
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

Dynamic Malware Detection Approach Based on
API Calls: Machine Learning and Ensemble

Learning Models

Aykut Karakaya1 , Ahmet Ulu2

1Department of Computer Technologies, Bülent Ecevit University, Zonguldak, Türkiye
2 Department of Computer Engineering, Çoruh University, Artvin, Türkiye

Corresponding Author: aykut.karakaya@beun.edu.tr

Research Paper Received: 04.07.2024 Revised: 17.09.2024 Accepted: 03.10.2024

Abstract—The rapid evolution of malware presents significant challenges in cybersecurity. The malware can be detected by using
static, dynamic, or hybrid features. Static features are effective for the detection of malware but they are unable to prevent code
obfuscation approaches. On the other hand, dynamic features contain code or characters of malware that are obtained while the
software is operating on a device. In comparison to static analysis, dynamic analysis is a better method especially to detect the
malware containing code obfuscation. The dynamic datasets, contain API calls and permissions, enabling real-time monitoring of
malware behavior. Since these datasets are obtained through behavior analysis during execution, methods using dynamic datasets
offer a more realistic approach compared to those using static datasets. This study investigates the efficacy of various machine
learning and ensemble learning models for malware detection using dynamic analysis. For this purpose, it is used the VirusSample
and VirusShare datasets, which consist of API calls and permissions. For both datasets, the Random Forest (RF) model used
Principal Component Analysis (PCA) for feature extraction achieved the best results among the machine learning models, with
accuracies of 94.83% and 86.27%, respectively. For the VirusSample dataset, the stacking ensemble learning model, which uses
RF and Decision Trees (DT) as base classifiers and K-Nearest Neighbors (k-NN) as the meta classifier, achieved the highest
accuracy of 94.56% thanks to the use of PCA. In contrast, for the VirusShare dataset, the stacking ensemble learning model, which
uses RF, k-NN, and Gradient Boosting (GB) as base classifiers and support vector machine (SVM) as the meta classifier, achieved
the highest accuracy of 86.21% with PCA usage for feature extraction. These results underscore the superiority of dynamic analysis
and the effectiveness of ensemble methods in enhancing malware detection accuracy. This study contributes to the optimization of
machine learning models and the advancement of cybersecurity solutions.

Keywords—information security, malware detection, dynamic analysis, machine learning, ensemble learning.

1. Introduction

With the rapid increase in digitalization today,
cybersecurity threats are diversifying and becoming
more complex at the same rate. Malware is at the
forefront of these threats and can cause damage
across a wide spectrum, from individuals to or-

ganizational structures. Detecting and classifying
malware is critically important in the field of cy-
bersecurity. In this context, machine learning tech-
niques have become a significant tool for malware
detection.

Datasets used for malware detection are gener-

1

https://doi.org/10.55859/ijiss.1510423
https://orcid.org/0000-0001-6970-3239
https://orcid.org/0000-0002-4618-5712

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

ally divided into two main categories: static and
dynamic. Static analysis aims to detect malware by
examining its code structure, while dynamic anal-
ysis analyzes the behavior of the software during
its execution [1]. Dynamic datasets provide more
comprehensive and reliable results by examining the
real-time activities of malware and their impact on
the system.

Dynamic analysis has gained prominence due to
its ability to capture the behavioral characteristics of
malware through API calls, system calls, and other
runtime activities, offering a more comprehensive
and realistic assessment of threats compared to
static analysis [2]. The real-time insights gained
from dynamic datasets, which include API calls and
permissions, make it possible to monitor malware
behavior continuously, thus providing an effective
countermeasure against evolving threats. This study
aims to address the challenges of malware detec-
tion using dynamic analysis by exploring various
machine learning and ensemble learning models.

Recent research has demonstrated the efficacy of
dynamic analysis in enhancing malware detection
accuracy. For example, Rosmansyah et al. proposed
a model that integrates API call sequences with tra-
ditional machine-learning algorithms [3]. Similarly,
Roy et al. introduced a model that reduces feature
sets for fast detection and is robust against code
obfuscation [4]. They collected a new dataset and
proved that a malware detection method using API
calls still gives high-accuracy result against code
obfuscation. Similarly, Shen et al. employed N-gram
features derived from control flow graphs alongside
machine learning techniques to identify malware
[5]. These studies highlight the potential of dynamic
analysis combined with advanced machine learning
techniques to effectively identify and mitigate mal-
ware threats.

Despite the progress in dynamic analysis, the

literature still shows a gap in optimizing machine
learning models for malware detection using dy-
namic datasets. Many existing studies focus on static
features, with fewer exploring the full potential of
dynamic data. This paper seeks to fill this gap
by evaluating the performance of various machine
learning and ensemble learning models, includ-
ing RF, SVM, and stacking methods, on dynamic
datasets derived from API calls and permissions.
The study aims to provide a detailed comparison
of these models and to highlight the benefits of
incorporating feature extraction techniques such as
PCA to enhance model performance.

1.1. Related works

Research on malware detection and classification
constitutes a significant area of investigation in the
field of cybersecurity. Studies on malware classifica-
tion using dynamic datasets have garnered increas-
ing interest in recent years. This section reviews
important studies in the literature related to malware
detection and classification.

In [6], a method called CTIMD was proposed
for dynamic malware detection. This method uses
deep learning techniques that integrate threat intelli-
gence obtained from CTIs with API call sequences
and runtime parameters. Experiments revealed that
CTIMD performed 4.0% to 41.3% better in F1-score
compared to existing methods based on raw API call
sequences, and 1.2% to 6.5% better compared to
state-of-the-art methods considering both API calls
and runtime parameters.

In [7], a model named Mal-ASSF was devel-
oped for dynamic malware analysis. This model
used API2Vec, BiLSTM, TextRNN, and an attention
mechanism. As a result, it achieved 3-5% higher
accuracy compared to existing methods.

In [8], a similarity-based hybrid malware detec-

2

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

tion model called HAPI-MDM was developed. The
model was trained using both static and dynamic
analysis of API calls with XGBoost and Artificial
Neural Network (ANN) algorithms. This model
demonstrated superior performance with an accu-
racy rate of 97.91% and achieved the lowest false
positive and false negative rates.

In [9], a new deep learning framework has been
developed for dynamic malware detection by utiliz-
ing the intrinsic properties of API call sequences.
The model uses API call embeddings and con-
volutional layers to extract semantic information
representing categories, actions, and process objects,
as well as Bi-LSTM modules to capture the relation-
ships between APIs. As a result, the model achieved
97.31% accuracy and 97.24% F1-score on a large
dataset, outperforming existing methods.

In [10], a new framework called DMalNet for
dynamic malware analysis based on API feature
engineering and graph learning has been developed.
It employs a hybrid feature encoder to extract se-
mantic features from API names and arguments, a
method to derive an API call graph from the API
call sequence, and a graph neural network (GNN) to
learn the content and structural information of this
graph. This framework achieved 98.43% accuracy in
malware detection and 91.42% accuracy in malware
type classification.

In [11], the evaluation of supervised machine
learning algorithms for malware detection using
dynamic API calls has been conducted. Malware
samples were executed through Cuckoo Sandbox to
collect dynamic API calls, and these data were used
to train supervised machine learning algorithms
such as Naive Bayes, k-NN, SVM, DT, RF, and
Adaboost. As a result of these evaluations, it was
noted that the RF algorithm showed the highest
performance with an accuracy rate of 99.1%.

In [12], a new method based on permission com-

pletion and API calls has been developed to detect
Android malware. The feature extraction method
using permission completion and API calls, com-
bined with a RF classifier, was employed to de-
tect applications hiding malicious behaviors through
the dynamic code loading mechanism. This model
achieved an overall accuracy rate of 99.885% on the
general dataset and demonstrated high performance
in detecting malware using the dynamic code load-
ing mechanism.

Tang et al. proposed a novel deep learning-based
method for detecting Android malware [13]. In the
proposed method, the executable file of the target
malware is read in 8-bit segments and converted
into 256x256 grayscale and Markov images. Sub-
sequently, the grayscale and Markov images are
combined using transfer probabilities to create a
mixed feature image. They have used a ResNet-
based network and the network depth is further
enhanced by incorporating a channel and spatial
attention mechanism (CBAM[14]).

Zhu et al. proposed a new Convolutional Neu-
ral Network (CNN) network named MserNetDroid
[15]. The proposed MserNetDroid network consists
of two different structures. The first is a residual
module where the SENet attention mechanism[16],
a channel-based focus mechanism, is applied, and
the MserNet module is used for multi-level feature
extraction. This approach allows for deeper learning
of intrinsic features, which are then weighted using
a focus mechanism. To evaluate the effectiveness
of the proposed framework, 2,126 malicious ap-
plications and 1,061 benign applications collected
from VirusShare and the Google Play Store were
analyzed. The evaluation results demonstrate that
the proposed model successfully detects malware
with an accuracy rate of 96.48%.

Ksibi et al. proposed a new CNN model based on
an imaginary feature for the detection of Android

3

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

malware [17]. They used EfficientNet-based deep
learning techniques with limited training data [18].
The method involves converting Android APK files
(XML and ARSC) into binary codes and RGB im-
ages, which are then used as inputs for deep learn-
ing models. The authors extracted features from
pre-trained DenseNet169, Xception, InceptionV3,
ResNet50, and VGG16 models (by adding them to
the beginning of the CNN network) and then adds
a 5-layer CNN network containing convolution,
pooling, and dropout layers afterward. The proposed
methods were evaluated using achieving accuracy
rates of 95.24%, 95.24%, and 95.83%. These results
demonstrate better performance with lower resource
consumption without manual feature engineering.

As a result, there is a vast research area in the
literature concerning the detection and classifica-
tion of malicious software. Studies employing both
machine learning and deep learning techniques are
presented. Similar to them, we have presented a
malware detection method that uses machine learn-
ing and feature extraction. Studies using dynamic
datasets emphasize the importance of analyzing
real-time behaviors of malicious software and devel-
oping effective solutions against such threats. This
paper contributes to the proliferation of dynamic
API call-based datasets and machine-learning mod-
els in the field of cybersecurity.

1.2. Contributions

This paper comprehensively evaluates the perfor-
mance of various machine learning and ensemble
learning methods using dynamic analysis data and
datasets containing API calls for malware detection.
In the existing literature, the number of studies that
detect malware using dynamic datasets is limited
especially compared studies using static features
[19]. In this context, our study makes significant
contributions to the literature by presenting new

approaches to malware detection and developing
models that demonstrate superior performance com-
pared to existing methods. The contributions of this
study are as follows:

• Use of API calls for dynamic malware detec-
tion: This is one of the few studies in the
literature that evaluates the performance of var-
ious machine learning and ensemble learning
methods using datasets containing API calls for
dynamic malware detection.

• Comparison of different machine learning mod-
els: Supervised machine learning algorithms
such as Naive Bayes, k-NN, SVM, DT, RF, and
Adaboost have been tested on dynamic datasets
using API call sequences.

• Evaluation of ensemble learning methods:
Stacking methods combining various models
such as RF, k-NN, and GB have been used, and
the performance of these approaches has been
compared.

• Development of high-performance models:
Models obtained with the RF method and using
PCA as feature extraction have shown higher
accuracy, precision, recall, and F1-score than
other machine learning models.

• High performance on general datasets: The
results obtained emphasize the effectiveness of
dynamic analysis methods and selected machine
learning models, especially on large and com-
plex datasets.

• Optimization of machine learning models: Sig-
nificant contributions are made to the field of
cybersecurity in terms of the use of dynamic
datasets and the optimization of machine learn-
ing models.

These contributions include the basic points that
emphasize the place and importance of our paper in
the literature.

4

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

1.3. Organization

This paper is organized as follows: Section 2 gives
a detailed explanation of machine learning methods
and the PCA used for feature extraction while
Section 3 describes the features of the datasets, the
proposed methods, and the experimental design, in-
cluding details on data preprocessing and ensemble
learning models. Section 4 includes a sensitivity
analysis of the highest-performing models, a dis-
cussion of the experimental results, a comparison of
the results, and potential future research directions.
Finally, Section 5 provides a summary of the main
findings and contributions, and concludes the paper.

2. Preliminaries

In this section, the machine-learning methods
used for malware detection are presented in detail.

2.1. PCA

PCA, originally developed as a statistical tech-
nique to transform a set of correlated variables into
a new set of independent and uncorrelated variables
known as principal components (PCs), is widely
employed in data analysis. These components are
linear combinations of the initial variables. PCA is
particularly effective in addressing multicollinearity
among the variables [20]. The PCs are ordered such
that the first PC accounts for the most variance in
the data, with each following PC explaining the
next largest portion of variance not captured by
the previous ones, beginning with the first [21]. To
clarify the influence of each original variable on
the PCs, rotational methods like varimax rotation
are often used. Varimax rotation helps each variable
to be strongly associated with only one PC while
minimizing its correlation with the others.

Algorithm 1 PCA
Require: Data matrix X ∈ Rn×p with n samples and p features
Ensure: Reduced dimensionality data matrix Z ∈ Rn×k

1: Standardize the Data:
2: Compute the mean of each feature: µ = 1

n

∑n
i=1 Xi

3: Center the data by subtracting the mean: Xcentered = X− 1µT

4: Compute the Covariance Matrix:
5: C = 1

n−1
XT

centeredXcentered

6: Eigenvalue Decomposition:
7: Compute the eigenvalues and eigenvectors of the covariance

matrix C:
8: CV = VΛ ◃ Λ is a diagonal matrix of eigenvalues, V

contains the eigenvectors
9: Select Principal Components:

10: Sort the eigenvalues in descending order and select the top k

eigenvectors:
11: W = [v1,v2, . . . ,vk]

12: Project the Data:
13: Project the data onto the new k-dimensional space:
14: Z = XcenteredW

15: return Z

The key outputs of PCA, known as factor load-
ings, show the degree to which a variable con-
tributes to a specific PC and its similarity to other
variables. Variables with higher loadings have a
greater impact on the variance explained by that
PC. In practical applications, only loadings with
absolute values greater than 0.5 are typically used
for interpreting the PCs [22]. Furthermore, a PC is
generally considered statistically significant if it has
an eigenvalue of 1 or higher. The steps of the PCA
are presented in detail in Algorithm 1.

2.2. RF

Breiman first introduced the RF algorithm, which
has since become a widely used nonparametric
tool for classification and regression. It enables
the development of prediction rules using various
predictor variables without requiring assumptions
about their relationships with the response variable
[23]. RF is effective for both classification and
regression by combining the outputs of multiple

5

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

DT into a single prediction. This ensemble learning
approach reduces overfitting in DTs.

Tree-based models iteratively split the dataset
until a predefined stopping criterion is met. De-
pending on the criteria, DT can be applied to
both classification and regression tasks. However,
a common drawback of DT is their tendency to
overfit, leading to reduced accuracy. To improve
generalization, multiple trees can be constructed
from different subsets of the data. Ho introduced the
random-subspace method, which Breiman expanded
into the random forest algorithm [24]. RFs use an
ensemble of trees built on bootstrap samples to
mitigate overfitting, as outlined in Algorithm 2.

Algorithm 2 RF algorithm
1: Initialization: Training data (D), subtrees (B)

2: for i← 1 to B do
3: Draw a bootstrap sample of size N from D

4: while node size ̸= minimum node size do
5: Randomly select a subset of m predictor variables from

total p
6: for j ← 1 to m do
7: if jth predictor optimizes splitting criterion then
8: Split internal node into two child nodes
9: break

10: end if
11: end for
12: end while
13: end for
14: Output: The ensemble tree of all B subtrees is created.

RFs, which aggregate DT, typically outperform
individual trees and offer more accurate error esti-
mates. As the number of trees increases, the error
rate decreases. The size of the subset of predictor
variables, m, is crucial for controlling tree depth and
should be adjusted during model selection.

2.3. DT

A DT is a non-parametric supervised learning
method used for classification and regression [25].
It partitions the data into subsets based on the most

significant attribute values, using a tree-like model
of decisions. The decision-making process involves
selecting the attribute that maximizes the Informa-
tion Gain (IG) or minimizes the Gini Impurity. For
classification, the Information Gain is calculated as:

IG(T,A) = E(T)−
∑

v∈V alues(A)

|Tv|
|T |

× E(Tv) (1)

where T is the entire dataset, E is the entropy, A
is the attribute being considered, Tv is the subset of
T for which attribute A has value v, and E(T) is
defined as:

E(T) = −
n∑

i=1

pi log2(pi) (2)

Here, pi is the proportion of examples in class i.
The Decision Tree continues to split the data until
it reaches a stopping criterion, such as maximum
depth or minimum number of samples per leaf.

2.4. SVM

SVM is a supervised learning algorithm used for
both classification and regression tasks [26]. The
core idea of SVM is to find the hyperplane that best
separates the data into classes. For a linearly separa-
ble dataset, the SVM aims to maximize the margin
between the closest points of the two classes, known
as support vectors. Mathematically, the optimization
problem for a linear SVM can be formulated as:

min
w,b

1

2
∥w∥2 (3)

subject to the constraint:

yi(w · xi + b) ≥ 1, ∀i (4)

6

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

where w is the weight vector, b is the bias term,
yi ∈ {−1, 1} represents the class labels, and xi are
the feature vectors. The decision function is then
given by:

f(x) = sign(w · x+ b) (5)

For non-linearly separable data, the kernel trick
is employed to project the data into a higher-
dimensional space where a linear separation is pos-
sible.

2.5. k-NN

In k-NN classification, the distance between each
data point in the dataset is calculated. However,
only the k closest points are considered when de-
termining the classification of a given data point.
These k points are the ones nearest to the point in
question compared to all other points. The value of
k is predetermined; selecting a k that is too large
can result in different data being incorrectly grouped
into the same class, while a k that is too small
can cause similar data to be classified into different
groups.

Algorithm 3 k-NN Algorithm
1: Initialization: Training data (X); class labels (Y); num-

ber of nearest neighbors (K)

2: for each sample x in the test data do
3: Calculate the distance: d(x,X) =

√∑n
i=1(xi −Xi)2

4: Classify x based on the majority class: C(xi) =

argmaxk
∑

Xi∈k−NN C(Xj , YK)

5: end for
6: Output: Class of a test sample x

The k-NN algorithm works by first determining a
method for measuring distance, with the Euclidean
distance being the most commonly used. The k

nearest neighbors are identified, and the class with
the majority representation among these neighbors

is assigned to the test point. The general structure of
the algorithm is outlined in Algorithm 3. The per-
formance of the k-NN classifier is highly dependent
on the value of k [27]. Typically, the optimal k is
found through empirical testing.

2.6. GB

GB is an ensemble learning technique that builds
models sequentially, where each model attempts to
correct the errors of the previous one [28]. The
algorithm optimizes a loss function by adding new
models in a greedy manner. The general objective
of GB can be expressed as:

Fm(x) = Fm−1(x) + αhm(x) (6)

where Fm(x) is the updated model, Fm−1(x) is the
previous model, α is the learning rate, and hm(x)

is the new model that minimizes the loss function.
The loss function L(y, Fm(x)) is minimized using
gradient descent:

hm(x) = −γ∇Fm−1L(y, Fm−1(x)) (7)

where γ is the step size and ∇Fm−1L(y, Fm−1(x))

is the gradient of the loss function with respect
to the predictions of the previous model. GB can
be used for both classification and regression tasks,
with the loss function tailored to the specific prob-
lem (e.g., mean squared error for regression, log loss
for classification).

2.7. Adaptive Boosting (Adaboost)

Ensemble learning encompasses three main ap-
proaches: bagging, stacking, and boosting. In bag-
ging, the dataset is divided into training and testing
sets, and random samples from the training data are
used to train multiple models. The final decision is

7

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

made by averaging or voting on the model outputs.
Boosting also involves data splitting and sampling,
but it prioritizes misclassified data for subsequent
models, thereby focusing on difficult cases. Stack-
ing, on the other hand, combines the outputs of
several classifiers using a meta-classifier to make
the final decision, capitalizing on the strengths of
each model in the feature space [29].

AdaBoost is a fundamental boosting algorithm
that increases the influence of misclassified data
by adjusting their weights in successive iterations.
Unlike other methods that use deep DT, AdaBoost
typically employs shallow trees, with final decisions
made through weighted majority voting. This tech-
nique is particularly effective in scenarios requiring
improved accuracy and reduced overfitting, such as
in fog computing and IoT-based health and tactical
analysis frameworks [30], [31]. The steps of the Ad-
aBoost method are presented in detail in Algorithm
4.

3. Proposed Models

This section includes dataset features, proposed
method and model, experimental design and results.

3.1. Dataset

The dataset is provided as comma-separated
values (CSV) file. Each row contains the
name of the malware, API call, and class
(i.e., malware type) [32]. For example,
7ff49f2f0912352416b05c010f35f402cc79feed, ”In-
tersectRect, GetCurrentProcess, GetVersion”,Virus.

• In each ZIP file obtained from VirusSamples
and VirusShare, malware samples are repre-
sented with their MD5 hash codes. MD5 hash
codes allow searching and analyzing these files
without uploading. For every sample in the ZIP

Algorithm 4 AdaBoost
Require: Training data (x1, y1), (x2, y2), . . . , (xn, yn) where yi ∈
{−1, 1}

Require: Number of boosting rounds T

Ensure: Final strong classifier H(x)

1: Initialize weights:
2: w

(1)
i = 1

n
, ∀i = 1, 2, . . . , n

3: for t = 1 to T do
4: Train weak classifier ht(x) using weights w

(t)
i

5: Compute the weighted error:

ϵt =

n∑
i=1

w
(t)
i · I(ht(xi) ̸= yi)

6: Compute the classifier weight:

αt =
1

2
ln

(
1− ϵt
ϵt

)
7: Update weights for next iteration:

w
(t+1)
i = w

(t)
i exp (−αtyiht(xi))

8: Normalize the weights:

w
(t+1)
i =

w
(t+1)
i∑n

j=1 w
(t+1)
j

9: end for
10: Construct final strong classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)
11: return H(x)

files, the hash codes are written into a text
file in groups of 500. Moreover, each group is
numbered from 0 to n.

• The hash codes in text files are sent to the
VirusTotal system to determine their malware
family. Then the analysis results are written to
a file. If any of the hash code files do not exist
in the VirusTotal system, the response can be
empty.

• VirusTotal returns approximately 70 malware
detection application results. These 70 appli-
cation results are checked; the most frequently
repeating name gives the malware family. It can
be spyware, trojan, virus, ransomware, etc. The
hash codes are grouped by their malware family.

8

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

• After grouping the malware hashes, the next
step is to extract the malwares from the ZIP
file. According to their malware family output
from the VirusTotal query, it generates malware
family folders, and each of them contains live
malware with password protection “infected.”
The Python module PEfile is used to extract the
API calls from the grouped malwares.

• Datasets with three sections: the hash codes
of malware files, API calls from the PEFile
library in Python, and the malware type from
the VirusTotal API, are built in CSV format.

Machine learning and ensemble learning models
are proposed using two datasets, VirusSample and
VirusShare, obtained from VirusTotal. The datasets
from [32] are converted into binary data as a result
of the processing. Each API call or permission
information is treated as a feature. Then, the dataset
undergoes processes to handle missing data and
eliminate insignificant data with very few samples.
Afterward, feature extraction and the application of
machine learning and ensemble learning models are
carried out. The schema of the data preprocessing
for machine learning is shown in Figure 1.

Figure 1. Data preprocessing for machine and
ensemble learning.

3.2. Preprocessing

In this paper, machine learning and ensemble
learning models are proposed using two different
datasets obtained from VirusTotal: VirusSample and
VirusShare. The VirusSample dataset contains 7966
different permissions and 9795 records, while the

VirusShare dataset contains 22792 different permis-
sions and 14616 records. These datasets include
API calls and permission data for dynamic malware
detection. Each row in the datasets includes the
name of the malware, API calls, and the malware
class.

During the data preprocessing phase, the one-
hot encoding method is used. In this method, each
distinct API call or permission information is con-
sidered as a feature. These features are transformed
into binary data. In other words, the dataset is
organized such that if the permission or API call
is present in the corresponding row, it is marked as
1, and if not, it is marked as 0. This approach en-
ables the machine learning models to produce more
efficient and accurate results in malware detection.
The binary data transformation allows for easier
processing and analysis of complex data during
the training and testing phases of the models. The
original column containing the API calls is removed,
leaving only the newly created features and the
class label columns. As a result of these prepro-
cessing steps, the dataset is processed similarly for
thousands of rows, making it suitable for machine
learning models. The transformation of the dataset
is shown in Equation (8).

f(i, j) =

{
0 if j /∈ i

1 if j ∈ i
(8)

Here, the values of f(i, j) are defined as follows:

• i: Represents the row number (e.g., 1, 2, 3, ...
n) or an observation in the dataset. In other
words, each i value corresponds to a different
example/row in the dataset.

• j: Represents the API call or feature (e.g.,
wfopen, feof, fscanf, ...) column. In other

words, each j value corresponds to a different
API call.

9

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

As a result, the transformed dataset sample is
shown in Figure 2.

Figure 2. Transformation to binary dataset (with
sample data).

After performing one-hot encoding and normal-
ization, 7966 API calls and permissions for Virus-
Sample and 22792 for VirusShare were obtained,
each corresponding to a feature. Since the number
of features beyond a certain point does not result in
significant changes in the model, feature extraction
is necessary. Therefore, feature extraction is carried
out using PCA.

The organized datasets were tested using various
machine learning and ensemble learning models.
Supervised machine learning algorithms such as
Naive Bayes, k-NN, SVM, DT, RF, and Adaboost,
as well as various ensemble models using stacking
methods, were evaluated. The performance of these
models was compared based on accuracy, precision,
recall, and F1-score, and the best-performing mod-
els were identified. The results demonstrate that API
calls and permission data can be effectively used for
dynamic malware detection.

3.3. Details of Proposed Machine Learning
and Ensemble Learning Models

The dynamic datasets named VirusSample and
VirusShare, which include API calls and permis-

sions, are being tested on machine learning and en-
semble models. Analyses conducted using dynamic
datasets yield highly effective results in malware
detection. Dynamic analysis enables the detection
of malicious activities by observing the operations
performed by the software and its impact on the
system during its execution. In this context, dynamic
datasets are crucial for understanding the real-time
behaviors of malware and how it utilizes system
resources.

Using dynamic datasets containing API calls and
permissions for malware detection offers several
advantages over traditional static analysis methods.
API call data shows which system functions the
malware calls and the frequency of these calls, while
permission data reveals which system resources the
software requests access to. This information helps
machine learning algorithms classify malware more
accurately. For instance, the abnormal frequency
of a particular API call or permission request can
indicate malicious activity. Therefore, analyses con-
ducted using dynamic datasets play a significant role
in the detection and classification of malware.

Utilizing dynamic analyses in this way en-
hances the performance of machine learning mod-
els, achieving higher accuracy rates in malware
detection. Additionally, when combined with en-
semble learning models, more reliable and com-
prehensive detection mechanisms are developed by
leveraging the strengths of different algorithms.
Thus, this article provides significant contributions
to the field of cybersecurity by demonstrating the
effective use of dynamic datasets and machine learn-
ing techniques.

In machine learning, models are developed using
classification techniques such as SVM, HGB, and
k-NN, RF without using PCA, and RF with using
PCA (RF+PCA). These methods enable the catego-
rization of data based on specific features, and each

10

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

offers different advantages in various situations. RF
is a method formed by combining multiple DT and
is generally known for its high accuracy rates. RF
is particularly effective when the dataset contains
noise or numerous features [33]. SVM aim to find
the hyperplane that best separates the data and
perform strongly in high-dimensional datasets.

Histogram-Based GB (HGB) is a version of GB
DT and usually provides fast and effective results
in large datasets. The k-NN algorithm makes clas-
sification decisions based on the data’s neighbors,
making it an effective method, especially when the
data distribution is clear. Each of these algorithms
requires selecting the most suitable model for spe-
cific data types and problems, a process that directly
impacts the model’s success. The performance of
classification algorithms depends on various factors
such as the quality of the training dataset, feature
engineering, and model optimization techniques.
Different from the other classification algorithms,
RF is trained with and without using PCA and they
are named as RF and RF+PCA. In this way, we
found it appropriate to examine the effect of the
PCA method on the RF model that gave the best
results.

The machine learning methods are combined
within a specific logic to create ensemble learning
models. Bagging, stacking, and boosting are the
three primary structures that constitute ensemble
learning. To begin with, in bagging, the dataset is di-
vided into test and train groups, typically in a 70/30
ratio. Multiple bags are created by randomly and
repeatedly sampling from the training data. Each
bag is then trained using established models. The
final decision is made by averaging the outputs or
voting. Similarly, in boosting, data is also separated
and randomly sampled. However, unlike bagging,
each sample in boosting is trained independently
and produces an output, giving each model an equal

chance of success. In boosting, priority is given to
data misclassified by previous models [29].

During the boosting process, three sets of clas-
sifiers are simultaneously created. The first and
second classifiers are trained using different random
subsets of the dataset, similar to bagging. The third
classifier is trained on the data where the first and
second classifiers failed. These three classifiers are
then combined using the majority vote technique.
In contrast, stacking makes decisions based on the
percentage of the feature space where each classifier
is successful. The outputs from all classifiers are
combined with another classifier to make the final
decision [34]. The flow of the proposed model is
shown in Figure 3.

Figure 3. The flow of the proposed model.

3.4. Experimental Results

The experimental studies of the proposed method
are conducted on a computer running Windows 11
64-bit operating system, equipped with a 12th Gen
Intel(R) Core(TM) i7-12700H processor (20 CPUs)
at 2.3GHz, 16 GB RAM, and an NVIDIA GeForce
RTX 3060 GPU, using Python 3.x. Machine learn-
ing models such as SVM, RF, k-NN, and DT, as
well as ensemble models like GB and AdaBoost,
and stacking-based ensemble learning models where

11

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

machine learning models serve as base and meta
classifiers, are being trained and tested on two
different datasets. As a result of these processes,
the models with the highest performance for the
VirusSample and VirusShare datasets are RF as a
machine learning model, RF-DT → k-NN (Stack-
ing) contains PCA as an ensemble learning model
for the VirusSample dataset, and RF as a machine
learning model, RF-k-NN-GB → SVM (Stacking)
as an ensemble learning model for the VirusShare
dataset, respectively. Each model is compared using
the parameters of accuracy, precision, recall, and F-
score. Different from other ensemble models, we
trained RF-DT → k-NN model which gives the
best result in VirusSample and RF-k-NN-GB →
SVM which gives the best results in VirusShare are
trained with and without using PCA to see the effect
of the feature extraction process and to improve the
obtained results.

These metrics are derived from the complexity
matrix of the model’s output, which includes four
states: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). The first
metric evaluated based on these states is accuracy,
which represents the proportion of correct predic-
tions out of all predictions made. The accuracy
formula is shown in Equation (9):

Accuracy =
TP + TN

TP + TN + FP + FN (9)

Precision, defined as the ratio of correctly pre-
dicted positive results to all predicted positive re-
sults, is given by Equation (10):

Precision =
TP

TP + FP (10)

Recall, the ratio of correctly predicted positive
results to all actual positive results, is expressed by
Equation (11):

Recall =
TP

TP + FN (11)

The F-score, which is the weighted harmonic
mean of precision and recall, is calculated using
Equation (12):

Fscore = 2 · Precision ·Recall

Precision+Recall (12)

The results for the VirusSample dataset are shown
in Table 1, and the results for the VirusShare dataset
are shown in Table 2.

4. Discussion and Future Directions

In this section, the findings obtained from the ex-
perimental results are discussed, a sensitivity anal-
ysis is conducted for the models with the highest
performance, the results are compared with similar
studies, and directions for future work are provided.

The results obtained from machine learning and
ensemble learning models applied on the VirusSam-
ple dataset provide significant insights into the mal-
ware classification performance of different mod-
els. Notably, the RF model demonstrates superior
performance compared to other models, achieving
the highest values in metrics such as precision,
recall, accuracy, and F-score. After applying PCA
for feature extraction, the results of the RF model
are improved. The high performance of the RF
model can be attributed to its effectiveness in han-
dling complex data structures and large datasets.
Additionally, the RF model’s ability to reduce the

12

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

Table 1.
Machine learning and ensemble learning model results with VirusSample dataset.

Model Precision Recall Accuracy F-score
SVM 0.936459 0.938755 0.938755 0.931427
RF 0.944652 0.946921 0.946921 0.940913
RF+PCA 0.947102 0.948316 0.948316 0.941883
k-NN 0.849495 0.836679 0.836679 0.820684
DT 0.934151 0.938074 0.938074 0.933382
GB 0.932013 0.933991 0.933991 0.930013
Adaboost 0.749938 0.789384 0.789384 0.761008
RF-k-NN-DT → SVM (Stacking) (RKD.S) 0.939686 0.945560 0.945560 0.938269
RF-SVM-DT → k-NN (Stacking) (RSD.K) 0.939052 0.934331 0.934331 0.934700
RF-k-NN-GB → SVM (Stacking) (RKG.S) 0.940181 0.945219 0.945219 0.938247
RF-SVM-GB → k-NN (Stacking) (RSG.K) 0.940952 0.936713 0.936713 0.936646
RF-DT → SVM (Stacking) (RD.S) 0.940426 0.945219 0.945219 0.938309
RF-DT → k-NN (Stacking) (RD.K) 0.943125 0.945219 0.945219 0.939621
RF-DT → k-NN (Stacking) (RD.K) + PCA 0.943321 0.945621 0.945621 0.938387

Table 2.
Machine learning and ensemble learning model results with VirusShare dataset.

Model Precision Recall Accuracy F-score
SVM 0.832910 0.844698 0.844698 0.819055
RF 0.846609 0.857241 0.857241 0.842304
RF+PCA 0.853505 0.862731 0.862731 0.848362
k-NN 0.762199 0.768757 0.768757 0.746775
DT 0.833990 0.843786 0.843786 0.835663
GB 0.834480 0.842417 0.842417 0.828339
Adaboost 0.580092 0.663170 0.663170 0.599148
RF-k-NN-DT → SVM (Stacking) (RKD.S) 0.844701 0.854732 0.854732 0.837243
RF-SVM-DT → k-NN (Stacking) (RSD.K) 0.820234 0.839909 0.839909 0.819988
RF-k-NN-GB → SVM (Stacking) (RKG.S) 0.845721 0.857013 0.857013 0.839285
RF-k-NN-GB → SVM (RKG.S) + PCA 0.849313 0.862070 0.862070 0.844911
RF-SVM-GB → k-NN (Stacking) (RSG.K) 0.824265 0.843101 0.843101 0.823963
RF-DT → SVM (Stacking) (RD.S) 0.843094 0.854504 0.854504 0.836565
RF-DT → k-NN (Stacking) (RD.K) 0.835409 0.843558 0.843558 0.834482

risk of overfitting and determine feature importance
contributes to its high performance.

Other classical models, such as SVM and DT, also
show noteworthy performance. The F-score value
of the SVM model being 93.14% indicates that
the model performs quite balanced in classification

tasks. Similarly, the DT model is notable for its high
accuracy and precision values. These results suggest
that SVM and DT models can be effective in mal-
ware classification tasks. However, models like k-
NN and Adaboost exhibit lower performance com-
pared to others. Particularly, the Adaboost model’s

13

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

F-score value of 76.10% indicates that the model
is less effective on this dataset compared to other
models.

The results obtained from ensemble learning
methods are also quite intriguing. Particularly,
stacking models created by combining RF and DT
models with SVM and k-NN have shown high
performance. The stacking model contains PCA
as feature extraction, with RF and DT as base
classifiers and k-NN as the meta classifier, achieved
the highest accuracy value (94.56%) and F-score
value (93.84%). This result indicates that ensemble
learning methods can achieve higher performance
by combining the strengths of different models. The
success of stacking models stems from their ability
to compensate for the shortcomings of individual
models.

In this paper, the performance of various machine
learning and ensemble learning models in classi-
fying malware is evaluated using the VirusSample
dataset as well as the VirusShare dataset. The results
are compared based on performance metrics such as
accuracy, recall, precision, and F-score.

The SVM model has demonstrated generally
strong performance with an accuracy of 84.47%
and an F-score of 81.91%. However, the RF+PCA
model has achieved the highest performance with
an accuracy of 86.27% and an F-score of 84.84%.
The RF model stands out with its high precision
and recall values, indicating its ability to accurately
classify malware. DT and GB models are also
showed similarly high performance, although they
lagged behind the RF model.

The k-NN model, on the other hand, exhib-
ited lower performance compared to other models,
achieving an accuracy of 76.88% and an F-score of
74.68%. This suggests that the k-NN model may be
less effective on large and diverse datasets compared
to other models. The AdaBoost model showed the

lowest performance with an accuracy of 66.32% and
an F-score of 59.91%, indicating that this model is
less successful in malware classification compared
to other methods.

One of the ensemble methods, stacking, has suc-
cessfully increased overall performance by com-
bining different models. For example, the stacking
contains PCA as feature extraction, with RF, k-NN,
and GB as base classifiers and SVM as the meta
classifier, has achieved the highest performance
among the ensemble models with an accuracy of
86.21% and an F-score of 84.49%. This demon-
strates that stacking methods can provide higher
classification accuracy by combining the strengths
of various models. Other stacking combinations are
also showed similarly high performance, indicating
that ensemble methods are an effective strategy
for enhancing the performance of machine learning
models.

We have also conducted an experimental study to
see the effectiveness of the PCA feature extraction
algorithm. For this purpose, we have used 2 different
feature extraction algorithms: linear discriminant
analysis (LDA) and kernel PCA (KPCA). LDA
is a dimensionality reduction technique used to
project data onto a lower-LDA is a dimensional-
ity reduction technique used to project data onto
a lower-dimensional space [35]. It maximizes the
separation between multiple classes by finding a
linear combination of features that best separates
them. In contrast, KPCA is an extension of PCA that
uses kernel functions to project data into a higher-
dimensional feature space, allowing for the capture
of nonlinear relationships and complex structures
within the data [36]. The comparison results of
feature extraction methods is presented in Table 3.
As can be seen from the comparison table, LDA
produced the worst results. This is because the LDA
method does not take into account the within-class

14

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

variance. In contrast, the PCA method yielded much
better results, while KPCA gave relatively similar
results. This is because the KPCA method performs
better on nonlinear and highly complex datasets;
however, the dataset used does not fall into this
category.

In conclusion, this paper comprehensively evalu-
ates the effectiveness of different machine learning
and ensemble learning models in malware classifica-
tion using two different dynamic datasets. For both
datasets, RF and stacking methods using PCA stand
out with high accuracy and F-score values. These
findings suggest that exploring more complex en-
semble methods and model optimization techniques
in future studies could be beneficial. Additionally,
using different datasets and various feature engi-
neering techniques can further enhance the gener-
alizability and performance of the models. In this
context, the results obtained on the VirusSample
and VirusShare binary datasets can be considered
an important reference point in the field of malware
classification.

Dynamic datasets offer significant advantages in
malware detection by enabling real-time monitoring
and analysis of malware behaviors, which is crucial
due to the evolving nature of malware. Unlike static
methods, dynamic analysis captures API calls and
other behavioral features, providing more up-to-date
and accurate results. This approach is more resilient
against evasion and anti-detection techniques as it
examines activities in a real operating environment.
Thus, dynamic datasets enhance the reliability of
analyses and play a crucial role in detecting and
classifying new and advanced malware, improving
the effectiveness of security solutions.

All results in Table 1 and Table 2 have obtained
by randomly splitting the datasets into 70% for
training and 30% for testing. The paper provides
a sensitivity analysis for the machine learning and

ensemble learning models with the highest F-score
values, based on random splits of the datasets into
60-40, 80-20, and 90-10 for training and testing,
respectively. The sensitivity analyses for the Virus-
Sample and VirusShare datasets are shown in Table
4 and Table 5, respectively.

The sensitivity analyses conducted in the paper
evaluate the impact of different train-test split ratios
on model performance. For this purpose, we used
models that gave the best results. Table 4 provides
valuable insights into the performance stability of
machine learning and ensemble learning models
under various train-test splits. The analysis results
show that the RF model consistently performs well
across different splits and exhibits a notable im-
provement in performance metrics as the proportion
of training data increases. For instance, the RF
model achieves an F-score of 93.95% with a 60-
40 split, which rises to 94.65% with a 90-10 split.
This indicates that the RF model benefits from more
training data, allowing for better generalization and
higher accuracy in malware classification.

Similarly, the stacking model with RF and DT as
base classifiers and k-NN as the meta-classifier also
demonstrates robust performance across different
splits. The F-score for this model increases from
90.49% with a 60-40 split to 94.54% with a 90-10
split. The slight variations in precision, recall, and
accuracy metrics across the splits suggest that the
stacking model effectively leverages the strengths of
its component models, even with varying amounts
of training data. The performance stability of the
stacking model highlights its potential, particularly
in dynamic malware detection tasks, where the
ability to adapt to different data volumes is crucial.

Table 5 presents the results of experiments on the
RF model and the stacking model with RF, k-NN,
and GB as base classifiers and SVM as the meta
classifier, showing the impact of different train-

15

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

Table 3.
Comparision of different feature extraction algorithms.

Feature Extraction Dataset Model Precision Recall Accuracy F-score

PCA
VirusSample

RF 0.9471 0.9483 0.9483 0.9419
RD.K 0.9433 0.9456 0.9456 0.9384

VirusShare
RF 0.8535 0.8627 0.8627 0.8484
RKG.S 0.8493 0.8621 0.8621 0.8449

LDA
VirusSample

RF 0.8955 0.8874 0.8874 0.8870
RD.K 0.8941 0.8881 0.8881 0.8851

VirusShare
RF 0.7400 0.7432 0.7432 0.7310
RKG.S 0.7245 0.7314 0.7314 0.7167

KPCA
VirusSample

RF 0.9443 0.9459 0.9459 0.9390
RD.K 0.9393 0.9415 0.9415 0.9353

VirusShare
RF 0.8539 0.8620 0.8620 0.8458
RKG.S 0.8552 0.8607 0.8607 0.8424

Table 4.
Sensitivity analysis data for VirusSample dataset based on train/test split.

Model Split Precision Recall Accuracy F-score

RF

60-40 0.944046 0.945636 0.945636 0.939537
70-30 0.944652 0.946921 0.946921 0.940913
80-20 0.947824 0.949974 0.949974 0.944718
90-10 0.949576 0.951020 0.951020 0.946516

RD.K

60-40 0.921750 0.900970 0.900970 0.904920
70-30 0.943125 0.945219 0.945219 0.939621
80-20 0.946120 0.940786 0.940786 0.941256
90-10 0.947843 0.944898 0.944898 0.945413

Table 5.
Sensitivity analysis data for VirusShare dataset based on train/test split.

Model Split Precision Recall Accuracy F-score

RF

60-40 0.842483 0.854797 0.854797 0.839651
70-30 0.846609 0.857241 0.857241 0.842304
80-20 0.848422 0.858413 0.858413 0.843927
90-10 0.852309 0.864569 0.864569 0.848250

RKG.S

60-40 0.848933 0.859415 0.859415 0.842180
70-30 0.845721 0.857013 0.857013 0.839285
80-20 0.854491 0.859439 0.859439 0.842180
90-10 0.848450 0.862517 0.862517 0.842764

16

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

test split ratios on metrics such as accuracy, recall,
precision, and F-score.

The analyses for the RF model indicate a general
improvement in performance as the size of the
training dataset increases. Particularly, with a 70-
30 split, the RF model has achieved the highest
performance with an accuracy of 84.53% and an
F-score of 84.83%. These results demonstrate that
providing more training data allows the model to
classify malware more accurately and consistently.

A similar trend is observed for the ensemble
model with the highest performance, which is the
stacking model consisting of RF, k-NN, and GB
as base classifiers and SVM as the meta classifier.
This model achieved high accuracy and F-score
values with 80-20 and 90-10 splits. Specifically,
with a 90-10 split, the model has achieved an
accuracy of 86.25% and an F-score of 84.28%. This
indicates that ensemble methods are more robust
against variations in dataset size and can produce
more consistent results by combining the strengths
of different models.

Overall, the sensitivity analysis results show that
increasing the size of the training dataset improves
the performance of both individual and ensemble
models. These findings highlight the importance of
large and diverse datasets in developing more ef-
fective malware detection and classification models.
They emphasize the need to carefully consider data
split strategies to ensure robust and reliable model
evaluation in malware detection research.

The proposed models are compared with similar
studies using the same datasets. However, in this
paper, these two datasets have underwent a prepro-
cessing process, converting the data into a binary
dataset and also PCA is used for feature extraction.
Therefore, the datasets used are not exactly the
same. However, this comparison is made because
they are still similar in terms of content. The results

Table 6.
Comparison result with similar study using

same datasets.

Machine Learning Results
Dataset: VirusSample Dataset: VirusShare

Paper Model F-score Paper Model F-score

[32]
SVM 0.8975

[32]
SVM 0.7581

RF 0.8391 RF 0.6609

Our
SVM 0.9314

Our
SVM 0.8191

RF+PCA 0.9419 RF+PCA 0.8484
Ensemble Learning Results (Highest)

Dataset: VirusSample Dataset: VirusShare
Paper Model F-score Paper Model F-score
[32] XGB 0.9031 [32] XGB 0.7525
Our RD.K+PCA 0.9384 Our RKG.S+PCA 0.8449

shown in Table 6 compare the performance of vari-
ous machine learning and ensemble learning models
on two different dynamic malware datasets named
VirusSample and VirusShare. When comparing our
results with [32], it is possible to see the success
rates of different methods on both datasets.

According to the data presented in Table 6, the
results obtained from two different studies are com-
pared. It is observed that our results, indicated as
”Our”, achieve higher F-scores on both the Virus-
Sample and VirusShare datasets compared to [32].
This indicates that our results demonstrate superior
performance in both machine learning and ensemble
learning methods.

When examining the machine learning results,
for the VirusSample dataset, the F-score values for
the SVM and RF models in [32] are 0.8975 and
0.8391, respectively, whereas our results show these
values as 0.9314 and 0.9419. Similarly, for the
VirusShare dataset, our results are also higher. In
the compared study, the F-score values for the SVM
and RF models on the VirusShare dataset are 0.7581
and 0.6609, respectively, while in our results, these
values are 0.8191 and 0.8484.

17

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

Table 7.
Comparison result with similar studies using different datasets.

Paper Classifier Datasets Accuracy
[3] RF, J48, SVM Malgenome 91.90%
[4] RF, SVM, k-NN, LR Drebin, CICInvesAndMal2019 93.77%
[5] Two-class SVM Google Play (Malware sample sources not disclosed) 86.50%
[7] Deep Learning Alibaba Cloud Security Malware 94.49%
Our RF, RD.K, RKG.S VirusSample, VirusShare 94.83%

Ensemble learning results also show our high
results. For the VirusSample dataset, the F-score for
the XGB model in the compared paper is 0.9031,
while our results show an F-score of 0.9384 with
the RD.K+PCA model. For the VirusShare dataset,
the F-score for the XGB model in the same study is
0.7525, whereas our results achieve 0.8449 with the
RKG.S+PCA model. In ensemble models, we tried
different combinations of stacking various machine
learning models, and in Table 6, we share the stack-
ing combinations that achieved the highest results.
The impact of additional preprocessing performed
and PCA feature extraction on the datasets is evident
in the differences observed.

In addition to the comparison results that use
the same dataset presented in Table 6, we have
compared our results with similar studies that use
dynamic features and machine-learning techniques
on different datasets for malware detection. For this
purpose, we have chosen four similar studies which
are [3], [4], [5], [7]. The used datasets, machine
learning methods, and best accuracy results are
presented in Table 7. As can be seen, the proposed
model gives the best accuracy result.

In future studies, several potential directions can
be explored to enhance the effectiveness of malware
detection using dynamic datasets. The integration of
advanced feature selection techniques that can dy-
namically adapt to evolving malware behaviors can

be implemented. Deep learning architectures, par-
ticularly recurrent neural networks (RNNs), which
can better capture the sequential nature of API
calls, can be explored. Finally, expanding the scope
of dynamic datasets to include more diverse and
representative samples can further enhance the gen-
eralizability of the models, ensuring they remain
effective against a broader range of malware types.

5. Conclusion

This paper demonstrates the effectiveness of fea-
ture extraction, machine learning and ensemble
learning models in detecting malware using dy-
namic analysis datasets. For both the VirusSam-
ple and VirusShare datasets, the RF+PCA model
achieved the highest performance with accuracies of
94.83% and 86.27%, respectively. Among ensem-
ble learning methods, the RD.K+PCA model has
achieved the highest performance on the VirusSam-
ple dataset with an accuracy of 94.56%, while the
RKG.S+PCA model on the VirusShare dataset with
an accuracy of 86.21%. These findings highlight
the importance of dynamic analysis for real-time
malware detection and the potential of ensemble
methods to improve classification accuracy. Future
research should explore advanced feature selection
techniques and deep learning architectures to further
enhance model performance. The integration of

18

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

diverse dynamic datasets will be crucial in devel-
oping robust and comprehensive malware detection
solutions, contributing significantly to the field of
cybersecurity.

References

[1] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vi-
gna, “Execute this! analyzing unsafe and malicious dynamic
code loading in android applications,” in Proceedings of the 20th
Annual Network and Distributed System Security Symposium
(NDSS), vol. 14, 2014, pp. 23–26.

[2] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and
Y. Zhauniarovich, “Stadart: Addressing the problem of dynamic
code updates in the security analysis of android applications,”
Journal of Systems and Software, vol. 159, p. 110386, 2020.

[3] Y. Rosmansyah, B. Dabarsyah et al., “Malware detection on
android smartphones using api class and machine learning,” in
2015 International Conference on Electrical Engineering and
Informatics (ICEEI), 2015, pp. 294–297.

[4] A. Roy, D. S. Jas, G. Jaggi, and K. Sharma, “Android malware
detection based on vulnerable feature aggregation,” Procedia
Computer Science, vol. 173, pp. 345–353, 2020.

[5] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek,
“Android malware detection using complex-flows,” IEEE Trans-
actions on Mobile Computing, vol. 18, no. 6, pp. 1231–1245,
2018.

[6] T. Chen, H. Zeng, M. Lv, and T. Zhu, “Ctimd: Cyber threat in-
telligence enhanced malware detection using api call sequences
with parameters,” Computers & Security, vol. 136, p. 103518,
2024.

[7] S. Zhang, J. Wu, M. Zhang, and W. Yang, “Dynamic malware
analysis based on api sequence semantic fusion,” Applied Sci-
ences, vol. 13, no. 11, 2023.

[8] A. A. Alhashmi, A. A. Darem, A. M. Alashjaee, S. M. Alanazi,
T. M. Alkhaldi, S. A. Ebad, F. A. Ghaleb, and A. M. Almadani,
“Similarity-based hybrid malware detection model using api
calls,” Mathematics, vol. 11, no. 13, 2023.

[9] C. Li, Q. Lv, N. Li, Y. Wang, D. Sun, and Y. Qiao, “A novel
deep framework for dynamic malware detection based on api
sequence intrinsic features,” Computers & Security, vol. 116, p.
102686, 2022.

[10] C. Li, Z. Cheng, H. Zhu, L. Wang, Q. Lv, Y. Wang, N. Li,
and D. Sun, “Dmalnet: Dynamic malware analysis based on api
feature engineering and graph learning,” Computers & Security,
vol. 122, p. 102872, 2022.

[11] J. Singh and J. Singh, “Assessment of supervised machine learn-
ing algorithms using dynamic api calls for malware detection,”
International Journal of Computers and Applications, vol. 44,
no. 3, pp. 270–277, 2022.

[12] J. Yang, J. Tang, R. Yan, and T. Xiang, “Android malware
detection method based on permission complement and api
calls,” Chinese Journal of Electronics, vol. 31, no. 4, pp. 773–
785, 2022.

[13] J. Tang, W. Xu, T. Peng, S. Zhou, Q. Pi, R. He, and X. Hu,
“Android malware detection based on a novel mixed bytecode
image combined with attention mechanism,” Journal of Infor-
mation Security and Applications, vol. 82, p. 103721, 2024.

[14] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolu-
tional block attention module,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 3–19.

[15] H.-j. Zhu, W. Gu, L.-m. Wang, Z.-c. Xu, and V. S. Sheng,
“Android malware detection based on multi-head squeeze-and-
excitation residual network,” Expert Systems with Applications,
vol. 212, p. 118705, 2023.

[16] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 7132–7141.

[17] A. Ksibi, M. Zakariah, L. Almuqren, and A. S. Alluhaidan,
“Efficient android malware identification with limited training
data utilizing multiple convolution neural network techniques,”
Engineering Applications of Artificial Intelligence, vol. 127, p.
107390, 2024.

[18] M. Tan, “Efficientnet: Rethinking model scaling for convolu-
tional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[19] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin,
and M. Stamp, “A comparison of static, dynamic, and hybrid
analysis for malware detection,” Journal of Computer Virology
and Hacking Techniques, vol. 13, pp. 1–12, 2017.

[20] A. T. W. Almais, A. Susilo, A. Naba, M. Sarosa, C. Crysdian,
I. Tazi, M. A. Hariyadi, M. A. Muslim, P. M. N. S. A. Basid,
Y. M. Arif, M. S. Purwanto, D. Parwatiningtyas, Supriyono,
and H. Wicaksono, “Principal component analysis-based data
clustering for labeling of level damage sector in post-natural
disasters,” IEEE Access, vol. 11, pp. 74 590–74 601, 2023.

[21] L.-C. Chang, J.-Y. Liou, and F.-J. Chang, “Spatial-temporal
flood inundation nowcasts by fusing machine learning methods
and principal component analysis,” Journal of Hydrology, vol.
612, p. 128086, 2022.

[22] S. A. Abdul-Wahab, C. S. Bakheit, and S. M. Al-Alawi, “Prin-
cipal component and multiple regression analysis in modelling
of ground-level ozone and factors affecting its concentrations,”
Environmental Modelling & Software, vol. 20, no. 10, pp. 1263–
1271, 2005.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45, pp.
5–32, 2001.

[24] M. Schonlau and R. Y. Zou, “The random forest algorithm for
statistical learning,” The Stata Journal, vol. 20, no. 1, pp. 3–29,
2020.

[25] J. R. Quinlan, “Learning decision tree classifiers,” ACM Com-
puting Surveys (CSUR), vol. 28, no. 1, pp. 71–72, 1996.

[26] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and

19

https://doi.org/10.55859/ijiss.1510423

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
A. Karakaya et al., Vol.13, No.4, pp.1-20
https://doi.org/10.55859/ijiss.1510423

B. Scholkopf, “Support vector machines,” IEEE Intelligent
Systems and their applications, vol. 13, no. 4, pp. 18–28, 1998.

[27] A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized im-
plementation of an improved knn classification algorithm using
intel fpga platform: Covid-19 case study,” Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 6,
pp. 3815–3827, 2022.

[28] A. Natekin and A. Knoll, “Gradient boosting machines, a
tutorial,” Frontiers in neurorobotics, vol. 7, p. 21, 2013.

[29] A. Karakaya, A. Ulu, and S. Akleylek, “Goalalert: A novel real-
time technical team alert approach using machine learning on an
iot-based system in sports,” Microprocessors and Microsystems,
vol. 93, p. 104606, 2022.

[30] T. Hastie, R. Tibshirani, and J. Friedman, “Boosting and ad-
ditive trees,” The elements of statistical learning: data mining,
inference, and prediction, pp. 337–387, 2009.

[31] A. Karakaya and S. Akleylek, “A novel iot-based health and
tactical analysis model with fog computing,” PeerJ Computer
Science, vol. 7, p. e342, 2021.

[32] B. Gençaydin, C. N. Kahya, F. Demirkiran, B. Düzgün,
A. Çayir, and H. Dağ, “Benchmark static api call datasets
for malware family classification,” in 2022 7th International
Conference on Computer Science and Engineering (UBMK),
2022, pp. 1–5.

[33] A. Karakaya, I. Karakaya, and T. Temizceri, “An online shop-
pers purchasing intention model based on ensemble learning,”
in 2023 4th International Informatics and Software Engineering
Conference (IISEC), 2023, pp. 1–4.

[34] A. Karakaya and A. Ulu, “A novel mobile malware detection
model based on ensemble learning,” in 2023 Innovations in
Intelligent Systems and Applications Conference (ASYU), 2023,
pp. 1–6.

[35] P. Xanthopoulos, P. M. Pardalos, T. B. Trafalis, P. Xanthopou-
los, P. M. Pardalos, and T. B. Trafalis, “Linear discriminant
analysis,” Robust data mining, pp. 27–33, 2013.

[36] H. Hoffmann, “Kernel pca for novelty detection,” Pattern recog-
nition, vol. 40, no. 3, pp. 863–874, 2007.

20

https://doi.org/10.55859/ijiss.1510423

	Introduction
	Related works
	Contributions
	Organization

	Preliminaries
	PCA
	RF
	DT
	SVM
	k-NN
	GB
	Adaptive Boosting (Adaboost)

	Proposed Models
	Dataset
	Preprocessing
	Details of Proposed Machine Learning and Ensemble Learning Models
	Experimental Results

	Discussion and Future Directions
	Conclusion
	References

