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Abstract 
 

A novel distribution, termed the transmuted unit exponentiated half-logistic distribution, has been proposed 
using the unit exponential half-logistic distribution, a member of the proportional hazard rate model family, as 
the base distribution. The statistical characteristics of the proposed distribution, including moments, moment-
generating function, quantile function, and stress-strength reliability, have been thoroughly examined in this 
study. The maximum likelihood estimation method has been discussed for statistical inference of the 
distribution parameters. A simulation study based on the new distribution has been conducted to investigate 
the behavior of maximum likelihood estimates under various conditions. In addition, a numerical example has 
been presented to illustrate the performance of the distribution on a failure-time dataset.  
 

Keywords: transmuted family, UEHL distribution, failure times, maximum likelihood estimator, data analysis 
 
 

Dönüştürülmüş Birim Üstel Yarı Lojistik Dağılım ve Uygulamaları 
 

Öz 
 

Orantılı tehlike hızı model ailesinin bir üyesi olan birim üstel yarı lojistik dağılım temel dağılım olarak 
kullanılarak, dönüştürülmüş (transmuted) birim üstel yarı lojistik dağılım olarak adlandırılan yeni bir dağılım 
önerilmiştir. Önerilen dağılımın momentler, moment çıkaran fonksiyon, kantil fonksiyonu ve stres-mukavemet 
güvenilirliği gibi istatistiksel özellikleri bu çalışmada ayrıntılı olarak incelenmiştir. Dağılım parametrelerinin 
istatistiksel çıkarımı için maksimum olabilirlik tahmin yöntemi tartışılmıştır. Maksimum olabilirlik tahminlerinin 
çeşitli koşullar altındaki davranışını araştırmak için yeni dağılıma dayalı bir simülasyon çalışması yapılmıştır. 
Ayrıca, bir başarısızlık-zaman veri kümesi üzerinde dağılımın performansını göstermek için sayısal bir örnek 
sunulmuştur. 
 

Anahtar Kelimeler: dönüştürülmüş dağılım ailesi, UEHL dağılımı, başarısızlık zamanları, maksimum olabilirlik 
tahmincisi, veri analizi  
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Introduction 

In several practical applications, the use of proportional data is essential. Random variables, 
expressed as ratios or percentages, constitute the proportional data. For instance, infection rates of 
diseases, mortality percentages, response rates to clinical treatments, university admission rates, and 
percentage of useful volume in the water reservoir of a hydroelectric power plant are examples of 
proportional data. Random variables corresponding to proportional data can take any value within a 
unit interval. Therefore, appropriate probability distributions with a well-defined support set within a 
unit interval are required to model proportional data. 

As a distribution with limited support, the omega distribution was proposed by Dombi et al. 
(2019) and discussed in applications related to reliability theory. The omega distribution belonged to 
the proportional hazard rate class. Dombi et al. (2019) demonstrated that the asymptotic omega 
hazard rate function is the hazard rate function of the Weibull distribution. Additionally, Dombi and 
Jónás (2020) obtained various properties of the omega distribution. Recently, Özbilen and 
Genç (2022) introduced the unit exponentiated-half logistic (UEHL) distribution inspired by the 
omega distribution. This distribution corresponds, through a simple transformation, to the 
exponentiated half-logistic distribution, which has broad applications in reliability theory (Gui, 2017; 
Seo & Kang, 2015). 

In statistics, generating more useful distributions based on transformations of baseline distributions 
is common (Cordeiro & de Castro, 2011; Gupta et al., 1998; Rahman et al., 2020). In this context, 
Shaw and Buckley (2007) proposed an interesting method for solving problems related to financial 
mathematics and named this family the quadratic transmuted family of distributions. Representing 
the probability density function (PDF) and cumulative distribution function (CDF) of the quadratic 
transmuted distribution family for a baseline distribution with 𝑓(𝑥) and 𝐹(𝑥), respectively, we have 

𝐹𝑄𝑇(𝑥) = (1 + 𝛼)𝐹(𝑥) − 𝛼𝐹(𝑥)2 (1) 

and 

𝑓𝑄𝑇(𝑥) = (1 + 𝛼)𝑓(𝑥) − 2𝛼𝑓(𝑥)𝐹(𝑥), (2) 

where 𝛼 ∈  [−1,1]. Recently, several new distributions have been proposed based on transmuted 
distributions. Aryal and Tsokos (2009) suggested the transmuted extreme value distribution and 
studied its applications. Aryal and Tsokos (2011) proposed the transmuted Weibull distribution by 
applying the quadratic transmuted transformation to the Weibull distribution. Naz et al. (2013) 
introduced a modified power-generated family of distributions based on transmuted distributions 
and applied it to reliability analysis. Rahman et al. (2023) proposed a new modified cubic 
transmuted-G family of distributions. Ahsan-ul-Haq et al. (2023) suggested a new cubic transmuted 
power-function distribution and examined its properties. Adetunji (2023) introduced the transmuted 
Ailamujia distribution. Kuş et al. (2023) proposed the compound transmuted family of distributions, 
which uses the Weibull distribution as a sub-model to model the lifetime of a system composed of 
random components in series and parallel. Tushar et al. (2024) suggested a new cubic Transmuted 
Inverse Weibull distribution. Tushar et al. (2024) introduced the second-order transmuted 
Kumaraswamy distribution. Adetunji and Sabri (2024) proposed a two-parameter Poisson-
transmuted exponential distribution for count observations. Additionally, other distributions recently 
proposed as members of the transmuted family include the transmuted logistic (Samuel, 2019), 
transmuted Burr Type X (Khan et al., 2020), transmuted modified Weibull (Khan et al., 2018),  
transmuted Birnbaum-Saunders (Bourguignon et al., 2017), and transmuted Ishita  (Gharaibeh & Al-
Omari, 2019) distributions. 

In this study, we aim to introduce the transmuted UEHL (T-UEHL) distribution, which performs well in 
modeling failure time data by applying the transmuted family transformation given in Equation (1) to 
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the UEHL distribution. The remaining sections of the study are organized as follows: In Section 2, we 
introduce the T-UEHL distribution and examine its basic properties. In Section 3, we obtain analytical 
characteristics of the T-UEHL distribution, including moments, moment-generating function, quantile 
function, stress-strength reliability, and maximum likelihood estimation. In Section 4, we perform a 
simulation study to investigate the performance of the proposed maximum likelihood estimators in 
parameter estimation. In Section 5, we demonstrate the modeling performance of the proposed 
estimator on real-life failure time data. Finally, in Section 6, we present the study’s conclusions. 

T-UEHL Distribution 

Recently, the UEHL distribution was proposed by Özbilen and Genç (2022) based on the omega 
distribution. The UEHL distribution corresponds to a simple transformation of the exponentiated 
half-logistic distribution and has several applications in reliability theory (Kang & Seo, 2011; Rastogi & 
Tripathi, 2014). 

The PDF and CDF of the UEHL distribution are defined as follows, respectively: 

𝑓𝑈𝐸𝐻𝐿(𝑥) = 2𝜆𝜃𝑥𝜃−1
�1 − 𝑥𝜃�

𝜆−1

(1 + 𝑥𝜃)𝜆+1 , 0 < 𝑥 < 1 (3) 

and 

𝐹𝑈𝐸𝐻𝐿(𝑥) = 1 − �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

, 0 < 𝑥 < 1 (4) 

where 𝜃 > 0 and 𝜆 > 0 are the scale and shape parameters of the distribution, respectively.  

If the transformation given in Equations (1) and (2) is applied to the distribution, the PDF and CDF of 
the transmuted version of the distribution are obtained as follows: 

𝑓𝑇−𝑈𝐸𝐻𝐿(𝑥) = 2𝜆𝜃𝑥𝜃−1
�1 − 𝑥𝜃�

𝜆−1

(1 + 𝑥𝜃)𝜆+1 �1− 𝛼 + 2𝛼 �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

� , 0 < 𝑥 < 1 (5) 

and 

𝐹𝑇−𝑈𝐸𝐻𝐿(𝑥) = �1− �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

� �1 + 𝛼 �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

�. (6) 

A random variable with the CDF given in Equation (6) is called the three-parameter transmuted 
distribution and is denoted by  𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼). 

Figure 1 displays the PDF plots of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution for selected values of the 
distribution parameter. From Figure 1, the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution shows right-skewed, 
decreasing, increasing U-type shapes. Therefore, the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution can model quite 
different phenomena depending on the values of the parameters. 
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Figure 1. PDF’s the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) Distribution for Several Values of the 𝜃, 𝜆 and 𝛽. 

Also, the survival function and the hazard rate functions of the 𝑇-𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution are 
provided, respectively, by 

 𝑆𝑇−𝑈𝐸𝐻𝐿(𝑥) = �
1− 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

�1− 𝛼 + 𝛼 �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

�  

and 

 
ℎ𝑇−𝑈𝐸𝐻𝐿(𝑥) =

2𝜆𝜃𝑥𝜃−1

(1 − 𝑥2𝜃)�1 − 𝛼 + 𝛼 �1 − 𝑥𝜃
1 + 𝑥𝜃�

𝜆
�

. 
 

Characteristic Properties of the T-UEHL(θ,λ) Distribution 

This section presents the moments, moment-generating function, quantile function, stress-strength 
reliability, and maximum likelihood estimators that characterize the properties of the 𝑇 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution relative to other statistical distributions. 

Moments 

In statistics, moments are useful in understanding the characteristic properties of statistical 
distributions. The moments of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution can be expressed in terms of 
simple functions. This is shown in Proposition 1. 
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Proposition 1: Let the random variable 𝑋 have the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution with the PDF given 
in Equation (5). Then for 𝑟 ∈ {1,2,3, … }, 𝑟-th moment of the random variable 𝑋 is given by: 

 𝐸(𝑋𝑟) = 𝜆��(−1)𝑗 �𝑟 𝜃⁄ + 𝑗 − 1
𝑗 � {(1 − 𝛼)𝐵(𝜆 + 𝑗, 1 + 𝑟 𝜃⁄ ) + 2𝛼𝐵(2𝜆 + 𝑗, 1 + 𝑟 𝜃⁄ )}�

∞

𝑗=0

. 

Proof: Let 𝑋 ∼ 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼), then for 𝑟 ∈ {1,2,3, … } the 𝑟-th raw moment of 𝑋 is 

𝐸(𝑋𝑟) = 2𝜆𝜃�𝑥𝑟+𝜃−1
�1 − 𝑥𝜃�

𝜆−1

(1 + 𝑥𝜃)𝜆+1 �1 − 𝛼 + 2𝛼 �
1− 𝑥𝜃

1 + 𝑥𝜃
�
𝜆

� 𝑑𝑥
1

0

. (7) 

Applying the transformation 𝑢 = �1 − 𝑥𝜃�
𝜆
�1 + 𝑥𝜃�

𝜆�  to Equation (7), the expected value in 
Equation (7) is found to be 

𝐸(𝑋𝑟) = ��1 − 𝑢1 𝜆⁄ �
𝑟 𝜃⁄

�1 + 𝑢1 𝜆⁄ �
−𝑟 𝜃⁄ (1− 𝛼 + 2𝛼𝑢) 𝑑𝑢

1

0

 

= (1 − 𝛼)��1 − 𝑢1 𝜆⁄ �
𝑟 𝜃⁄

�1 + 𝑢1 𝜆⁄ �
−𝑟 𝜃⁄  𝑑𝑢

1

0

 

+2𝛼�𝑢�1 − 𝑢1 𝜆⁄ �
𝑟 𝜃⁄

�1 + 𝑢1 𝜆⁄ �
−𝑟 𝜃⁄  𝑑𝑢

1

0

. 

(8) 

Applying the binomial series expansion �1 + 𝑢1 𝜆⁄ �
−𝑟 𝜃⁄ = ∑ (−1)𝑗 �𝑟 𝜃⁄ +𝑗−1

𝑗 �𝑢𝑗 𝜆⁄∞
𝑗=0  to Equation (8), 

we obtain 

𝐸(𝑋𝑟) = 𝜆(1 − 𝛼)�(−1)𝑗 �𝑟 𝜃⁄ + 𝑗 − 1
𝑗 �𝐵(𝜆(1 + 𝑗 𝜆⁄ ), 1 + 𝑟 𝜃⁄ )

∞

𝑗=0

 

+2𝜆𝛼�(−1)𝑗 �𝑟 𝜃⁄ + 𝑗 − 1
𝑗 �𝐵(𝜆(2 + 𝑗 𝜆⁄ ), 1 + 𝑟 𝜃⁄ )

∞

𝑗=0

, 
(9) 

where 𝐵(𝑎, 𝑏) = ∫ 𝑣𝑎−1(1− 𝑣)𝑏−1 𝑑𝑣1
0  is the beta function. Thus, by making the necessary 

simplifications in Equation (9), the 𝑟-th moment of the random variable 𝑋 is found to be 

𝐸(𝑋𝑟) = 𝜆��(−1)𝑗 �𝑟 𝜃⁄ + 𝑗 − 1
𝑗 � {(1 − 𝛼)𝐵(𝜆 + 𝑗, 1 + 𝑟 𝜃⁄ ) + 2𝛼𝐵(2𝜆 + 𝑗, 1 + 𝑟 𝜃⁄ )}�

∞

𝑗=0

. 

Moment Generating Function  

The moment generating function serves as the foundation for a different approach to analytical 
results compared to working directly with probability density functions. The moments of a random 
variable 𝑋 with the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution were obtained in Equation (9). Utilizing the series 
expansion of the moment generating function and Equation (9), the moment generating function of 
the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution is expressed as the following formula: 
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𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = �
𝑡𝑖

𝑖!
𝐸�𝑋𝑖�

∞

𝑖=0

 

 = 𝜆��
𝑡𝑖

𝑖! �
(−1)𝑗 �𝑖 𝜃⁄ + 𝑗 − 1

𝑗 � {(1 − 𝛼)𝐵(𝜆 + 𝑗, 1 + 𝑖 𝜃⁄ ) + 2𝛼𝐵(2𝜆 + 𝑗, 1 + 𝑖 𝜃⁄ )}�
∞

𝑗=0

∞

𝑖=0

. 

Quantile Function 

The quantile function of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution is given by 

𝑄𝑇−𝑈𝐸𝐻𝐿(𝑢;𝜃, 𝜆) = 𝐹𝑇−𝑈𝐸𝐻𝐿−1 (𝑣(𝑢); 𝜃, 𝜆,𝛼) = �
1 − (1 − 𝑣)1 𝜆⁄

1 + (1 − 𝑣)1 𝜆⁄ �
1 𝜃⁄

, (10) 

where the function 𝑣(⋅) is defined as  𝑣(𝑢) = �1 + 𝛼 − �𝛼2 + 2(𝛼 − 2𝑢) + 1� 2𝛼⁄ . Thus, based on 
Equation (10), the steps of the random number generation algorithm for the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) 
distribution can be given as follows: 

Generate 𝑢 ∼ 𝑈(0,1). 

 Compute 𝑣 = �1 + 𝛼 −�𝛼2 + 2(𝛼 − 2𝑢) + 1� 2𝛼⁄ . 

 Compute 𝑥 = �1−(1−𝑣)1 𝜆⁄

1+(1−𝑣)1 𝜆⁄ �
1 𝜃⁄

. 

The random variable U in Step A1 follows the standard uniform distribution. In the case A3, it 
becomes  𝑋 ∼ 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼). 

Furthermore, utilizing Equation (10), the median of the random variable 𝑋 with the 𝑇 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼)  distribution depending on the 𝜃, 𝜆 ve 𝛼 parameters can be expressed as  

𝑄𝑇−𝑈𝐸𝐻𝐿(𝑣(0.5);𝜃, 𝜆,𝛼) = �
1 − �1 − �1 + 𝛼 − �𝛼2 + 2(𝛼 − 2𝑢) + 1� 2𝛼⁄ �

1 𝜆⁄

1 + �1 − �1 + 𝛼 − �𝛼2 + 2(𝛼 − 2𝑢) + 1� 2𝛼⁄ �
1 𝜆⁄ �

1 𝜃⁄

. 

Stress-Strength Reliability   

Given stress and strength random variables 𝑌 and 𝑋, we aim to calculate the 𝑅 = 𝑃(𝑌 < 𝑋) stress-
strength reliability for the  𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼)  distribution. 

Proposition 2. Let 𝑌 ∼ 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆1,𝛼1) and 𝑋 ∼ 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆2,𝛼2) be independent stress 
and strength random variables following 𝑇 − 𝑈𝐸𝐻𝐿 distribution with given parameters. Then, the 
stress-strength reliability is as follows: 

𝑅 = 1 +
𝜆2

𝜆1 + 𝜆2
(𝛼1(1 − 𝛼2) + 𝛼2(1 − 𝛼1) − 1) −

2𝜆2𝛼2
𝜆1 + 2𝜆2

(1 − 𝛼1)−
𝜆2𝛼1

2𝜆1 + 𝜆2
(1 − 𝛼2). (11) 

Proof: By definition, the stress-strength reliability can be written as: 

𝑅 = 2𝜆2𝜃� �1 − �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆1

� �1 + 𝛼1 �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆1

� 𝑥𝜃−1
�1 − 𝑥𝜃�𝜆2−1

(1 + 𝑥𝜃)𝜆2+1 �1 − 𝛼2 + 2𝛼2 �
1 − 𝑥𝜃

1 + 𝑥𝜃
�
𝜆2

� 𝑑𝑥.
1

0

 (12) 

Substituting the transformation 𝑢 = �1−𝑥
𝜃

1+𝑥𝜃
�
𝜆2

 into Equation (12), we obtain 
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𝑅 = ��1 − 𝑢𝜆1 𝜆2⁄ ��1 + 𝛼1𝑢𝜆1 𝜆2⁄ �(1− 𝛼2 + 2𝛼2𝑢) 𝑑𝑢
1

0

. (13) 

Performing algebraic manipulations and integration in Equation (13) completes the proof. 

Maximum Likelihood Estimation  

Let 𝑋1,𝑋2, … ,𝑋𝑛 be an identically independent distributed sample from 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼), then, 
the likelihood and log-likelihood functions are written, respectively, as 

𝐿(𝜃, 𝜆,𝛼) = ��2𝜆𝜃𝑥𝑖𝜃−1
�1 − 𝑥𝑖𝜃�

𝜆−1

�1 + 𝑥𝑖𝜃�
𝜆+1 �1 − 𝛼 + 2𝛼 �

1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

��
𝑛

𝑖=1

 (14) 

and 

ℓ(𝜃, 𝜆,𝛼) = 𝑛 log 2 + 𝑛 log 𝜆 + 𝑛 log𝜃 + (𝜃 − 1)� log(𝑥𝑖)
𝑛

𝑖=1

 

+(𝜆 − 1)� log�1 − 𝑥𝑖𝜃�
𝑛

𝑖=1

− (𝜆 + 1)� log�1 + 𝑥𝑖𝜃�
𝑛

𝑖=1

+ � log�1 − 𝛼 + 2𝛼 �
1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

�
𝑛

𝑖=1

. 
(15) 

By taking the derivatives of the log-likelihood function with respect to the distribution parameters, 
the log-likelihood equations are obtained as  

𝜕ℓ(𝜃, 𝜆,𝛼)
𝜕𝜃

=
𝑛
𝜃

+ � log𝑥𝑖

𝑛

𝑖=1

− (𝜆 − 1)�
𝑥𝑖𝜃 log𝑥𝑖
1 − 𝑥𝑖𝜃

𝑛

𝑖=1

− (𝜆 + 1)�
𝑥𝑖𝜃 log𝑥𝑖
1 + 𝑥𝑖𝜃

𝑛

𝑖=1

− 4𝜆𝛼�
𝑥𝑖𝜃 log𝑥𝑖 �

1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

(1 − 𝑥2𝜃)�1 − 𝛼 + 2𝛼 �
1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

�

𝑛

𝑖=1

= 0, 
  (16) 

 

𝜕ℓ(𝜃, 𝜆,𝛼)
𝜕𝜆

=
𝑛
𝜆

+ � log�
1− 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�

𝑛

𝑖=1

+ 2𝛼�
�1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

log�1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�

1 − 𝛼 + 2𝛼 �
1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

𝑛

𝑖=1

= 0 (17) 

and  

𝜕ℓ(𝜃, 𝜆,𝛼)
𝜕𝛼

= �
2�1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

− 1

1 − 𝛼 + 2𝛼 �
1 − 𝑥𝑖𝜃

1 + 𝑥𝑖𝜃
�
𝜆

𝑛

𝑖=1

= 0. (18) 
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Since Equations (16), (17), and (18) do not have a closed-form solution, a solution must be obtained 
based on an iterative method. In this study, the optim function in the stats package in the R program 
was used to solve the system of equations. 

Simulation Study 

Simulation studies are commonly conducted to evaluate the performance of the properties of MLE. 
Therefore, in this section, the MLEs of the parameters of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution, which 
were discussed in Section 3, are examined using a simulation study. In this context, random samples 
of size 𝑁 = 20, 50, 100, 300, 500 were generated from the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼)  distribution for fixed 
𝛼 values and true 𝜃 and 𝜆 values. The simulations were repeated 2000 times to ensure the reliability 
of the estimation. Additionally, the parameter 𝛼 was considered a hyperparameter in the simulation 
studies, and the MLEs of the parameters 𝜃 and 𝜆  were obtained accordingly. 

Table 1. Bias And Mses of MLE Estimators for Selected Parameter Values 

    
Bias MSE 

𝜃 𝜆 𝛼 𝑛 𝜃  𝜆 𝜃 𝜆 
0.5 0.9 0.5 20 0.00972 0.43485 0.01450 0.48166 

   
50 -0.01714 0.30067 0.00528 0.15694 

   
100 -0.02643 0.25980 0.00302 0.09551 

   
300 -0.03256 0.23894 0.00178 0.06542 

   
500 -0.03294 0.23809 0.00152 0.06184 

1.5 0.7 0.7 20 0.04505 0.50477 0.14332 0.48358 

   
50 -0.03952 0.38661 0.05062 0.20376 

   
100 -0.06895 0.35003 0.02755 0.14558 

   
300 -0.08842 0.33129 0.01482 0.11663 

   
500 -0.08968 0.33047 0.01228 0.11348 

3 2 0.3 20 0.07919 0.74248 0.42467 2.50725 

   
50 -0.06772 0.36977 0.14719 0.48225 

   
100 -0.11683 0.26725 0.08060 0.20845 

   
300 -0.14900 0.21356 0.04291 0.08492 

   
500 -0.15116 0.21035 0.03535 0.06840 

0.5 2.5 0.5 20 0.00600 1.45497 0.01070 7.93182 

   
50 -0.01834 0.79329 0.00392 1.49445 

   
100 -0.02633 0.62237 0.00237 0.71464 

   
300 -0.03154 0.53211 0.00151 0.37473 

   
500 -0.03192 0.52573 0.00133 0.33229 

Table 1 shows the MLEs of the parameters of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution. The table indicates 
that a negative bias emerges for the parameter 𝜃 as the sample size increases. It is also observed 
that the bias of 𝜃 decreases as the sample size increases, as expected. This interpretation also holds 
for the MSE results of the parameters. 

Real Data Analysis: Failure Times 

In this section, we examine the performance of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼)  distribution on real data 
obtained from a lifetime test of light-emitting diodes (LEDs). Specifically, we focus on the failure 
times of these LEDs. The dataset we consider has also been analyzed by many authors (Birbiçer and 
Genç, 2023; Cheng and Wang, 2012; Dey, Wang and Nassar, 2022). The dataset, which has been 
divided by 10, is as follows: {0.018, 0.019, 0.019, 0.034, 0.036, 0.040, 0.044, 0.044, 0.045, 0.046, 
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0.047, 0.053, 0.057, 0.057, 0.063, 0.065, 0.070, 0.071, 0.071, 0.075, 0.076, 0.076, 0.079, 0.080, 0.085, 
0.098, 0.101, 0.107, 0.112, 0.114, 0.115, 0.117, 0.120, 0.123, 0.124, 0.125, 0.126, 0.132, 0.133, 0.133, 
0.139, 0.142, 0.150, 0.155, 0.158, 0.159, 0.162, 0.168, 0.170, 0.179, 0.200, 0.201, 0.204, 0.254, 0.361, 
0.376, 0.465, 0.897}. The dataset exhibits highly positive skewness and high kurtosis. We compare 
the performance of the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution with that of the Beta, Kumaraswamy 
(Kumaraswamy, 1980), UEHL (Özbilen and Genç, 2022), DUS-Kumaraswamy (Karakaya et al., 2021), 
and DUS-UEHL (Genç and Özbilen, 2023) distributions on this dataset. The distribution parameters 
are estimated using the maximum likelihood method. We assess the goodness of fit of the models 
using the Anderson-Darling test (AD stat) and the corresponding p-value (AD p-value). To compare 
the models’ performance, we compute the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) as  

 AIC = 2𝑘 − 2ℓ(⋅)   and   BIC = 𝑘 log𝑛 − 2ℓ(⋅).  

Here, 𝑘 represents the number of parameters,  𝑛 denotes the number of observations, and ℓ(⋅) 
represents the likelihood function. The analysis results are presented in Table 4. 

Table 2. Fitted Models and Comparison Criteria for LED Failure Times 

 
𝜃 𝜆 𝛼 AIC BIC AD (stat) AD (p-value) 

Beta 1.2351 7.1830 - -107.1718 -103.0509 2.5721 0.0456 
Kumaraswamy 1.0485 6.3951 - -105.8472 -101.7263 2.7912 0.0352 
UEHL 1.1806 4.6215 - -113.1899 -109.0691 2.1490 0.0764 
DUS-Kumaraswamy 0.8966 6.4437 - -104.4895 -100.3686 2.6978 0.0393 
DUS-UEHL 1.0346 4.7631 - -112.0986 -107.9777 2.0765 0.0836 
T-UEHL 1.3153 3.5409 0.8561 -118.5605 -112.3792 1.4384 0.1919 

According to the Anderson-Darling test in Table 2, it can be concluded that the selected distributions 
are suitable for modeling the dataset. Considering the AIC and BIC values, the best fit among the 
compared models is achieved with the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution. Therefore, in modeling LED 
failure times, the  𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution stands out in terms of performance compared to 
other distributions. 

Conclusion 

In this study, a three-parameter  𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution is proposed for modeling failure 
time data based on a transmuted family type transformation on the CDF of the unit exponential half-
logistic distribution. The proposed distribution’s moments, moment-generating function, quantile 
function, and stress-strength reliability have been obtained analytically. A simulation study 
demonstrating the performance of maximum likelihood estimates for the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) 
distribution has been conducted. Real data analysis on time-to-failure data reveals that the 
𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) model outperforms other well-known models in terms of the criteria AIC and BIC. 
Specifically, the 𝑇 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆,𝛼) distribution is compared with the beta, Kumaraswamy, UEHL, 
DUS-Kumaraswamy and DUS-UEHL distributions with bounded supports in the literature and it is 
shown that the proposed distribution has better performance on the real dataset. 

The findings of this article can be extended by applying the transmuted family type transformation to 
the omega distribution. In this context, investigating the impact of other support parameters 
contained within the transmuted family type transformation and the omega distribution could be a 
new research topic. 



Ordu Üniversitesi Bilim ve Teknoloji Dergisi | Ordu University Journal of Science and Technology            2024, 14 (2), 249-260 

258 
 

Author Contribution 

Murat Genç; methodology, software, formal analysis, investigation, visualization, writing - original 
draft. Ömer Özbilen; conceptualization, methodology, validation, writing - review & editing. The 
authors wrote, read and approved the paper together. 

Ethics  

There are no ethical issues related to the publication of this article.  

Conflict of Interest 

The authors declare that there is no conflict of interest. 

ORCID 

Murat Genç  https://orcid.org/0000-0002-6335-3044 

Ömer Özbilen  https://orcid.org/0000-0001-6110-1911 

References 

Adetunji, A. (2023). Transmuted Ailamujia distribution with applications to lifetime observations. 
Asian Journal of Probability and Statistics, 21(1), 1-11. 
https://doi.org/10.9734/AJPAS/2023/v21i1452  

Adetunji, A. A., & Sabri, S. R. (2024). A new two-parameter Poisson-transmuted exponential 
distribution: Properties and applications in count observations. AIP Conference Proceedings, 
3016(1). https://doi.org/10.1063/5.0192459  

Ahsan-ul-Haq, M., Aldahlan, M. A., Zafar, J., Gómez, H. W., Afify, A. Z., & Mahran, H. A. (2023). A new 
cubic transmuted power-function distribution: Properties, inference, and applications. Plos one, 
18(2), e0281419. https://doi.org/10.1371/journal.pone.0281419  

Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. 
Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1401-e1407. 
https://doi.org/10.1016/j.na.2009.01.168  

Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull 
probability distribution. European Journal of pure and applied mathematics, 4(2), 89-102. 
https://www.ejpam.com/index.php/ejpam/article/view/1170  

Birbiçer, İ., Genç, A. İ. (2023). On parameter estimation of the standard omega distribution. Journal 
of Applied Statistics, 50(15), 3108-3124. https://doi.org/10.1080/02664763.2022.2101045  

Bourguignon, M., Leão, J., Leiva, V., Santos-Neto, M. (2017). The transmuted birnbaum-saunders 
distribuition. Revstat Statistical Journal, 15(4), 601-628. 
https://doi.org/10.57805/revstat.v15i4.229  

Cheng, Y.-F., Wang, F.-K. (2012). Estimating the Burr XII parameters in constant-stress partially 
accelerated life tests under multiple censored data. Communications in Statistics-Simulation and 
Computation, 41(9), 1711-1727. https://doi.org/10.1080/03610918.2011.617478  

Cordeiro, G. M., de Castro, M. (2011). A new family of generalized distributions. Journal of statistical 
computation and simulation, 81(7), 883-898. https://doi.org/10.1080/00949650903530745  

Dey, S., Wang, L., Nassar, M. (2022). Inference on Nadarajah-Haghighi distribution with constant 
stress partially accelerated life tests under progressive type-II censoring. Journal of Applied 
Statistics, 49(11), 2891-2912. https://doi.org/10.1080/02664763.2021.1928014  

https://orcid.org/0000-xxxx-xxxx-xxxx
https://orcid.org/0000-xxxx-xxxx-xxx
https://doi.org/10.9734/AJPAS/2023/v21i1452
https://doi.org/10.9734/AJPAS/2023/v21i1452
https://doi.org/10.1063/5.0192459
https://doi.org/10.1371/journal.pone.0281419
https://doi.org/10.1016/j.na.2009.01.168
https://www.ejpam.com/index.php/ejpam/article/view/1170
https://doi.org/10.1080/02664763.2022.2101045
https://doi.org/10.57805/revstat.v15i4.229
https://doi.org/10.1080/03610918.2011.617478
https://doi.org/10.1080/00949650903530745
https://doi.org/10.1080/02664763.2021.1928014


Ordu Üniversitesi Bilim ve Teknoloji Dergisi | Ordu University Journal of Science and Technology            2024, 14 (2), 249-260 

259 
 

Dombi, J., Jónás, T. (2020). On an alternative to four notable distribution functions with applications 
in engineering and the business sciences. Acta Polytechnica Hungarica, 17(1), 231-252. 
http://dx.doi.org/10.12700/APH.17.1.2020.1.13  

Dombi, J., Jonas, T., Toth, Z. E., Arva, G. (2019). The omega probability distribution and its 
applications in reliability theory. Quality and Reliability Engineering International, 35(2), 600-
626. https://doi.org/10.1002/qre.2425  

Genç, M., Özbilen, Ö. (2023). An extension of the UEHL distribution based on the DUS 
transformation. Journal of New Theory, 44, 20-30. https://doi.org/10.53570/jnt.1317652  

Gharaibeh, M. M., Al-Omari, A. I. (2019). Transmuted Ishita distribution and its applications. Journal 
of Statistics Applications Probability, 8(2), 67-81. https://doi.org/10.18576/jsap/080201  

Gui, W. (2017). Exponentiated half logistic distribution: Different estimation methods and joint 
confidence regions. Communications in Statistics-Simulation and Computation, 46(6), 4600-
4617. https://doi.org/10.1080/03610918.2015.1122053  

Gupta, R. C., Gupta, P. L., Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. 
Communications in Statistics-Theory and methods, 27(4), 887-904. 
https://doi.org/10.1080/03610929808832134  

Kang, S. B., & Seo, J. I. (2011). Estimation in an exponentiated half logistic distribution under 
progressively Type-2 censoring. Communications for Statistical Applications and Methods, 18(5), 
657-666. http://dx.doi.org/10.5351/CKSS.2011.18.5.657  

Karakaya, K., Kınacı, İ., Kuş, C., & Akdoğan, Y. (2021). On the DUS-kumaraswamy distribution. 
Istatistik Journal of The Turkish Statistical Association, 13(1), 29-38. 
https://dergipark.org.tr/en/pub/ijtsa/issue/62665/807304  

Khan, M. S., King, R., & Hudson, I. L. (2018). Transmuted modified Weibull distribution: Properties 
and application. European Journal of Pure and Applied Mathematics, 11(2), 362-374. 
https://doi.org/10.29020/nybg.ejpam.v11i2.3208  

Khan, M. S., King, R., & Hudson, I. L. (2020). Transmuted Burr type X distribution with covariates 
regression modeling to analyze reliability data. American Journal of Mathematical and 
Management Sciences, 39(2), 99-121. https://doi.org/10.1080/01966324.2019.1605320  

Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random 
processes. Journal of Hydrology, 46(1-2), 79-88. https://doi.org/10.1016/0022-1694(80)90036-0  

Kuş, C., Karakaya, K., Tanış, C., Akdoğan, Y., Sert, S. & Kalkan, F. (2023). Compound transmuted family 
of distributions: Properties and applications. Ricerche di Matematica, 1-20. 
https://doi.org/10.1007/s11587-023-00808-7  

Naz, S., Al-Essa, L. A., Bakouch, H. S., & Chesneau, C. (2013). A transmuted modified power-generated 
family of distributions with practice on submodels in insurance and reliability. Symmetry, 15(7), 
1458. https://doi.org/10.3390/sym15071458  

Özbilen, Ö., & Genç, A. İ. (2022). A bivariate extension of the omega distribution for two-dimensional 
proportional data. Mathematica Slovaca, 72(6), 1605-1622. https://doi.org/10.1515/ms-2022-
0111  

Rahman, M. M., Al-Zahrani, B., Shahbaz, S. H., & Shahbaz, M. Q. (2020). Transmuted probability 
distributions: A review. Pakistan Journal of Statistics and Operation Research, 16(1), 83-94. 
https://doi.org/10.18187/pjsor.v16i1.3217  

Rahman, M. M., Gemeay, A. M., Islam Khan, M. A., Meraou, M. A., Bakr, M., Muse, A. H., Balogun, O. 
S. (2023). A new modified cubic transmuted-G family of distributions: Properties and different 

http://dx.doi.org/10.12700/APH.17.1.2020.1.13
https://doi.org/10.1002/qre.2425
https://doi.org/10.53570/jnt.1317652
https://doi.org/10.18576/jsap/080201
https://doi.org/10.1080/03610918.2015.1122053
https://doi.org/10.1080/03610929808832134
http://dx.doi.org/10.5351/CKSS.2011.18.5.657
https://dergipark.org.tr/en/pub/ijtsa/issue/62665/807304
https://doi.org/10.29020/nybg.ejpam.v11i2.3208
https://doi.org/10.1080/01966324.2019.1605320
https://doi.org/10.1016/0022-1694(80)90036-0
https://doi.org/10.1007/s11587-023-00808-7
https://doi.org/10.3390/sym15071458
https://doi.org/10.1515/ms-2022-0111
https://doi.org/10.1515/ms-2022-0111
https://doi.org/10.18187/pjsor.v16i1.3217


Ordu Üniversitesi Bilim ve Teknoloji Dergisi | Ordu University Journal of Science and Technology            2024, 14 (2), 249-260 

260 
 

methods of estimation with applications to real-life data. AIP Advances, 12(9). 
https://doi.org/10.1063/5.0170178  

Rastogi, M. K., & Tripathi, Y. M. (2014). Parameter and reliability estimation for an exponentiated 
half-logistic distribution under progressive type II censoring. Journal of Statistical Computation 
and Simulation, 84(8), 1711-1727. https://doi.org/10.1080/00949655.2012.762366  

Samuel, A. F. (2019). On the performance of transmuted logistic distribution: statistical properties 
and application. Budapest International Research in Exact Sciences (BirEx) Journal, 1(3), 26-34. 
https://doi.org/10.33258/birex.v1i3.341  

Seo, J. I., & Kang, S. B. (2015). Notes on the exponentiated half logistic distribution. Applied 
Mathematical Modelling, 39(21), 6491-6500. https://doi.org/10.1016/j.apm.2015.01.039  

Shaw, W. T., & Buckley, I. R. (2007). The Alchemy of Probability Distributions: Beyond Gram Charlier 
Cornish Fisher Expansions, and Skew-Normal or Kurtotic-Normal Distributions. Technical report, 
Financial Mathematics Group, King’s College, London, U.K. 

Tushar, M. T., Rashedi, K. A., Alshammari, T. S., & Rahman, M. M. (2024). Second order transmuted 
kumaraswamy distribution and its related results. European Journal of Pure and Applied 
Mathematics, 17(2), 616-637. https://doi.org/10.29020/nybg.ejpam.v17i2.5069  

Tushar, M. T., Shahbaz, S. H., Rahman, M. M., & Shahbaz, M. Q. (2024). A new cubic transmuted 
inverse weibull distribution: Theory and applications. Pakistan Journal of Statistics and 
Operation Research, 85-98. https://doi.org/10.18187/pjsor.v20i1.4448  

 

 

https://doi.org/10.1063/5.0170178
https://doi.org/10.1080/00949655.2012.762366
https://doi.org/10.33258/birex.v1i3.341
https://doi.org/10.1016/j.apm.2015.01.039
https://doi.org/10.29020/nybg.ejpam.v17i2.5069
https://doi.org/10.18187/pjsor.v20i1.4448

	Introduction
	T-UEHL Distribution
	Characteristic Properties of the T-UEHL(θ,λ) Distribution
	Moments
	Moment Generating Function
	Quantile Function
	Simulation Study
	Real Data Analysis: Failure Times
	Conclusion
	Author Contribution
	Ethics
	Conflict of Interest
	ORCID
	References

