Environmental Research and Technology

https://dergipark.org.tr/en/pub/ert DOI: https://doi.org/10.35208/ert.1511061

Research Article

Removal of pharmaceutically active compounds from hospital wastewater by ozonation pretreatment

Mahammad MANSIMLI¹ D, Havva ATEŞ^{*2}D

¹ Konya Technical University, Faculty of Engineering and Natural Science, Graduate Education Institute, Konya, Türkiye

²Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Konya, Türkiye

ARTICLE INFO

Article history
Received: 05 July 2024
Revised: 18 September 2024
Accepted: 08 November 2024

Key words:

Hospital wastewater, ozonation, antibiotics, analgesics

ABSTRACT

Hospital wastewater includes many pharmaceutically active compounds (PhACs). Since this resulted in both PhACs distribution to the environment and development of antibiotic resistance in microorganisms, on-site treatment of hospital wastewater has gained importance. In this study, the removal of 21 PhACs consisting of 12 parent compounds and 9 main metabolites from hospital wastewater by ozonation was investigated. In this context, commonly used analgesics (Paracetamol, Diclofenac, Ibuprofen, and Naproxen, 4'-Hydroxydiclofenac, 5-Hydroxydiclofenac, 1-Hydroxyibuprofen, 2-Hydroxyibuprofen, Carboxyibuprofen, (S)-O-Desmethyl naproxen) and antibiotics (Ciprofloxacin, Sulfamethoxazole, Trimethoprim, Erythromycin, Metronidazole, Clarithromycin, Azithromycin, Clindamycin, N-Acetyl-Sulfamethoxazole, Sulfamethoxazole- β -D-Glucuronide, Clindamycin sulfoxide) were selected. PhAC analyses were performed by HPLC/MS-MS. The ozonation dose was between 0.05-5.0 mg O_3/mg COD.

In real hospital wastewater, many of the selected PhACs were detected and total analgesic and antibiotic were determined as 22.9 and 40.6 $\mu g/L$, respectively. The results showed that detected PhACs were completely removed at 1.5 mg O $_3$ /mg COD. Sulfamethoxazole was degraded at the lowest dose of ozone (0.05mg O $_3$ /mg COD), while Ciprofloxacin and 2-Hydroxy ibuprofen were relatively resistant to non-stoichiometric doses of ozone. The removal efficiencies of Ciprofloxacin and 2-Hydroxy ibuprofen were determined as 77% and 37%, respectively, at 0.5 mg O $_3$ /mg COD. Additionally, COD removal was 48% at 1.5 mg O $_3$ /mg COD. As a result, pre-oxidation of hospital wastewater can be an effective method for on-site pretreatment of PhACs.

Cite this article as: Mansımlı M, Ateş H. Removal of pharmaceutically active compounds from hospital wastewater by ozonation pretreatment. Environ Res Tec 2025;8(3)571-580.

INTRODUCTION

The emergence of new types of drugs day by day makes inevitable their distribution into the environment. Hospital wastewater is an important point source. While the amount of water consumed in hospitals varies between 25 and 875 L/bed/day in Türkiye [1], it changed between 19 and 2258 L/bed/day

worldwide [2]. Hospital wastewater is a serious problem due to its harmful effects the environment and humans through direct or indirect contact. In this context, the biggest challenge is increase of antibiotic-resistant microorganisms in aquatic environments in recent years. Hospital wastewater contains pharmaceutically active compounds (PhACs), disinfectants, drugs, radioactive elements, solvents, microorganisms, heavy

^{*}E-mail address: hates@ktun.edu.tr

^{*}Corresponding author.

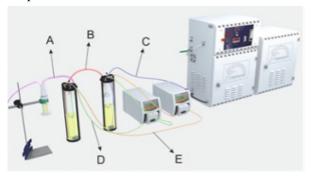
metals, and toxic chemicals [2]. An important proportion of pharmaceutically active compounds in WWTPs originates from hospital wastewater. In addition, studies conducted in municipal wastewater treatment plants (WWTPs) show that the antibiotic load for some antibiotics (Sulfamethoxazole, Roxithromycin, Ofloxacin, Erythromycin, and Azithromycin) was quite high and may remain at levels that may pose a risk to aquatic organisms in WWTP effluents [3, 4]. This situation highlights the need for hospital wastewater treatment to reduce both antimicrobial microorganisms and antimicrobial loads entering municipal wastewater treatment plants [5]. China and Japan, which have high rates of enteric and cancer outbreaks, have introduced on-site pre-treatment of hospital wastewater before discharge to prevent the spread of pathogens. European countries treat entirely hospital wastewater because of the risk it poses. Some countries such as France, Denmark, and Spain have conducted pilot and full-scale studies of on-site treatment of hospital wastewater [6]. In Türkiye, the occurrence of PhACs in hospital wastewater was researched [7, 8, 9]. Furthermore, the fate of PhACs was determined by treatment processes such as chemical treatment [10, 11] and biological processes [9, 12] at the laboratory scale. There is no legal regulation regarding the separate treatment of hospital wastewater from domestic wastewater and the pollutant limit values for the discharge of hospital wastewater into the sewer infrastructure in our country. Likewise, it is stated that pharmaceutical residues are not regulated at the legislative level even in many developed countries [13].

Treatability of hospital wastewater in combined systems including natural-based treatment processes, activated sludge processes [14, 15], membrane bioreactors [16, 17], various filtration processes [18], chemical treatment [19, 20] and tertiary treatment [21, 22, 23] was investigated. In addition, ozonation, chlorination, and UV disinfection have been used as final treatment steps in some pilot and full-scale plants [22, 23]. These treatment methods have many advantages and disadvantages such as cost, ease of operation, sludge formation, land requirements, etc. In this context, single-stage pre-ozonation can be considered as a good option due to rapid integration for on-site treatment of PhACs. Also, it can decrease the load of organic and antibiotic-resistant microorganisms entering WWTPs.

Studies on the removal of PhACs from aquatic media using conventional [14-17], and novel treatment processes [24, 25] have been ongoing from the past to the present. However, a review study on hospital wastewater treatment stated that there were limited studies on hospital wastewater treatment, and only 10 % of the studies in the literature was on advanced oxidation processes [6].

Ozonation is widely used in water and wastewater treatment because it is a strong oxidant and reacts with many organic substances. PhACs reacted with ozone or, hydroxyl radicals formed by the decomposition of ozone. Ozone molecules are selective for certain functional groups, unlike hydroxyl radicals [26]. An important advantage of ozonation is that it enhances the degradation of PhACs when used as a pre-treatment [27]. Hospital wastewater contains compounds with high ozone af-

finity such as phenols, anilines, aromatics, amines, and thioethers. Therefore, they can be effectively treated even at low ozone doses (0.5 g O₃/g DOC). Independent variables affect the removal efficiencies of PhACs during ozonation. In this context, Lee et al. (2014) reported that increasing pH from 7 to 8.5 resulted in lower removal efficiencies for compounds having high ozone affinity [28]. In another study stated that ozonation following membrane bioreactor increased the removal of Norfloxacin, Ciprofloxacin, Ofloxacin, and Sulfamethoxazole from hospital wastewater [29]. Characterization of hospital wastewater can be changeable. This affects the efficiency of treatment processes. In this context, Hansen et al. (2016) investigated the effects on removal efficiency of PhACs of variable dissolved organic carbon (DOC) and pH in the pilot scale MBBR/ozonation process. Higher ozone dose was required for the same removal efficiencies at alkaline pH. Also, the needed ozone amount changed according to the structure PhACs. For instance, Sulfadiazine and Diatrizoic acid were completely removed at 0.5 mg O₂/mg DOC and 4.7 mg O₂/ mg DOC, respectively [30]. Although advanced oxidation is a priority treatment process for the mineralization of PhACs, the mineralization ratio can change according to PhAC structure. A study stated that PhACs mineralized 54.7% in 1.57 g O₂/h with O₂/UV process, COD and aromatics decreased 64% and 81%, respectively [31]. In another study, removal of anti-cancer drugs in hospital wastewater with O₂/UV process was relatively low [32]. Nevertheless, ozonation has strongly recommended as a final treatment step before discharge into sensitive water environments in these studies.


Studies have generally focused on the removal of PhACs in synthetic solutions and there are limited studies on ozonation of real hospital wastewater. In addition, the parent PhACs were generally investigated in hospital wastewater in these studies. In the light of all this information, this study aimed to determine the fate of 21 PhACs (12 parent compounds and 9 main metabolites) in hospital wastewater by applying ozonation.

MATERIALS AND METHODS

Ozonation Process

The ozonation process used in the study is a device with a maximum capacity of 13 g/h. The process was supplied by a local firm Genozon (Türkiye). It can set in different strength of current and oxygen flow. The system consists of an oxygen concentrator and an ozone process to increase ozone production. The oxygen of the air is concentrated with the oxygen concentrator and fed to the ozone generator. Then, in the ozone generator, the diatomic oxygen molecule is converted into triatomic ozone gas and fed to 2L closed reactors. (Figure 1). The process was designed as two reactors to increase of contact of ozone with wastewater. Ozone measurement was done according to standard method. For determine the ozone used by the wastewater, waste ozone was captured in a 10% potassium iodide solution within the gas washing bottle and was titrated with potassium thiosulphate [33]. Ozonation experiments were conducted at 0.05, 0.1, 0.25, 0.5, 1.5, 3.0 and 5.0 mg O₂/mg COD doses natural pH of wastewater and room

temperature.

Figure 1. Ozonation process (A: inlet of waste ozone into gas washing bottle, B: foam transition between reactors, C: ozone inlet, D: the pipe that transfers ozone collected from the first reactor with funnel to the second reactor E: the pipe that ensures the continuous circulation of leachate accumulated in the second reactor) [34]

Chemicals

In this study, 21 PhACs from analgesic and antibiotic groups and their metabolites were measured. Selected analgesics were Paracetamol (PAR), Diclofenac (DCF), Ibuprofen (IBU), and Naproxen (NAP), 4'-Hydroxydiclofenac, 5-Hydroxydiclofenac, 1-Hydroxyibuprofen, 2-Hydroxyibuprofen, Carboxyibuprofen, (S)-O-desmethyl Naproxen, and antibiotics were Ciprofloxacin (CIP), Sulfamethoxazole (SMX), Trimethoprim (TMP), Erythromycin (ERY), Metronidazole, (MET) Clarithromycin (CLA), Azithromycin (AZI), Clindamycin (CLI), N-Acetyl-sulfamethoxazole, Sulfamethoxazole-β-D-glucuronide and Clindamycin sulfoxide. Mix internal standard were acquired from Dr. Ehrenstorfer GmbH (Augsburg, Germany). All standards used in this study were analytical grade and of high purity (mostly ≥98 %) and were supplied from Toronto Research Chemicals Inc. (North York, Canada). Elution solvents, water and methanol, were purchased Sigma Aldrich (Sigma-Aldrich Corporation, Germany). The other used chemicals like formic acid and ammonium formate were taken from Sigma Aldrich, too. 0.45 µm syringe type filters from Whatman, Little Chalfont, UK, HLB cartridge for solid phase extraction from Waters were purchased.

Hospital Wastewater

Used hospital wastewater was taken from the sewerage system connection of Necmettin Erbakan University hospital as two-hours composites. Oxidation experiments were made with two different samples which taken in different times. Samples analyses were immediately made for conventional parameters solid phase extraction of samples for PhACs analysis within the same day. Then, extracts were stored by HPLC-MS/MS analysis at +4 oC.

PhACs Analysis

Samples filtered with 0.45 μm syringe type filters. Solid phase extraction steps are; HLB cartridge was conditioned with 20 mL methanol and 6 mL water, sample was filtered from HLB cartridge, then was cleaned 10 mL water and was dried at 10 mL/min rate. Absorbed compounds was eluted from the car-

tridge with 10 mL methanol. Finally, methanol was evaporated to 1 mL through slowly nitrogen flow. Concentrated extracts were analyzed with HPLC-MS/MS (Agilent, 6460, HPLC series 1200) equipped Poroshell 120 SB-C18 (4.6 mm I.D. x 150 mm x 2.7 micron particle size) according to EPA 1694 after adding internal standard. LOQ value for all investigated PhAC and metabolites was 5 ng/L. Mobile phase flow rate and temperature 0.5 ml/min and 35 °C, respectively. Elution solvents were water consisted of 5 mM ammonium formate and 0.1% formic acid (Mobil phase A) and Methanol (Mobil phase B) and time of solvent gradient program was 28 min.

RESULTS AND DISCUSSIONS

Total analgesic and antibiotic concentrations were 22.9 and 40.6 μ g/L, respectively. Additionally, the PhACs detected in hospital wastewater collected on different days were not similar (Table 1). A review study stated that the average concentration of analgesics in hospital wastewater was higher in North America than in Asia and Europe. However, the average concentration of antibiotics was high in Asia. Average concentrations of analgesics and antibiotics ranged from 10 to 100 μ g/L [2]. It was reported that the most frequently detected antibiotics were CIP, SMX, and TMP in hospital effluents [36]. In this study, CIP, SMX, and TMP were detected in hospital wastewater samples. In a study conducted in Türkiye, Gönder and al. (2021) reported that SMX and 4N-Acetyl-Sulfamethoxazole and Naproxen were detected in high concentrations in both summer and winter [8].

The COD value of the hospital wastewater was 767.1±232 mg/L. Ozone amounts were determined taking into consideration the measured COD. Table 1 shows PhACs change in different ozone doses. PAR was completely removed in 15 min under an O, flow rate of 13 g/h. Additionally, it was removed 82% in the lowest ozone dose. In studies on ozonation of PAR, it was determined that PAR was removed more easily in acidic or alkaline pH. For instance, Andreozzi et al. (2003) reported that it was completely removed in acidic and neutral pH in aqueous solution containing 4.9-5.3 mM PAR [37]. However, removal was completed in a shorter time in acidic pH. In another study, TOC was reduced (20 mg/L) by only 18% at pH 7.2 and 60 min contact time at 1 g/h ozone dose. This shows that the mineralization of PAR was quite low with ozonation [38]. Degradation and COD removal were determined as 69% and 35% at pH 2.0, 94% and 39% at natural pH, and 96% and 65% at pH 10.0 for 60 min contact in 0.5 g/h ozone dose of 50 mg/L PAR [39]. Ozonation is an effective method of treating DCF from drinking water and wastewater, however, a 10:1 molar ratio of ozone to DCF is important for the formation of non-hazardous by-products in an aqueous solution [40]. In this study, DCF was removed at a dose of 1.5 mg O₃/mg COD. While 15% of IBU was excreted from the body in its original form, the ratio for hydroxyIBU form was 26% [41]. The main biotransformation products of IBU were also 2-hydroxyIBU and 1-[4-(2-methylpropyl)phenyl]ethan-1-ol (MPPE) [42]. Therefore, in addition to IBU, derivatives can also be detected in wastewater. In this study, both IBU and 2-hydroxyIBU from

selected by-products were detected in hospital wastewater at 2103 and 5512 ng/L, respectively. 2-hydroxyIBU was resistant to ozone doses between 0.05 and 0.5 mg O₃/mg COD. The removal efficiency of 2-hydroxyIBU was only 38%. However, both parent and by-product were removed at 1.5 mg O₂/ mg COD (Table 1). Olak-Kucharczyk et al. [43] determined that IBU and its important by-products like 2-hydroxyIBU, 4EBA, and MPPE were easily removed by ozonation, similar to this study. NAP and their degradation by-product (S)-Odesmethyl NAP were detected in similar concentrations, and they removed >99% at an ozone dose of 1.5 mg O₂/mg COD. SMX and N-acetyl-SMX were easily removed at the lowest dose (0.05 mg O₂ / mg COD). Alharbi et al. [44] researched the removal and formation of thirteen transformation products during the ozonation of SMX. The study results show that SMX and its by-products were easily removed as in our study. On the other hand, Dantas et al. [45] stated that although SMX was degraded in 15 min at a ozone dose of 0.4 g/L, only 10% of SMX was mineralized. CLA was removed at 1.5 mg O₃/mg COD dose. ERY and CLI were not detected in hospital wastewater samples. This may be related to the fact that these antibiotics are not used in hospitalized patients. CIP was resistant to oxidation under stoichiometric ozone dose (0.05-0.5 mg O₂/ mg COD) like PCT. Since both compounds have an aromatic structure, this can be related to their molecular structures. The mineralization of CIP by ozonation is generally less than that observed for so-called persistent organic pollutants containing aromatic rings and oxygenated groups [46]. In this context, the removal efficiency of CIP was <77% between 0.05-0.5 mg O₂/mg COD dose. TMP was easily removed in 0.25 mg O₂/ mg COD dose. MET, CLA, and AZI were detected as 9989, 1453, and 1003 ng/L and were completely removed at 1.5 mg O₂/mg COD. AZI is an antibiotic that was detected in high concentrations [2] on the contrary found in this study. These antibiotics were not evaluated in lower oxidant doses, because

they were not detected in the first sample of hospital wastewater. Although hospital wastewater has many matrices, similar results were obtained to those obtained for aqueous solutions in previous studies. Studies on the ozonation of hospital wastewater are given in Table 2. Many of these studies reported that PhACs were generally removed effectively.

The mean COD and BOD values of hospital wastewater were 767.1 mg/L and 248 mg/L. COD and BOD were removed 48% and 73%, respectively, at 1.5 mg $\rm O_3/mg$ COD. However, removal efficiencies of COD and BOD did not increase linearly with increasing ozonation time (3.0 mg $\rm O_3/mg$ COD and 5.0 mg $\rm O_3/mg$ COD). Additionally, the BOD/COD ratio decreased from 0.41 to 0.2. It can be explained that ozone primarily reacts easily with degradable organics.

CONCLUSION

PhACs are biologically persistent and toxic. Detection frequency increases in aquatic environment with their increasing use day by day. Interference to non-point PhACs sources is difficult. Thus, point sources must be managed well for human and environmental health. Especially hospital wastewater has high potential in terms of both PhACs and antibiotic resistance microorganism. Ozonation has disinfection and oxidation effects and can be easily adapted to treatment steps. In this context, the fate of selected 21 PhACs was evaluated pre-ozonation of hospital wastewater. The obtained results show that 21 PhACs and metabolites were almost completely removed during pre-ozonation of hospital wastewater. Especially, 1.5 mg O₃/mg COD ozone dose were efficient in removal of investigated PhACs and metabolites. Although PAR had the highest concentration with 333.7 µg/L, it was removed 82.4 % even at the lowest ozone dose. SMX was completely removed in this condition.

Table 1. Fate of PhACs concentration in different ozone doses (ng/L)

	Ozone Dose (mg O ₃ / mgCOD)								
PhACs	HW-S1	0.05	0.1	0.25	0.5	HW-S2	1.5	3.0	5.0
Paracetamol	333675	58581	51104	9877	21250	6961	<5	<5	<5
Diclofenac	<5	<5	<5	<5	<5	1891	<5	<5	<5
4'-Hydroxydiclofenac	<5	<5	<5	<5	<5	<5	<5	<5	<5
5-Hydroxydiclofenac	<5	<5	<5	<5	<5	<5	<5	<5	<5
Ibuprofen	<5	<5	<5	<5	<5	2103	<5	<5	<5
1-Hydroxyibuprofen	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Hydroxyibuprofen	1204	1223	1347	1153	752	5512	<5	<5	<5
Carboxyibuprofen	<5	<5	<5	<5	<5	<5	<5	<5	<5
Naproxen	<5	<5	<5	<5	<5	3226	<5	<5	<5
(S)-O-Desmethyl Naproxen	<5	<5	<5	<5	<5	3210	<5	<5	<5
Ciprofloxacin	31100	31099	26455	15541	6969	18521	<5	<5	<5
Sulfamethoxazole	14919	<5	<5	<5	<5	3572	<5	<5	<5
N-acetyl-sulfamethoxazole	<5	<5	<5	<5	<5	4560	<5	<5	<5
Sulfamethoxazole-β-D-glu- curonide	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trimethoprim	626	606	531	<5	<5	1196	<5	<5	<5
Erythromycin	<5	<5	<5	<5	<5	<5	<5	<5	<5
Metronidazole	<5	<5	<5	<5	<5	9989	<5	<5	<5
Clarithromycin	<5	<5	<5	<5	<5	1453	<5	<5	<5
Azithromycin	<5	<5	<5	<5	<5	1302	<5	<5	<5
Clindamycin	<5	<5	<5	<5	<5	<5	<5	<5	<5
Clindamycin Sulfoxide	<5	<5	<5	<5	<5	<5	<5	<5	<5

 $HW-S1: hospital\ was$ $tewater\ sample\ 1,\ HW-S2: hospital\ was$ $tewater\ sample\ 2.$

Table 2. Studies on removal of PhACs by ozonation in literature

Ozone dose	Working pH	Reaction Hospital time, wastewater min characterization		PhACs	Temperature	Catalyst/ Chemical	Removal efficiencies	Ref.
100 mg O ₃ /L	pH: 3.70 and 10.85	120	COD: 450 mg/L	Amoxicillin, Cipro- floxacin	20 ± 2°C	$\mathrm{H_2O_2}$	Amoxicillin: %99, Cipro- floxacin %96 in alkaline conditions	[47]
4 mg O ₃ /L	pH: 3-9	5		Amoxicillin, Ciprofloxacin and Acetaminophen	Room temp.		Amoxicil- lin: 98%, Ciproflox- acin: 99%, Acetamino- phen: %98.5 at pH 9	[48]
10 mg O_3/L	pH: 7.8	10	COD: 642 mg/L, total phosphor: 7 mg/L	Ciprofloxacin and Ofloxacin	25 ± 1°C		Ciprofloxacin: 66% and Ofloxacin: 84%	[49]
43.9 g/ m3	pH: 8.89	10-20	COD: 256 mg O ₃ /L	17 anticancer drugs	20 °C	H_2O_2	Except for cyclophos- phamide all compounds were re- moved 100%	[50]
0.25,0.5,1 and 1.5 g O ₃ /g COD	pH: 7 and 8.5	30	pH: 8.1-8.5	56 PhAC	22 ± 2°C	H_2O_2	92% and 100% for pH 7 and 8.5 at ≥0.5 g O ₃ /g COD	[28]
1.57g O ₃ /h	O ₃ and O ₃ /UV: pH 11 and 8.6; O ₃ /Fe ⁺² and O ₃ / FE ²⁺ /UV: pH 3	120	BOD: 140 mg/L, COD: 448 mg/L, pH:8.6, Nitrogen as NH3: 35.6 mg/L	Azithromycin, Ciprofloxacin, Trimethoprim, Penicillin, Naficillin, Ketoprofen, Phen- ylbutazon, Prednis- olone, Prednison, Betamethasone, Propyphenazoe, Atenolol, Bisoprolol, Carvedilol, Labetalol, Metoprolol, Propran- olol	Room temperature	Fe ⁺² , UV	99.5% except for Beta- methasone, aromatics: 81%, COD: 64%	[31]

Ozone dose	Working pH	Reaction time, min	Hospital wastewater characterization	PhACs	Temperature	Catalyst/ Chemical	Removal efficiencies	Ref.
0.5 - 5.3 mg O ₃ / mg DOC	pH: 5-8	60	pH: 5-9, COD: 6-20 mg/L	33 PhAC	15 °C		90%	[30]
10 mg O_3/L	pH: 9	60	pH: 7, COD:420 mg/L, nitrate:	Daunorubicin	20 ± 2 °C	UV	Daunorubi- cin,	[32]
			6.7 mh/L, phosphate: 13.9 mg/L				Doxorubicin and Epirubicin were removed 97.3%, 88.3%, 99% at pH 9. Irinotecan was removed 45.6 % at pH 9, 63.8% at pH 5.	
20 mg O ₃ /L	pH: 5-9	30-60	pH: 8.1, BOD:387±197, COD: 807± 325 mg/L	Ciprofloxacin	20 °C	${\rm UV, H_2O_2}$	Totally degraded at pH 9	[51]
0.05-5.0 mg O ₃ / mg COD	pH: 6.8 and 7.2	0.5-45	BOD:248 mg/L, COD: 767.1	21 PhACs	Room tem- perature		All PhACs were completely removed at 1.5 mg O ₃ / mg COD	This study

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support of the Konya Technical University Scientific Research Fund (KTUN-BAP) for the research described in this paper (Grant Numbers: 241001022).

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the findings of this study are available within the article. Raw data that support the finding of this study are available from the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

USE OF AI FOR WRITING ASSISTANCE

Not declared.

ETHICS

There are no ethical issues with the publication of this manuscript.

REFERENCES

- S. Hocaoglu, Celebi, M., Basturk, M. D. and R. Partal, "Treatment-based hospital wastewater characterization and fractionation of pollutants," Journal of Water Process Engineering, Vol. 43, pp. 102205,
- A. Majumder, A. K. Gupta, P. S., Ghosal, and M. Varma, "A review on hospital wastewater treatment:
 A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2," Journal of environmental chemical engineering, Vol. 9(2), pp. 10481, 2021.
- 3. L. Lien, N. Hoa, N. Chuc, N. Thoa, H. Phuc, V. Di-

- wan, N. Dat, A. Tamhankar, C. Lundborg, "Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—a oneyear study from Vietnam," IJERPH, Vol. 13, pp. 588, 2016.
- 4. Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C., Wang, "A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment," Science of The Total Environment, Vol. 473-474, pp. 619-641, 2014.
- 5. S. Dires, T. Birhanu, A. Ambelu, G. Sahilu, "Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater," J. Environ. Chem. Eng. Vol. 6, pp. 4265–4272, 2018.
- 6. M.I. Pariente, Y. Segura, S. Alvarez-Torrellas, J.A. Casas, Z.M. dePedro, E. Diaz, J. Garciá, M.J. Lopez-Munoz, J. Marugan, A.F. Mohedano, R. Molina, M. Munoz, C. Pablos, J.A. Perdigon-Melon, A.L. Petre, J.J. Rodri uez, M. Tobajas, F. Martińez, "Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes," Journal of Environmental Management, Vol. 320, pp. 115769, 2022.
- S. Aydin, M.E. Aydin, A. Ulvi, H. Kilic, "Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment," Environmental Science and Pollution Research, Vol. 26, pp. 544–558, 2019.
- 8. B. Z. Gönder, M. E. Kara, O. B. Celik, I. Vergili, Y. Kaya, S. M. Altinkum, Y. Bagdatli, G. Yilmaz, "Detailed characterization, antibiotic resistance and seasonal variation of hospital wastewater," Environmental Science and Pollution Research, Vol. 28, pp. 16380–16393, 2021.
- G. Yilmaz, Y. Kaya, I. Vergili, B. Z. Gönder, G. Özhan, O. B.. Celik, M. S. Altinkum, Y. Bagdatli, A. Boergers, J. Tuerk, "Characterization and toxicity of hospital wastewaters in Turkey," Environmental Monitoring and Assessment, Vol. 189, pp. 55, 2017.
- 10. S. Top, M. Akgün, E. Kıpçak and M. S. Bilgili, "Treatment of hospital wastewater by supercritical water oxidation process," Water research, Vol. 185, pp. 116279, 2020.
- 11. G. K Akkaya, "Evaluation of electrochemical treatment of real hospital wastewater with different electrode materials," Environmental Research and Technology, Vol. 3(4), 175-181.
- 12. E. İnce, M. İnce, H, Yaşar, and Y. A. Uslu, "Membrane fouling in thermophilic aerobic membrane distillation bioreactor treating hospital wastewater," Water SA, Vol. 48(4), 467-475, 2022.
- 13. N. A. Khan, V. Vambol, S. Vambol, B. Bolibrukh, M. Sillanpaa, F. Changani,... and M. Yousefi, "Hospital effluent guidelines and legislation scenario around the globe: A critical review," Journal of Environmental Chemical Engineering, 9(5), 105874, 2021.

- A. Azar, A. Jelogir, G. Bidhendi, N. Mehrdadi, N. Zaredar, M. Poshtegal, "Investigation of optimal method for hospital wastewater treatment," Journal of Food Agriculture and Environment, Vol. 8, pp. 1199–1202, 2010.
- S. Yuan, X. Jiang, X. Xia, H. Zhang, S. Zheng, 2013, "Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China," Chemosphere, Vol. 90, pp. 2520–2525, 2013.
- M.E. Casas, R.K. Chhetri, G. Ooi, K.M.S. Hansen, K. Litty, M. Christensson, C. Kragelund, H.R. Andersen, K. Bester, "Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR)," Water Research, Vol. 83, pp. 293–302, 2015.
- 17. G.T.H. Ooi, K. Tang, R.K. Chhetri, K.M.S. Kaarsholm, K. Sundmark, C. Kragelund, K. Litty, A. Christensen, S. Lindholst, C. Sund, M. Christensson, K. Bester, H. R. Andersen, "Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes," Bioresource Technology, Vol. 267, pp. 677–687, 2018.
- P. Ajo, S., Preis, T. Vornamo, M. Manttari, M. Kallioinen, M. Louhi-Kultanen, "Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues," Journal of Environmental Chemical Engineering, Vol. 6, pp. 1569–1577, 2018.
- B. Gupta, A.K. Gupta, P.S. Ghosal, C.S. Tiwary, "Photo-induced degradation of biotoxic Ciprofloxacin using the porous 3D hybrid architecture of an atomically thin sulfur-doped g-C3N4/ZnO nanosheet," Environmental Research, Vol.183, pp 109154, 2020.
- V. Chitnis, S. Chitnis, K. Vaidya, S. Ravikant, S. Patil,
 D.S. Chitnis, "Bacterial population changes in hospital effluent treatment plant in central India," Water Research, Vol. 38, pp. 441–447, 2004.
- C. I. Kosma, D. A. Lambropouolu, T. A. Albanis, "Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece," Journal of Hazardous Materials, Vol. 179, pp. 804-817, 2010.
- L. Kovalova, H. Siegrist, U. von Gunten, J. Eugster, M. Hagenbuch, A. Wittmer, R. Moser, C.S. McArdell, "Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV," Environmental Science&Technology, Vol. 47, pp. 7899e7908, 2013.
- 23. J. Zheng, C. Su, J. Zhou, L. Xu, Y. Qian, H Chen., "Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants," Chemical Engineering Journal, Vol. 317, pp. 309-316, 2017.
- 24. Y. Xue, M. Kamali, B. Kakavandi, M. E. V. Costa, I. P. Thompson, W. Huang,... & R. Dewil, "Activation

- of peracetic acid by a magnetic biochar-ferrospinel AFe2O4 (A= Cu, Co, or Mn) nanocomposite for the degradation of carbamazepine— A comparative and mechanistic study," Chemical Engineering Journal, Vol. 490, pp. 151932, 2024.
- 25. F. Hayati, M. R. Khodabakhshi, A. A. Isari, S. Moradi, and B. Kakavandi, "LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N, Fe co-doped TiO2@ SWCNT: optimization, performance and reaction mechanism studies," Journal of Water Process Engineering, Vol. 38, pp. 101693, 2020.
- U.V. Gunten, M.M. Huber, S. Canonica, G.Y. Park, "Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes," Environmental Science & Technology, Vol. 37(5), pp. 1016– 10242003, 2003.
- 27. A.D. Coelho, C. Sans, A. Agüera, M.J. Gómez, S. Esplugas, M., Dezotti, "Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Science of the Total Environment," Vol. 407, pp. 3572–3578, 2009.
- Y. Lee, L. Kovalova, C.S. McArdell, U. Gunten, "Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent," Water research, Vol. 64, pp. 134-148 2014.
- 29. C. N. D. Thanh, V. T. K. Quyen, N. T. Tin and B. X. Thanh, "Performance of ozonation process as advanced treatment for antibiotics removal in membrane permeate," GeoScience Engineering, Vol. 62(2), pp. 21, 2016.
- K. M. Hansen, A. Spiliotopoulou, R. K. Chhetri, M. E. Casas, K. Bester, and H. R. Andersen, "Ozonation for source treatment of pharmaceuticals in hospital wastewater-Ozone lifetime and required ozone dose," Chemical Engineering Journal, Vol. 290, pp. 507-514, 2016.
- 31. F. S. Souza, V. V. Da Silva, C. K. Rosin, L. Hainzenreder, A. Arenzon, T. Pizzolato, ... and L. A. Féris, "Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes," Journal of environmental science and health, part A, Vol. 53(3), pp. 213-221, 2018.
- D. Mello Souza, J. F. Reichert, V. Ramos do Nascimento and A. Figueiredo Martins, "Ozonation and UV photolysis for removing anticancer drug residues from hospital wastewater," Journal of Environmental Science and Health, Part A, Vol. 57(8), pp. 635-644, 2022.
- 33. APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
- 34. H. Ateş and M. E. Argun, "Advanced oxidation of landfill leachate: Removal of micropollutants and identification of by-products," Journal of Hazardous Materials, Vol. 413, pp. 125326, 2021.
- 35. N. A. Khan, A. H. Khan, S. Ahmed, I. H. Farooqi, S.

- S. Alam, I. Ali,... and M. Mubashir, "Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment," Chemosphere, Vol. 298, pp. 134243, 2022.
- 36. A. Majumder, B. Gupta, A.K. Gupta, "Pharmaceutically active compounds in aqueous environment: a status, toxicity and insights of remediation," Environmental Research, Vol. 176, pp. 108542, 2019.
- 37. R. Andreozzi, V. Caprio, R. Marotta, D. Vogna, "Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system," Water Research, Vol. 37, pp. 993–1004, 2003.
- V. Trousil, J. Palarcik, Z. Blazkova, J. Korlnkova, O. Machalicky, J. Cakl, "Paracetamol and ibuprofen removal from aqueous solutions by ozonation an photochemical process," Environmental Protection Engineering, Vol. 44, pp. 159–175, 2018.
- 39. L., Luo, Z., Sun, Y., Chen, H., Zhang, Y., Sun, D., Lu, and J. Ma, "Catalytic ozonation of sulfamethoxazole using low-cost natural silicate ore supported Fe2O₃: influencing factors, reaction mechanisms and degradation pathways," RSC advances, Vol. 13(3), pp. 1906-1913, 2023.
- M. M. Sein, M. Zedda, J. Tuerk, T. C. Schmidt, A. Golloch and C. Von Sonntag, "Oxidation of diclofenac with ozone in aqueous solution," Environmental science & technology, Vol. 42(17), pp. 6656-6662, 2008.
- 41. J.C.C. da Silva, J.A.R. Teodoro, R.J. Afonso, S.F. Aquino, R. Augusti, "Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina," Journal of Mass Spectrometry, Vol. 49, pp. 145–153, 2014.
- 42. W. Dong, S.P. Sun, X. Yang, K. Zhou, Y. Li, X. Wang, Z. Wu, W.D. Wu, X.D. Chen, "Enhanced emerging pharmaceuticals removal in wastewater after biotreatment by a low-pressure UVA/FeIII-EDDS/H2O2 process under neutral pH conditions," Chemical Engineering Journal, Vol. 366, pp. 539–549, 2019.
- M. Olak-Kucharczyk, M. Foszpanczyk, R. Zyłła, S. Ledakowicz, "Photodegradation and ozonation of ibuprofen derivatives in the water environment: Kinetics approach and assessment of mineralization and biodegradability," Chemosphere, Vol. 291, pp. 132742, 2022.
- S.K. Alharbi, W.E. Price, J. Kang, T. Fujioka, and L. D. Nghiem, "Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products," Desalination and Water Treatment, Vol. 57(60), pp. 29340-29351, 2016.
- 45. R.F. Dantas, S. Contreras, C. Sans, and S. Esplugas, "Sulfamethoxazole abatement by means of ozonation," Journal of hazardous materials, Vol. 150(3), pp. 790-794, 2008.

- 46. L.F. Zhai, H.Y. Guo, Y.Y. Chen, M. Sun, S. Wang, "Structure-dependent degradation of pharmaceuticals and personal care products by electrocatalytic wet air oxidation: a study by computational and experimental approaches," Chemical Engineering Journal, Vol.423, pp. 30167, 2021.
- 47. S. Aleksić, A. Žgajnar Gotvajn, K. Premzl, M. Kolar, S. Š. Turk, "Ozonation of amoxicillin and ciprofloxacin in model hospital wastewater to increase biotreatability," Antibiotics, Vol. 10(11), pp. 1407, 2021.
- 48. R., Anjali and S. Shanthakumar, "Synergistic effects on the degradation of a mixture of pharmaceutical pollutants in aqueous solution, raw sewage, and hospital wastewater using UV light-assisted Fenton process," Journal of Water Process Engineering, Vol. 54, pp. 104025, 2023.
- 49. C. Rodrigues-Silva, R. S. Porto, S. G. D. Santos, J. Schneider and S. Rath, "Fluoroquinolones in hospital wastewater: analytical method, occurrence, treatment with ozone and residual antimicrobial activity evaluation," Journal of the Brazilian Chemical Society, Vol. 30, pp 1447-1458, 2019.
- J. Ferre-Aracil, Y. Valcárcel, N. Negreira M. L. de Alda, D. Barceló, S. C. Cardona and J. Navarro-Laboulais, "Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process," Science of The Total Environment, Vol. 556, pp. 70-79, 2016.
- 51. A. Arslan, S. Veli, and D. Bingöl, "Use of response surface methodology for pretreatment of hospital wastewater by O₃/UV and O₃/UV/H2O2 processes," Separation and Purification Technology, Vol. 132, pp. 561-567, 2014.