figure 4 highlights the seasonal and annual fluctuations in 

evaporation, with most models effectively capturing the general trend. However, the precision and fit to the data vary depending 

on the model, with RF and DL demonstrating superior performance in both accuracy and consistency. This visual comparison 

not only reinforces the quantitative findings from the calibration and validation phases but also provides a clear indication of the 

predictive strength of RF and DL, especially in handling seasonal variations and sudden shifts in evaporation rates. The figure 

thus serves as a critical tool for assessing model accuracy in simulating evaporation, offering valuable insights into the strengths 

and limitations of each approach. The strong performance of RF and DL is particularly noteworthy, as these models demonstrate 

the capacity to adapt to the inherent variability of evaporation, making them well-suited for hydrological applications in climate-

sensitive regions. Figure 5 presents the distribution diagrams comparing the simulated and observed evaporation values for the 

superior scenarios using the six machine learning models. This figure provides a more detailed statistical view by focusing on 

how well the models replicate the distributional characteristics of the observed data, particularly in terms of variability, spread, 

and the prediction of extreme values. 
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Figure 5- Distribution diagrams of simulated and observed evaporation values for the superior scenarios in all six methods 

 

The distribution plots allow for a deeper examination of the models’ ability to capture not just the mean values but also the  

full range of evaporation rates. As shown in Figure 5, RF and DL once again show a strong alignment with the observed 

distributions, demonstrating their capability to not only model average evaporation levels but also to accurately reflect the 

variability and extremes within the dataset. This indicates that both models have a high degree of generalizability and are able 

to predict not only typical evaporation rates but also more extreme values, which are often critical for understanding hydrological 

changes under climate stress. The closeness of the simulated distributions to the observed ones for RF and DL suggests that these 

models effectively handle the inherent variability in evaporation data, including the tail ends of the distribution where extreme 
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evaporation values may occur. This ability to model variability is crucial in climate change projections, as shifts in extreme 

values can have significant implications for water resource management. RF and DL’s proficiency in capturing both central 

tendencies and extreme values enhances their applicability for real-world hydrological forecasting and management. Other 

models, such as GLM and GBT, display greater deviations from the observed distribution shapes. This suggests that while these 

models may perform adequately for predicting mean evaporation values, they are less adept at capturing the full range of data, 

particularly at the higher and lower ends of the distribution. The larger spread observed in the GBT model’s predictions, for  

instance, indicates that it may struggle with outlier predictions, making it less reliable in scenarios where accurate modeling of 

extremes is necessary. Similarly, GLM’s inability to capture nonlinear relationships may contribute to its reduced accuracy in 

reflecting the variability of evaporation values. 

 

By visually comparing the range and distribution of evaporation rates, Figure 5 provides essential insights into the models’ 

ability to handle variability, which is a critical aspect of hydrological forecasting. The clear superiority of RF and DL in these 

distribution diagrams corroborates earlier quantitative results, reaffirming their role as the most effective models for evaporation 

prediction in this study. The results also highlight the need for caution when using models such as GLM and GBT in applications 

where the prediction of extreme or highly variable values is essential. This distribution-based evaluation adds another layer of 

depth to the overall analysis, providing further evidence that RF and DL models are not only effective in general prediction 

accuracy but also in handling the distributional complexities of evaporation data, making them suitable for diverse hydrological 

applications under climate change scenarios. 

 

3.2. Future projections of evaporation and precipitation 

 

Table 4 provides a detailed projection of evaporation values for future periods (2021-2050, 2051-2080, and 2081-2100) using 

two climate change models, LARS-WG and SDSM, under three different Representative Concentration Pathways (RCP 2.6, 

RCP 4.5, and RCP 8.5). These models provide critical insight into how climate change is expected to affect evaporation rates in 

the study area. 

 

Based on the data presented in Table 4, in the period from 2021 to 2050, the LARS-WG model shows a considerable increase 

in average evaporation values across all scenarios compared to the base period (1991-2020). For example, under the RCP 2.6 

scenario, evaporation is projected to increase by 30.40%, while under RCP 8.5, this rise reaches 31.30%. The cumulative 

evaporation values reflect this trend, showing a significant increase, with the largest being 10565.5 mm under RCP 8.5. On the 

other hand, the SDSM model also predicts an increase in evaporation, though to a lesser extent than LARS-WG. The SDSM 

model shows a rise of 5.08% to 11.11% in evaporation across the RCP scenarios, with the RCP 8.5 scenario showing the highest 

cumulative evaporation increase of 3749.65 mm. Although both models project rising evaporation levels, the LARS-WG model 

consistently predicts a more substantial increase than the SDSM model. The next period, 2051-2080, follows the same trend, but 

the rate of increase in evaporation becomes more pronounced. The LARS-WG model shows that cumulative evaporation 

increases between 33.97% (RCP 2.6) and 41.79% (RCP 8.5). In this period, the average evaporation values rise steadily as well, 

with a noticeable increase in cumulative evaporation for all scenarios, particularly in the RCP 8.5 scenario, where it reaches 

14109.2 mm. Similarly, the SDSM model continues to project an increase in evaporation, though still at a lower magnitude than 

LARS-WG. In this period, the SDSM model estimates an increase of between 11.08% and 21.49% in average evaporation across 

the three scenarios, with cumulative values reaching up to 7253.03 mm increase under RCP 8.5. By the final period (2081-2100), 

the evaporation values predicted by both models have increased significantly compared to the base period, with LARS-WG 

projecting an even more substantial rise in evaporation. Cumulative evaporation values increase by 32.63% (RCP 2.6) to 50.01% 

(RCP 8.5), reflecting the growing impact of climate change. Under RCP 8.5, evaporation levels reach 33870.8 mm, 

demonstrating the severity of expected changes. Meanwhile, the SDSM model also shows continued increases, with cumulative 

evaporation values rising by 15.95% (RCP 2.6) to 30.14% (RCP 8.5). While the increase in evaporation projected by SDSM 

remains lower than that of LARS-WG, the rise is still substantial, signaling potential challenges for water management in the 

region. Overall, both models predict a significant rise in evaporation over the next century, though LARS-WG consistently 

projects higher rates, especially under the more extreme climate scenarios (RCP 8.5). This projection of substantial evaporation 

increases highlights the potential for intensified water stress and the need for adaptive strategies in water management. 
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Table 4- Statistical values of evaporation for future time periods using LARS-WG and SDSM models 

 

Method Period Scenario Xmax Xmin Xmean SX SP - SO 

Observations 1991-2020 --- 11.500 0.000 3.083 33758.2 --- 

2001-2020 --- 11.500 0.000 3.093 22579.4 --- 

LARS-WG 2021-2050 RCP 2.6 8.002 0.114 4.020 44020.2 +10262 

RCP 4.5 7.940 0.114 4.002 43816.5 +10058.3 

RCP 8.5 7.932 0.114 4.048 44323.7 +10565.5 

2051-2080 RCP 2.6 8.000 0.114 4.130 45226.1 +11467.9 

RCP 4.5 8.488 0.114 4.207 46068.3 +12310.1 

RCP 8.5 8.002 0.114 4.371 47867.4 +14109.2 

2081-2100 RCP 2.6 7.907 0.114 4.102 29948.0 +7368.62 

RCP 4.5 8.492 0.114 4.307 31440.6 +8861.21 

RCP 8.5 8.002 0.114 4.640 33870.8 +11291.4 

SDSM 2021-2050 RCP 2.6 9.532 0.130 3.240 35474.3 +1716.06 

RCP 4.5 9.250 0.130 3.233 35406.8 +1648.57 

RCP 8.5 9.118 0.130 3.425 37507.9 +3749.65 

2051-2080 RCP 2.6 8.696 0.130 3.424 37498.1 +3739.89 

RCP 4.5 8.758 0.130 3.568 39072.3 +5314.14 

RCP 8.5 9.469 0.130 3.745 41011.2 +7253.03 

2081-2100 RCP 2.6 9.935 0.130 3.586 26180.9 +3601.53 

RCP 4.5 8.842 0.130 4.025 29384.1 +6804.74 

RCP 8.5 8.958 0.130 3.914 28569.0 +5989.61 

 

Table 5 provides a projection of precipitation values for the same future periods (2021-2050, 2051-2080, and 2081-2100) 

using the LARS-WG and SDSM models under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios.  

 

As detailed in Table 5, unlike the substantial increases in evaporation presented in Table 4, the increase in precipitation is 

much smaller and varies across the models and scenarios. During the period from 2021 to 2050, the LARS-WG model shows 

relatively minor changes in cumulative precipitation. Under RCP 2.6, the cumulative precipitation slightly decreases by 106.78 

mm, while in the more severe RCP 8.5 scenario, it increases by 530.52 mm, reflecting an increase of about 7%. This is far less 

than the concurrent rise in evaporation. The SDSM model similarly projects only modest changes in precipitation during this 

period, with cumulative precipitation increases ranging from 34.12 mm (RCP 2.6) to 321.72 mm (RCP 8.5). Although these 

projections indicate a slight increase in rainfall, the gap between rising evaporation and precipitation is stark, suggesting potential 

challenges for water resources in the future. For the 2051-2080 period, the LARS-WG model shows a further increase in 

precipitation under RCP 2.6 and RCP 8.5, but again, the changes remain modest in comparison to evaporation. Cumulative 

precipitation increases range from 510.12 mm (RCP 2.6) to 634.72 mm (RCP 8.5), representing an increase of approximately 

8%. Similarly, the SDSM model shows a slight increase in cumulative precipitation, with a maximum increase of 330.52 mm 

under RCP 2.6. These results indicate that while precipitation will rise, the increase is not proportional to the expected rise in 

evaporation, leading to potential water deficits in the region. By the 2081-2100 period, the discrepancy between evaporation and 

precipitation becomes more pronounced. The LARS-WG model predicts cumulative precipitation increases of 156.21 mm (RCP 

2.6) to 775.61 mm (RCP 8.5), representing a maximum increase of 16% under RCP 8.5. However, this increase is far lower than 

the corresponding rise in evaporation, which reaches 50.01% under the same scenario. The SDSM model also shows only slight 

increases in precipitation, with the highest cumulative increase being 234.51 mm under RCP 2.6. In the more severe RCP 8.5 

scenario, the model even predicts a slight decrease in cumulative precipitation (-217.59 mm), further highlighting the growing 

gap between precipitation and evaporation. 
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Table 5- Statistical values of precipitation for future time periods using LARS-WG and SDSM models 

 
Method Period scenario Xmax Xmin Xmean SX SP – SO 

Observations 
1991-2020 --- 46.4 0 0.668 7316.68 --- 

2001-2020 --- 46.4 0 0.662 4833.89 --- 

LARS-WG 

2021-2050 

RCP 2.6 46.8 0 0.658 7209.90 -106.78 

RCP 4.5 33 0 0.685 7501.00 +184.32 

RCP 8.5 37 0 0.717 7847.20 +530.52 

2051-2080 

RCP 2.6 41.2 0 0.715 7826.80 +510.12 

RCP 4.5 41.2 0 0.654 7161.60 -155.08 

RCP 8.5 38.1 0 0.726 7951.40 +634.72 

2081-2100 

RCP 2.6 37.2 0 0.684 4990.10 +156.21 

RCP 4.5 40.2 0 0.701 5117.80 +283.91 

RCP 8.5 42.3 0 0.768 5609.50 +775.61 

SDSM 

2021-2050 

RCP 2.6 38.1 0 0.671 7350.80 +34.12 

RCP 4.5 39.9 0 0.676 7402.80 +86.12 

RCP 8.5 33.5 0 0.698 7638.40 +321.72 

2051-2080 

RCP 2.6 38.9 0 0.698 7647.20 +330.52 

RCP 4.5 43.1 0 0.674 7377.20 +60.52 

RCP 8.5 34.6 0 0.686 7516.90 +200.22 

2081-2100 

RCP 2.6 38.1 0 0.694 5068.40 +234.51 

RCP 4.5 36.2 0 0.688 5019.60 +185.71 

RCP 8.5 32.3 0 0.632 4616.30 -217.59 

 

The data in Table 5 indicate that while precipitation is expected to increase slightly under most scenarios, these increases are 

far outweighed by the substantial rise in evaporation. This imbalance between rising evaporation and relatively stable or slightly 

increasing precipitation suggests that the region may face growing water stress in the future, as the rate of water loss due to 

evaporation will likely exceed the rate of water replenishment through precipitation. This situation underscores the potential for 

dehydration in the study area and highlights the need for proactive water management strategies to mitigate the effects of climate 

change. Additionally, these findings indicate that further research is required to fully understand the complex interactions 

between evaporation and precipitation in the region and to develop comprehensive plans for managing water resources under 

future climate conditions. 

 

Figure 6 illustrates the time distribution of observed and calculated evaporation values over the future periods using the 

LARS-WG and SDSM models, providing a critical comparative analysis between historical data (1991-2020) and model 

predictions for the future periods of 2021-2050, 2051-2080, and 2081-2100 under various climate scenarios (RCP 2.6, RCP 4.5, 

and RCP 8.5). The primary aim of this figure is to track how evaporation is expected to change over time in response to climate 

change, as projected by both models. 

 

Figure 6. Time distribution diagram of observed and calculated evaporation values for future time periods using LARS-WG 

and SDSM models 

 

Figure 6 highlights a clear upward trend in evaporation rates, with both models consistently showing an increase in 

evaporation for future time frames, particularly under the RCP 8.5 scenario, which represents a more extreme climate change 

projection. The calculated evaporation values for both LARS-WG and SDSM align closely with historical observations for the 

initial period, indicating that both models are well-calibrated for the region. As the future periods progress, however, the models 

begin to diverge slightly, with the LARS-WG model projecting somewhat higher evaporation values compared to the SDSM 

model. This discrepancy may be attributed to differences in how each model handles various climatic factors such as temperature, 

solar radiation, and humidity. The LARS-WG model shows a steeper increase in evaporation, particularly in the second half of 

the century (2051-2100), which suggests that this model may be more sensitive to extreme climate change scenarios. This is 

important for understanding long-term shifts in water balance, as rising evaporation could exacerbate water shortages in the 

region. On the other hand, the SDSM model exhibits a more moderate increase in evaporation values, potentially reflecting a 

more conservative response to climate variables. Overall, the time distribution diagrams in Figure 6 underscore the robustness 

of both models in predicting long-term shifts in evaporation patterns. These results highlight the urgent need for adaptive water 

resource management strategies to mitigate the impacts of rising evaporation in the Quri Gol Wetland region, as projected by 

both models. 
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Fig 6- Time distribution diagram of observed and calculated evaporation values for future time 

  

Figures 7 and 8 provide comparative visual analyses of future climate projections using both the LARS-WG and SDSM 

models. Figure 7 presents violin plots, combining the advantages of box plots and density plots, to offer a statistical comparison 

of observed and calculated evaporation values. These plots comprehensively visualize the distribution, density, and variability 

of evaporation data across different time periods and climate scenarios. Figure 8, on the other hand, uses barplots to compare 

observed and calculated precipitation values, providing a visual representation of precipitation predictions under varying RCP 

scenarios. Together, these figures highlight the differences in projected evaporation and precipitation trends, providing a clear 

depiction of their statistical characteristics. 
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Figure 7- Violin plots of observed and calculated evaporation values for future time periods using LARS-WG and SDSM 

models 
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Figure 8- Barplots of observed and calculated precipitation values for future time periods using LARS-WG and SDSM 

models 

 

According to Figure 7, the width of the violin plots represents the density of data points at various levels of evaporation, with 

wider sections indicating a higher concentration of values. The observed evaporation values, representing the historical period, 

display a relatively compact distribution, indicating lower variability in evaporation during the historical period. In contrast, the 

future predictions show broader distributions, particularly under the more severe climate scenarios (RCP 4.5 and RCP 8.5), 

indicating greater variability and uncertainty in future evaporation rates. The violin plots reveal that LARS-WG tends to predict 

slightly higher variability in evaporation values compared to SDSM, especially in the upper quartiles. This suggests that LARS-

WG is more sensitive to extreme events and may be better at capturing the tails of the distribution, where extreme evaporation 

values occur. The SDSM model, while still showing an increase in variability compared to historical data, exhibits a narrower 

range of predicted values, implying that it projects more conservative changes in evaporation. These plots are critical in 

understanding the uncertainty associated with future projections, as the broader distribution of values in both models reflects the 

increased variability in climate-driven evaporation. The higher density of extreme evaporation values in LARS-WG, particularly 

under RCP 8.5, emphasizes the potential for more frequent and intense evaporation events, which could have significant 

implications for water availability in the region. The violin plots in Figure 7 serve as a visual confirmation of the increased risk 

of hydrological extremes due to climate change, reinforcing the need for proactive water management policies to address 

potential water shortages in the Quri Gol Wetland. 

 

As revealed in Figure 8, the observed data, representing the historical period (1991-2020), show a relatively stable range of 

precipitation values. This suggests that historical precipitation levels have been relatively consistent, which provides a baseline 

for comparing future projections. Both models predict an increase in variability for future precipitation values, but the magnitude 

of the change is far less pronounced compared to the increases in evaporation depicted in Figures 6 and 7. The LARS-WG model 

predicts a slightly higher median precipitation value compared to SDSM, particularly under the more severe climate scenarios 

(RCP 4.5 and RCP 8.5). This could indicate that LARS-WG is more optimistic about potential increases in precipitation. 

However, the overall range of projected precipitation values remains relatively limited, and the barplots for both models indicate 

that extreme precipitation events are expected to be less prominent compared to extreme evaporation trends. The SDSM model 

demonstrates a more consistent range, with a smaller spread of predicted values, suggesting a relatively stable projection for 

future precipitation levels under various scenarios. Despite the slight increases in precipitation shown in both models, the changes 

are marginal when compared to the substantial increases in evaporation. This imbalance between rising evaporation and relatively 

stable precipitation levels suggests that the Quri Gol Wetland region could experience increased water deficits in the future. The 

barplots in Figure 8 reinforce the notion that precipitation alone will not be sufficient to counterbalance the expected rise in 

evaporation, emphasizing the need for integrated water resource management strategies that account for both increasing 

evaporation rates and limited precipitation changes. 

 

4. Discussion 
 

This study provides a comprehensive evaluation of how climate change may impact evaporation and precipitation dynamics in 

the Quri Gol Wetland, employing a combination of machine learning models and climate change projections. The integration of 

these approaches offers valuable insights into the region’s hydrological future, highlighting trends, challenges, and opportunities 

for sustainable water resource management. 

 

The analysis highlights the effectiveness of machine learning models in capturing the intricate relationships between 

meteorological variables and evaporation. Advanced techniques, particularly RF and DL, excelled in predicting evaporation 

patterns. Their ability to model complex nonlinear relationships demonstrates their suitability for hydrological applications. 

These models reliably reflected observed trends while maintaining accuracy across varying climatic conditions, indicating their 
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robustness for long-term forecasting. In contrast, other methods like GLM and GBT showed moderate performance. While useful 

for capturing general trends, these models appeared less adept at handling the variability and extremes that characterize 

evaporation processes. This underscores the importance of selecting methods tailored to the study’s objectives, especially when 

accurate representation of complex patterns is critical. The comparative analysis of the present study with similar studies is given 

in Table 6. 

 
Table 6- Comparative analysis of the present study with similar research 

 

Study Models Used Location Key Variables Performance Metrics Key Findings 

Present 

Study 

RF, GBT, GLM, 

SVM, GPR, DL 

Quri Gol 

Wetland 

(Iran) 

maximum and 

minimum 

temperature, solar 

radiation, and 

precipitation 

RF(III) (R2=0.821, SI= 

0.414, and MAE= 0.902) 

and DL(III) (R2=0.822, SI= 

0.411, and MAE= 0.915) 

had the highest accuracy 

RF and DL models 

performed better than 

other models 

Tezel & 

Buyukyildi 

2016 

MLP, radial basis 

function network 

(RBFN), and SVR 

Beysehir 

(Turkey) 

temperature, 

relative humidity, 

wind speed, and 

precipitation 

the best performance was 

obtained using MLP (SCG 

4,2,2,1) with R2=0.905. 

The comparison of all 

obtained model 

performances indicated 

that all ANN models were 

more successful than SVR 

Wang et al. 

2017b 

FG, least square 

support vector 

regression 

(LSSVR), MARS, 

M5Tree and MLR 

Dongting 

Lake Basin 

(China) 

air temperature, 

surface 

temperature, wind 

speed, relative 

humidity, and 

sunshine hours 

LSSVR and FG models 

perform better than the 

MARS, M5Tree and MLR 

models with respect to 

statistical indices (MAE, 

RMSE, and R2). 

the FG, LSSVR and 

MARS models 

outperform the M5Tree 

model, and surface 

temperature, sunshine 

hours and air temperature 

were most important 

influencing variables 

Rezaei-Balf 

et al. 2019 

SVM, model tree 

(MT), ensemble 

empirical mode 

decomposition 

(EEMD) coupled 

with support vector 

machine (EEMD-

SVM) and EEMD 

model tree (EEMD-

MT) 

Siirt and 

Diyarbakir 

stations 

(Turkey) 

wind speed, 

temperature, 

relative humidity, 

and solar radiation 

The EEMD-MT model had 

more accurate performance 

for both Siirt (NSE=0.89, 

WI=0.97, and LMI=0.70) 

and Diyarbakir (NSE=0.92, 

WI=0.98, and LMI=0.80) 

stations 

It was concluded that the 

proposed pre-processing 

technique is very 

promising for complex 

time series forecasting 

Malik et al. 

2022 

DL and Gradient 

Boosting Machine 

(GBM) 

Kiashahr 

(Iran) and 

Ranichauri 

(India) 

Monthly maximum 

temperature and 

monthly pan 

evaporation 

The best DL models in 

Kiashahr and Ranichauri 

stations recorded MAE 

values of 0.5691 & 0.3693 

mm/month, respectively 

The DL model was more 

accurate in both Kiashahr 

and Ranichauri stations 

Bilali et al. 

2023 

Extra Tree, 

XGBoost, SVR, and 

DNN 

Bouregreg 

watershed 

(Morocco) 

air temperature, 

Relative Humidity, 

atmospheric 

pressure, wind 

speed, and solar 

radiation 

the developed models were 

accurate in reproducing the 

daily pan evaporation with 

NSE ranging from 0.76 to 

0.83 

the air temperature, solar 

radiation, followed by 

relative humidity were the 

most important climate 

variables for evaporation 

estimation in the study 

area. 

Wang et al. 

2023 

physical model 

PenPan, MARS, 

RF, and MLR 

China 

atmospheric 

pressure, relative 

humidity, sunshine 

hours, air 

temperature, and 

wind speed 

The RF model had the 

highest R2 (0.95± 0.029/ 

0.98 ± 0.019) and lowest 

RMSD (0.62 ± 0.17 mm 

day-1/9.06 ± 3.45 mm 

month-1) values 

It was concluded that the 

MARS and RF estimates 

were better than PenPan, 

and the results of MLR 

were the worst. 

 

Table 6 offers a detailed comparison between the results of the present study and similar research conducted in various 

regions, focusing on the use of different machine learning models for predicting evaporation. The table highlights the models 

employed, key input variables (such as temperature, solar radiation, and precipitation), performance metrics, and key findings. 

In this study, as highlighted previously, RF and DL models emerged as the most accurate for predicting evaporation in the Quri 

Gol Wetland (Iran), with the best performance metrics, demonstrating their effectiveness in capturing evaporation patterns. When 

compared with other studies, models like RF and DL consistently performed better than traditional statistical methods such as 

MLR and even other machine learning methods like SVM and GBM. The superior accuracy of RF and DL, particularly in 

handling nonlinear relationships and complex climatic interactions, is evident across different regions and datasets. This 

comparative analysis underscores the robustness of these models in hydrological applications and highlights their adaptability to 

various climatic conditions. Table 6 effectively demonstrates that machine learning models, especially RF and DL, provide 
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reliable and accurate predictions for evaporation, reaffirming their utility in water resource management under diverse climatic 

conditions. 

 

Climate change projections indicate that evaporation in the Quri Gol Wetland will increase substantially in the coming 

decades, with the magnitude of the change intensifying under more extreme climate scenarios. This upward trend aligns with 

rising temperatures and enhanced solar radiation driven by global warming. These changes suggest an urgent need for strategies 

to address the anticipated water losses from the wetland. In contrast, projected changes in precipitation are comparatively modest. 

While there are slight increases in precipitation under certain scenarios, these do not compensate for the significant rise in 

evaporation. This imbalance highlights the potential for water stress in the wetland, which could adversely affect its ecological 

health and the agricultural activities dependent on it. Such findings underscore the vulnerability of water systems in arid and 

semi-arid regions under changing climatic conditions. 

 

The study’s findings emphasize the need for proactive water resource management strategies to address the anticipated 

challenges posed by climate change. Adaptation measures should focus on reducing water loss and ensuring sustainable usage. 

These may include optimizing irrigation systems, enhancing water storage infrastructure, and implementing conservation 

practices to preserve wetland ecosystems. The application of machine learning models provides a reliable tool for forecasting 

and monitoring hydrological variables, enabling more informed decision-making. The flexibility and precision of RF and DL 

models, in particular, make them valuable for real-time applications, offering opportunities to anticipate and mitigate the impacts 

of climatic variability. Furthermore, incorporating climate change projections into management policies can help stakeholders 

better prepare for the long-term impacts on water availability. 

 

While the study offers robust insights, several limitations should be acknowledged. The projections depend heavily on the 

quality of input data and assumptions within the climate change scenarios used. Non-climatic factors, such as human 

interventions and land use changes, were not accounted for, potentially limiting the scope of the findings. Additionally, the study 

primarily focused on meteorological variables, omitting other important factors like groundwater interactions and soil moisture 

dynamics. Future research should aim to address these gaps by integrating additional variables and exploring the interplay 

between climatic and non-climatic factors. A more holistic approach would provide a deeper understanding of the hydrological 

processes affecting the wetland. Expanding the analysis to include seasonal and annual variations could also yield more nuanced 

insights, particularly in capturing short-term dynamics alongside long-term trends. 

 

5. Conclusions 
 

This study evaluated the future impacts of climate change on evaporation and precipitation in the Quri Gol Wetland by integrating 

machine learning models with climate change projections. Evaporation values for the present period (1991-2020) were estimated 

using machine learning models (RF, GBT, GLM, SVM, GPR, and DL), and future predictions were made by combining machine 

learning methods with climate models (LARS-WG and SDSM) under three different RCP scenarios (2.6, 4.5, and 8.5). This 

comprehensive approach assessed potential hydrological changes in the wetland for the future periods of 2021-2050, 2051-2080, 

and 2081-2100. 

 

Machine learning models performance: 

 

RF and DL emerged as the most accurate models for predicting evaporation during the calibration and validation phases. 

 

In the validation phase, the best RF model achieved an R2 of 0.821, an SI of 0.414, and an MAE of 0.902, while the best DL 

model recorded an R2 of 0.822, an SI of 0.411, and an MAE of 0.915. 

 

These results indicate the robustness of RF and DL in capturing complex nonlinear relationships between meteorological 

variables and evaporation. 

 

Future evaporation and precipitation trends: 

 

Evaporation rates are expected to increase significantly across all future periods, with the highest rise projected under the 

RCP 8.5 scenario. 

 

The LARS-WG model forecasted a maximum increase of 50.01% in evaporation by 2081-2100, while the SDSM model 

projected a smaller rise of up to 30.14%. 

 

Precipitation increases were comparatively smaller, with a maximum of 16% projected by the LARS-WG model under the 

RCP 8.5 scenario during the same period. 

 

Implications for hydrological balance: 
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The imbalance between rapidly increasing evaporation and relatively stable precipitation levels highlights potential water 

scarcity challenges for the Quri Gol Wetland. 

  

These findings underscore the wetland’s vulnerability to climate change and its implications for ecological and agricultural 

sustainability. 

 

The findings of this study underline the critical need for adaptive strategies to address the challenges posed by climate change 

on the Quri Gol Wetland. As evaporation rates are projected to rise significantly, outpacing smaller increases in precipitation, 

effective water resource management becomes imperative to sustain the ecological and agricultural viability of the region. Future 

research should expand the scope of analysis by considering a broader range of climate scenarios and incorporating additional 

variables such as land use changes, socio-economic factors, and groundwater interactions. These additions would provide a more 

holistic understanding of the hydrological impacts of climate change and improve the predictive accuracy of the models. 

Moreover, it is essential to investigate the implications of these hydrological changes on groundwater recharge and ecosystem 

health, as these factors are vital for maintaining the wetland’s long-term stability. Integrating these variables into future studies 

will offer deeper insights into the complex interactions between climate, hydrology, and human activity. Such research can guide 

the development of sustainable resource management practices, ensuring that the Quri Gol Wetland and similar regions can 

effectively adapt to the pressures of a changing climate. 
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