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Abstract: This paper presents an innovative application of the Ant Colony Optimization (ACO) algorithm to optimize 
engineering problems, specifically on welded beams and pressure vessels. A simulation study was conducted to evaluate the 
performance of the new ACO algorithm, comparing it with classical optimization techniques and other heuristic algorithms 
previously discussed in the literature. The algorithm was executed 20 times to obtain the most efficient results. The best 
performance outcome in the welded beam simulation was 1.7288, achieved after 540 iterations using 1000 ants, with a 
computation time of 6.27 seconds. Similarly, the best performance result in the pressure vessel simulation was 5947.1735, 
obtained after 735 iterations using 1000 ants and completed in 6.97 seconds. Compared to similar results reported in the 
literature, the new ACO algorithm demonstrated superior performance, offering an outstanding solution. Additionally, users 
can utilize this new ACO algorithm to quickly acquire information about welded beam design and prefabrication through 
simulation.
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1. Introduction
Optimization is generally used to achieve the best possi-
ble result within the determined goals and constraints. 
The optimization steps include creating basic configu-
rations, defining design variables, formulating the ob-
jective function, and selecting and implementing suit-
able optimization problems [1].

Optimization techniques are often divided into two cate-
gories: mathematical and heuristic methods. Mathemat-
ical methods strive to find the most accurate analytical 
solution, while heuristic methods exhibit a more practical 
approach [2-3]. Some heuristic algorithms are used to 
solve engineering problems. These include ant colony op-
timization (ACO) [4], genetic algorithms (GA) [5], particle 
swarm optimization (PSO) [6], bat algorithms (BA) [7], 
firefly algorithms (FA) [8] and butterfly algorithms [9]. 

Studies can be conducted on the instinctual behaviors 
of animals like ants, bats, and fireflies using heuristic 

approaches. These instincts enable ants to search for 
food, birds to gather, and fish to move in schools, or-
ganizing these animals [10]. Scientists have studied in-
sect behaviors and developed successful optimization 
algorithms in this context. These techniques have been 
successfully applied to many scientific fields and engi-
neering problems. They possess a high level of flexibility 
in solving engineering problems [11].

Moreover, in recent years, many hybrid algorithms have 
been proposed by combining these algorithms to solve 
engineering problems [12]. Hybrid algorithms are cre-
ated by taking the relatively better aspects of heuristic 
algorithms, depending on the characteristics and com-
plexity of the problem being solved. One of the successful 
heuristic applications that can be modified and used in 
optimization problems is the ACO algorithm [13]. Solu-
tions to optimization problems are also complex due to 
the high application areas and variability of engineering 
problems. To facilitate this, the computing power of com-
puter programs is used [14]. One of the programs that 
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can be easily used to solve algorithms is MATLAB [15].

This study originated from the need to address specif-
ic engineering challenges in welded beam design and 
pressure vessel optimization, which are critical in en-
suring structural integrity and cost-effectiveness in in-
dustrial applications. These design problems are char-
acterized by complex constraints, such as minimizing 
material usage while maintaining structural strength 
and handling pressure conditions within safety limits. 
Traditional methods often struggle to navigate these 
challenges, leading to suboptimal designs efficiently. To 
overcome these issues, we employed Ant Colony Opti-
mization (ACO) as a heuristic method and Sequential 
Quadratic Programming (SQP) as a classical optimi-
zation method. Recognizing the limitations of existing 
approaches, the ACO algorithm was modified to han-
dle better the unique constraints and complexities of 
these design problems. The modifications include en-
hancements that leverage the advantageous aspects of 
ACO, making the algorithm more effective in exploring 
the solution space and avoiding local optima. The new 
ACO code was implemented in MATLAB, and its per-
formance was compared against results obtained using 
other techniques reported in the literature. The en-
hanced ACO algorithm improves solution accuracy and 
provides valuable insights into welded beam design and 
pressure vessel optimization during pre-production. By 
offering a more robust solution framework, this study 
aims to contribute to cost and time savings for profes-
sionals and industries in these critical fields.

2. Literature View
Due to the challenging nature and extensive application 
areas of engineering problems in manufacturing and 
aerospace industries, numerous studies have been car-
ried out to find solutions [16]. With the increased num-
ber of variables in problems, finding solutions using tra-
ditional methods has become difficult. Efforts have been 
made to simplify the solution and find the best one, lead-
ing to the development of metaheuristic algorithms. One 
such metaheuristic algorithm, ACO [17], has been used to 
solve many application problems in different areas of dai-
ly life [18]. ACO was analytically expressed first in 1930 
and began to be frequently used after 1950. Since then, it 
has successfully solved various problems today [19].

A literature review was conducted on engineering prob-
lems, including welded beam design. The review found 
that previous studies had defined these problems, ob-
jective functions, constraints, variables, and solutions 
using various optimization techniques. These studies 
were examined to develop the solution further while 
considering the same definitions. The studies examined 
are given below.

Welded Beam has been described by Rao [20], Ray & 

Liew [21], Grković & Bulatović [22], and Cagnina et al. 
[23]. The design problems presented aim to determine 
the minimum cost due to shear stress, bending stress 
in the Beam, buckling load, and end deflection of the 
Beam. Pressure vessels have been previously described 
by Renato & Leandro Dos Santos [24], Zahara & Kao 
[25], He & Wang [26], and Huang et al.  [27]. The design 
problem involves minimizing the weight of the spring 
while adhering to certain restraints on minimum de-
flection, shear stress, surge frequency, and limits on the 
outside diameter and design variables. Coelho & Mar-
iani [28], Ray & Liew [21], Grković & Bulatović [22], 
Cagnina et al. [23], and Tanriver & Ay [29] have con-
ducted ACO optimization studies on these problems.

Hasan et al. [30] studied optimal power flow analysis in 
power distribution networks, solved with the Sequen-
tial Quadratic Programming (SQP) algorithm. Wang et 
al. [31] studied optimization-based transient control of 
turbofan engines via a sequential quadratic program-
ming approach.

While these studies have provided valuable contribu-
tions, the modified new ACO algorithm presented in 
this paper demonstrates improved efficiency and ac-
curacy in solving these complex engineering problems 
by better navigating large solution spaces and avoiding 
local optima. In addition, unlike the literature, a classi-
cal optimization solution has been run and compared 
with the new ACO algorithm results so that the readers 
could better understand the algorithm’s performance.

3. Methodology
Using the information accumulated in the form of pher-
omone trails laid by artificial colony ants, consecutively 
shorter feasible tours are formed. Thus, the best results 
are recorded at the end of the specified iteration to ar-
rive at the problem solution. Computer simulations us-
ing programming languages have shown they can pro-
duce reasonable solutions to ACO examples [32].

This study combines these two methods to achieve a 
more effective and reliable solution. The primary ACO 
method’s code has been modified to create a new algo-
rithm for this goal. This new ACO algorithm’s code has 
been tested for functionality and compared with results 
in the literature using MATLAB software.

3.1. Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) is among the 
classical methods used to solve optimization problems. 
SQP is used to solve nonlinear objective and constraint 
function problems [33, 34]. It is used in MATLAB with 
the fmincon code. SQP solves the optimization problem 
iteratively by solving a series of Quadratic Program-
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ming (QP) subproblems. Each QP subproblem approx-
imates the original problem at the current iterate. .

Quadratic Approximation: The Lagrangian function 
using a quadratic model is below.

                      

 
(1)

Linearize Constraints: Linearize the constraints 
around the current iterate   Is below.

 (2)

                     (3)

Solve QP Subproblem: Solve the QP subproblem to find 
the search direction  below.

     
(4)

     Subject to              

 

Update Iterates: The solution estimates are below.

                                                                                                                           
(5)

where  Does a line search determine a step size?

3.2. ACO Max-Min Ant System

Wilson and Hölldobler [35] discovered that ants com-
municate via pheromone signals. It helps to understand 
how ants reach a food source upon their discovery and 
how they clear obstacles. Pheromones act as a commu-
nication medium among ants. The ant colony optimiza-
tion algorithm is based on the natural behaviors of ants. 
The algorithm was first studied by Dorigo et al. [36] in 
a reference paper. The pheromones of ants enable in-
formation to be transmitted in the colony. Pheromones 
are the chemicals secreted by ants, and upon secretion, 
their trails survive for a short period. The more fre-
quently ants visit the same place, the more pheromones 
they deposit on that path. In ant colony optimization, 
through a formulated decision mechanism, artificial 
ants inspired by real ants can communicate by deposit-
ing these trails on edges.

Besides their skills in finding the shortest way from food 
sources to anthills without using their sense of sight, they 
also can adapt. They can find the new shortest way if the 
current way they follow is not the shortest way anymore 
due to external factors. We can explain the behavior pat-
tern of ants as they move casually until they find a pher-
omone trail. Then, based on the pheromone concentra-

tion on the trail, ants decide if they will follow the trail. 
Therefore, the more ants following a trail there are, the 
more likely other ants are following the trail [37].

Upon detecting pheromone trails, it becomes clear 
how ants find food and exhibit cooperative behavior. 
The classical ant colony algorithm is a meta-intuitive 
method based on an agent population aiming to solve 
intermittent optimization problems through behaviors 
emerging from swarm intelligence. Some additional 
features of the ant colony algorithm can be categorized 
as follows: Single artificial control architecture is the 
same for some units and has scalable characteristics. 
The solution to a given problem can be applied to oth-
er versions of the same problem, which is multifaceted. 
With minimum modification, it can be used in combi-
natorial optimizations such as second-degree assign-
ment problems and the planning approach of mobile 
robots. As a multi-agent system, they can be used for 
general-purpose planning methods to handle ambigu-
ity, including the noise of sensors and actuators of de-
tection systems. As a search engine based on popula-
tion, they sometimes tried to optimize positive feedback 
problems; however, as their goal is to optimize contin-
uous functions, some modifications were made [38]. In 
the beginning, ants follow a straight line, and in the 
meantime, releasing the mentioned pheromones onto 
the path, they help the following ants find their way. 
The movements of ants, with the help of pheromones 
that they naturally release, and their path have been il-
lustrated. As they cannot track pheromone trails when 
their path is blocked, ants primarily choose one of the 
two paths they can follow. As the transition from the 
short way for a unit of time will be longer, the amount 
of the dropped pheromone will also be more significant. 
Accordingly, in time, there will be a rise in the num-
ber of ants that prefer the shorter way. After a while, all 
ants will choose the shorter way. By checking trails, the 
ants that move randomly before will probably decide to 
take the direction of a more intense pheromone trail. As 
the algorithm was developed inspired by ant colonies, it 
is called the ACO algorithm.

In order to accelerate the ACO algorithm’s speed, which 
is relatively complicated, various studies were tested suc-
cessfully utilizing updating some parameters [39]. ACO 
algorithms have been studied in three categories: orig-
inal ant system, maximum-minimum ant system and 
ant colony system. In addition to the pheromone update 
done in the optimization process, this algorithm initiates 
a local pheromone update. This update is also called an 
offline pheromone update. Following each iteration, all 
ants perform a local pheromone update, and each ant ap-
plies it only to the last edge covered.  is shown below.

                                                   (6)

Q is the evaporation coefficient; its quantity is 0≤ Q ≤1. 
τ0 is the initiation value of the pheromone.
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The primary purpose of the local pheromone update 
is to diversify the search performed by ants after each 
iteration. Decreasing pheromone concentration on tra-
versed edges encourages subsequent ants to choose 
another edge and produce a different solution. Several 
ants’ probability of producing an identical solution gets 
lower during iteration. The local pheromone update 
works similarly to the max and min in ant systems. It 
is also applied by a single ant at the end of each itera-
tion. Likewise, the best update is considered at the end 
of each iteration, but the ACO algorithm is different, as 
shown below.

         
(7)

An essential difference between the ant system and the 
ant colony system can be seen in the ants’ decision rule 
in the solution process. In ACO, the rule below is em-
ployed. 

The probability of an ant moving from city i to 
city j depends on a random variable q between the 

interval. If this Value is the new rate q≤q0, 
 is employed. Otherwise, 

the following in below is employed.

                                                                                  

(8)

3.3. Modified Ant Colony Optimization Algorithm

The algorithm we propose is a modification of the Ant 
Colony Optimization (ACO) algorithm. This modifica-
tion is designed to enhance the adaptability of the algo-
rithm and improve solution quality. The key points and 
how this new algorithm works is shown below.

Adaptive α and β Values: In each iteration of the algo-
rithm, the importance of pheromone (α) and heuristic 
information (β) is dynamically adjusted. It makes the 
solution search process more flexible and may help 
avoid local minima.

Pheromone Update: All pheromone trails (τ) are updat-
ed in each iteration. The new pheromone value is in-
creased based on the current pheromone value and the 
function value of the best solution in that iteration. That 
gives more weight to reasonable solutions.

Queen Ant (queen. Value): The best solution is stored as 
the “queen ant,” and the Value of this solution influences 
the future search directions of other ants.

Status Check and Output: The algorithm checks the best 
solution in each iteration and if this solution is better than 

the previous best, it is accepted as the new best solution.

To integrate these proposed modifications into the exist-
ing ant optimization, it is necessary to update the func-
tions to reflect the specified changes while maintaining 
the basic structure of the algorithm. This will include 
the pheromone update mechanism and the adaptive ad-
justment of α and β. Additionally, storing and updating 
the best solution (“queen ant”) will be necessary. This 
approach can be practical in complex optimization 
problems, such as various engineering design problems. 
The parameter definition is given in ▶Table 1.

Table 1. New ACO Parameters Definition 

max_iterations The maximum number of iterations for the 
algorithm

ant_population The size of the ant population

evaporation_rate (ρ) The rate at which the pheromone evaporates

alpha (α) The parameter that controls the importance 
of pheromone in the ant’s decision-making 
process

beta (β) The parameter that controls the importan-
ce of distance in the ant’s decision-making 
process. 

queen. Value The best solution is stored as the “queen ant”
 

Only the solution obtained from the best ant pheromone 
trail is updated in the modified ant colony algorithm, 
and with determined modifications, the new ACO algo-
rithm is obtained. In the first stage, m number of ants 
should be determined as a parameter. This parameter 
is based on the quality of the first solution and the I iter-
ation number that represents the change number in the 
second loop. In the first loop, all ants randomly choose 
a location and take a value for each variable. Once each 
ant finds its location, through minval values optimized 
for variable values selected by ants, the Value of the 
function is determined. When the values of the function 
are obtained for each ant, it is evaluated which ant has 
chosen the best solution, and the Value of that solution 
is saved as minfunction. All ants obtain the best solu-
tion locally from first stage minfunction in the second 
loop. Pheromone update for the best Value is performed 
as shown in below.

  (9)
αj and βj is given to correct the solution of each itera-
tion. In the first iteration, this Value is given in a code, 
and this Value is selected depending on the intervals of 
possible solutions of variables in lower and upper band. 
Also, for each following iteration, correction values of α 
and β is done as in below.

  
(10)

This procedure, explained in the second step, is an iter-
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ation repetition in the second loop and is programmed 
to repeat to correct the solutions up to the maximum 
iteration number. Optionally, the best Value can be 
defined in the code. If a value is defined and a solution 
better than required cannot be obtained after a given 
iteration number, the entire loop can be repeated. Once 
the best solution values are obtained, these values are 
recorded, and their function values are defined. A sim-
ple optimization code of the new ACO algorithm is giv-
en in ▶Figure 1.

Figure 1. Modified ant colony optimization code

4. Result

Optimization is a method of optimizing a system using 
mathematical operations to obtain the best possible re-
sult. It involves determining the basic configurations, de-
fining the design variables, specifying the objective func-
tion, selecting the appropriate optimization algorithms, 
and applying the optimization procedures. These steps 
collectively define the optimization process. Optimiza-
tion can be applied in various fields, such as bolt strength 
[40], drilling [41,42], cutting parameters [43, 44, 45], 
machinability of steels [46], and thermal performance 
[47]. This paper applies optimization to solve the welded 
Beam and pressure vessel engineering problem.

In the literature, the studies conducted with heuris-
tic optimization methods are used to solve and com-
pare engineering problems. Therefore, to measure the 
performance of this algorithm in other problems and 
to compare the results, the pressure vessel model was 
also included in the calculation in addition to the weld-

ed beam design. In addition, unlike the literature, a 
classical optimization solution was run and compared 
with the new ACO algorithm results so that the readers 
could better understand the algorithm performance.

4.1. Welded Beam Problem Definition

The objective is to design a beam subjected to some 
constraints fixed through the welding method with a 
minimum cost using the new ACO algorithm. Design 
variables are x1, x2, x3, x4 and constraints of shear stress, 
bending stress forming on the Beam, buckling load on 
the Beam and end deflection. Welded Beam is shown in 
▶Figure 2 [20],[21], [22], [23].

There are some constraints to optimizing welded beams 
at minimum cost. These are shear stress τ (g1), bending 
stress on beam σ (g2), buckling force PC (g7), deflection 
δ (g6) and other constraints that are stated below. Val-
ues are given as follows: the size of the weld h(x1), the 
length of the welded part of the beam l(x2), the width of 
the beam t(x3) and the beam thickness b(x4). The objec-
tive, constraint functions and coefficients are given by 
obtaining them from the literature [20],[21], [22], [23].

The objective function is shown in Equation 11.

   (11)

Constraint conditions and design variables are 
shown in Equation 12-34

   (12)

  (13)

                     (14)

          

   (15)

        (16)

   (17)

   (18)

    (19)

                      (20)

         (21)

                                              (22) 
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Where:

   
(23)

 
(24)

   
(25)

=6000 (14+ )  (26)

   (27)

   
(28)

   
(29)

          
(30)

 
(31)

4.2. Pressure Vessel Problem Definition

The new ACO algorithm was used to achieve mini-
mum cost in pressure vessel design. The design vari-
ables are the thickness of the shell Ts (x1), the thick-
ness of the head (x2), the inner radius R (x3), and the 
length of the vessel L (x4). Pressure Vessel is shown in 
▶Figure 3 [20], [21], [22], [23]. 

Figure 3. Schematic View of The Pressure Vessel [20], [21], [22], [23].

The objective, constraint functions and coefficients are 
given by obtaining them from the literature [20], [21], 
[22], [23].

The objective function is shown in Equation 35.

                     (34)

Constraint conditions and design variables are 
shown in Equations 35-44.

   (35)

   (36)

 
(37)

                       (38)

                     (39)

                (40)

    (41)

 
  (42)

  (43)

  (44)

4.3. New ACO Algorithm and Sequential Quadratic 
Programming (SQP) Results Comparison

Considering the objective and constraint functions giv-
en for the welded beam design, it was run 20 times to 
obtain the best result. The best result in the new ACO 
algorithm is 1.7225, and the best result in the SQP al-
gorithm was obtained at 1.9667. The MATLAB result 
screen is shown in ▶Figure 4.

Considering the objective and constraint functions giv-
en for the pressure vessel design, it was run 20 times to 
obtain the best result. The best result in the new ACO 
algorithm is 5947.1735, and the best result in the SQP 
algorithm was obtained at 5955.8184. The MATLAB 
result screen is shown in ▶Figure 5.

4.4. New ACO Algorithm and Literature Results 
Comparison

Considering the objective and constraint functions giv-
en for the welded beam design, it was run 20 times to 
get the best result. The best result was obtained with 
540 iterations, 1000 ants and 6.27 seconds. In addition, 
the best result for the new ACO was compared with 
those obtained for the same problem in the literature. 
Result summaries are given in ▶Table 2.
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Comparisons of welded beam design results with liter-
ature are as follows.

Eskandar et al. have conducted their research using the 
Water Cycle algorithm (WCA), Colelo with the Genet-
ic Algorithm (GA), Zhao et al. with the Hybrid Genetic 
Algorithm with flexible allowance technique (GAFAT), 
and Grković & Bulatović have carried out their studies 
using a modified Ant Colony algorithm (MACA). When 
the new ACO algorithm was applied, the best solution 
was found to be 1.7225

The new ACO algorithm result is 0.13% better than Es-
kander et al.’s study (WCA) [48]. Although the algorithm 
solved with 540 iterations, WCA solved with 750 itera-
tions. The new ACO algorithm result is 1.47 % better 

than Coello’s study (CA) [49]. Although the algorithm 
solved with 540 iterations, GA solved with 11 iterations. 
The new ACO algorithm result is 0.13% better than 
Zhao et al. ‘s study (GAFAT) [50]. Although the algo-
rithm solved with 540 iterations, SA solved with 3000 it-
erations. The new ACO algorithm result is 0.39 % higher 
than Grković & Bulatović’s work (MACA) [22]. Although 
the algorithm solved with 1000 ants, MACA solved with 
10000 ants. Considering the objective and constraint 
functions given for the pressure vessel design, it was run 
20 times to get the best result. The best result was ob-
tained with 735 iterations, 1000 ants and 6.97 seconds. 
In addition, the best result for the new ACO was com-
pared with those obtained for the same problem in the 
literature. Result summaries are given in ▶Table 3.

Figure 4. Welded Beam MATLAB Result Screen a) The new ACO b) SQP

Figure 5. Pressure Vessel MATLAB Result Screen a) The new ACO b) SQP
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Comparisons of welded beam design results with liter-
ature are as follows.

Eskandar et al. have conducted their research using the 
Water Cycle algorithm (WCA), Colelo with the Genet-
ic Algorithm (GA), Zhao et al. with the Hybrid Genetic 
Algorithm with flexible allowance technique (GAFAT), 
and Grković & Bulatović have carried out their studies 
using a modified Ant Colony algorithm (MACA). When 
the new ACO algorithm was applied, the best solution 
was 5947.1735. The new ACO algorithm result is 5.43 
% better than Eskander et al.’s study (WCA) [48]. Al-
though the algorithm solved with 735 iterations, WCA 
solved with 1000 iterations. The new ACO algorithm 
result is 5.43 % better than Coello’s study (CA) [49]. 
Although the algorithm solved with 735 iterations, GA 
solved with 11 iterations. The new ACO algorithm re-
sult is 1.85% better than Zhao et al. ‘s study (GAFAT) 
[50]. Although the algorithm solved with 735 iterations, 
SA solved with 9000 iterations. The new ACO algorithm 
result is 0.29 % higher than Grković & Bulatović’s work 
(MACA) [22]. Although the algorithm solved with 1000 
ants, MACA solved with 10000 ants. From this, it is 
clear that new has achieved success among the results 
in the literature. Thus, it is clear that new ACO can be 
reliably used in bow design solutions.

5. Conclusions
This study presents a solution for welded Beam and pres-
sure vessel design using a modified ant colony optimiza-
tion (ACO) algorithm. The algorithm was enhanced to 
improve performance compared to previous techniques 
in the literature. The MATLAB-based implementation 
was tested 20 times for the new ACO and SQP methods.

The best result was achieved in welded beam design with 
540 iterations, 1000 ants, and 6.27 seconds. When the al-
gorithm was applied, the best solution was 1.7225 in the 
new ACO algorithm and 1.9667 in the SQP algorithm. 
The new ACO algorithm result is 0.13% better than 
Eskander et al.’s study (WCA). Although the algorithm 
solved with 540 iterations, WCA solved with 750 iter-
ations. The new ACO algorithm result is 1.47 % better 
than Coello’s study (CA). Although the algorithm solved 
with 540 iterations, GA solved with 11 iterations. The 
new ACO algorithm result is 0.13% better than Zhao 
et al. ‘s study (GAFAT). Although the algorithm solved 
with 540 iterations, SA solved with 3000 iterations. The 
new ACO algorithm result is 0.39 % higher than Grković 
Bulatović’s work (MACA). Although the new ACO solved 
with 1000 ants, MACA solved with 10000 ants.

The best result was achieved in pressure vessel de-
sign with 735 iterations, 1000 ants, and 6.97 seconds. 
When the algorithm was applied, the best solution was 

Table 2. Comparison of The Results for Welded Beam Design 

Definition Eskandar et al. (WCA) Colelo (GA) Zhao et al.  (GAFAT) Grković & Bulatović (MACA) This Paper 

 x1 0.205728 0.2088 0.20572964 0.202611802838422 0.205141

 x2 3.470522 3.4205 3.47048867 3.538184790851369 3.462302

 x3 9.036620 8.9975 9.03662391 9.038385657692625 9.036633

 x4 0.205729 0.2100 0.020572964 0.205720941513918 0.205694

Best f(x) 1.724856 1.74830941 1.724852 1.729335567988 1.7225

Iteration 750 11 3000 - 540

Ant number - - - 10000 1000

Process time (sec) - - - - 6.27
 

Table 3. Comparison of The Results of Pressure Vessel Design  

Definition Eskandar et al. (WCA)        Colelo (GA) Zhao et al.  (GAFAT) Grković & Bulatović (MACA) This Paper 

 x1 0.7781 0.8125 0.8125 0.82217025865521 0.8125

 x2 0.3846 0.4375 0.4375 0.40638075763737 0.4125

 x3 40.3196 40.3239 42.0984455959 42.6028471508185 42.6458

 x4 _200.0000 200.0000 176.6365958424 170.484922696647 171.4015

Best f(x) 6288.7445 6288.7445 6059.7143 5964.5059570367 5947.1735

Iteration 1000 11 9000 - 735

Ant number - - - 10000 1000

Process time - - - 6.97
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5947.173 in the new ACO algorithms and 5955.8184 in 
the SQP algorithm. The new ACO algorithm result is 
5.43 % better than Eskander et al.’s study (WCA). Al-
though the algorithm solved with 735 iterations, WCA 
solved with 1000 iterations. The new ACO algorithm 
result is 5.43 % better than that of Coello’s study (CA). 
Although the algorithm solved with 735 iterations, GA 
solved with 11 iterations. The new ACO algorithm re-
sult is 1.85% better than Zhao et al. ‘s study (GAFAT). 
Although the algorithm solved with 735 iterations, SA 
solved with 9000 iterations. The new algorithm re-
sult is 0.29 % higher than Grković & Bulatović’s work 
(MACA). Although the algorithm solved with 1000 
ants, MACA solved with 10000 ants.

From this, it is clear that the new algorithm has suc-
ceeded among the results in the literature. Thus, the al-
gorithm can be reliably used in welded beam design and 
pressure vessel solutions. Users can quickly learn about 
welded beam design, pressure vessel design and prefabri-
cation through simulation using the new ACO algorithm. 
Therefore, the aim is to contribute to cost and time sav-
ings for Industry, professionals and users in this field. 
Further research and development of the algorithm is be-
lieved to yield more optimal results. Heuristic optimiza-
tion methods such as particle swarm and other different 
classical optimization techniques can be used to measure 
the algorithm’s applicability to other design problems. In 
addition, it is suggested that the algorithm be extended 
to other engineering design challenges, such as composite 
material design, to verify its versatility and effectiveness.
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