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Research Article 

Abstract − Sunn pest damage is one of the most crucial types of agricultural damage. Authorities 

and farmers are working together to find a cost-effective solution for separating the damaged crops 

from the healthy ones. This challenge can be tackled cost-effectively with emerging technology. Over 

time, the number of researchers focusing on this problem by using various machine learning 

algorithms and image processing techniques has increased. This paper presents an approach using a 

recurrent neural networks-based transformer to identify different varieties of wheat grain that have 

been sunn pest-damaged and healthy. First, wheat grains were separated from each other using 

YOLOv8. Then, the dataset was enriched with different data augmentation techniques, and data-

efficient vision transformers were used to classify sunn pest-damaged and healthy grains. Conversely, 

a high accuracy score of 98.61% was achieved on the augmented dataset while surpassing the 

accuracy score of 93.36% in the raw dataset. This paper's contributions to literature can be divided 

into three categories. In contrast to the previous research, perfectly shaped, broken, and half-wheat 

grains are used to better fit findings in real-life environments such as factory production lines. 

Moreover, this study employs a combination of augmentation techniques, implying that two separate 

augmentation techniques, texture-based and one morphological, were applied to the same image. 

Finally, no study in the available literature uses a vision transformer to classify healthy and sunned 

pest-damaged wheat grains. That leads to using a data-efficient vision transformer algorithm and 

achieving a high accuracy score of 98.61%. 

Keywords − Sunn pest, sunn pest detection, wheat cultivars, wheat grain segmentation, crop quality 

1. Introduction 

The most traditional and significant grain crop is wheat. About 20% of the world's total nutritional calories 

and proteins come from this crop [1] due to being the raw material of various foods. Among the most crucial 

types of wheat are common wheat (Triticum aestivum), used for bread production; durum wheat (Triticum 

durum), used for pasta; and club wheat (Triticum compactum), a softer variety used for making cakes, crackers, 

cookies, pastries, and flours. A small amount of wheat is also utilized by industry to make items, including 

starch, paste, malt, dextrose, gluten, and alcohol [2]. Moreover, wheat is one of the most popular foods 

consumed worldwide. China leads the world in wheat consumption, with India close behind [3]. 

Sunn pests are one of the primary insects that harm wheat grains. The sunn pest causes significant qualitative 
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and quantitative damage in the Middle East and numerous other regions. Damage caused by sunn pests is 

characterized by the yellowing and death of stems and leaves and stunted growth of tips and buds. These pests 

typically feed on other parts of the plant and do not commonly affect flower formation and coloration. When 

sunn pests feed on seeds after they have matured, they may become shriveled, discolored (usually white), or 

hollow. However, if these pests feed on the seeds before they fully develop, it can lead to seed abortion. Both 

adults and nymphs can also feed on dry grains when moisture is present [4]. It has infested about 15 million 

hectares of wheat crops across the Middle East. The sunn pest damages wheat grain during various phases of 

development. The sunn pest sucks out the protein in the wheat grain at this stage, as the grains will lose their 

germination power. Additionally, they lose their qualities as flour. Economic devastation results from this loss 

of quality; in Iran alone, damage to wheat and barley crops exceeding 9 million tons has been reported [5]. 

Integrating advanced technology into the agricultural sector has spurred numerous research endeavors within 

wheat grain analysis, leveraging Machine Learning (ML) methodologies. Farmers eliminate damaged wheat 

grains manually because the machines that do this automatically are prohibitively expensive. Thus, the need 

for cheaper, faster, and more accurate quality control in wheat grains has paved the way for sunn pest damage 

detection [6-8] and classification [9] studies in wheat grains. In addition, since wheat species are used to 

produce different foods, they must not mix. In light of this motivation, researchers have conducted 

classification studies with datasets containing many different wheat species [10-19]. 

Researchers have tackled classification studies using datasets comprising several wheat varieties. The effective 

analysis of wheat grains is facilitated through the implementation of segmentation techniques, particularly in 

intricate tasks such as isolating individual wheat grains from image backgrounds [14, 20] or from each other 

[9], mainly when presented in bulk as in our dataset [21]. Besides, researchers have used segmentation 

algorithms to classify different species of wheat grains [22]. In Computer Vision (CV), the variety and 

abundance of data are one of the main factors affecting model training performance. Therefore, researchers 

have diligently expanded and enriched their datasets by strategically employing data augmentation techniques 

[8, 22-24] specifically tailored to address the intricacies of wheat grain analysis. The culmination of these 

extensive studies has yielded compelling results, demonstrating the model's capacity to distinguish between 

damaged wheat attributed to sunn pests and healthy wheat with impressive accuracy. Such accomplishments 

hold profound significance within the agricultural sector, where the reliable classification of wheat grains is 

pivotal. 

In this study, our primary goal was to achieve a highly accurate classification of sunn pest-damaged and healthy 

grains in various wheat grain species with the Data-efficient Image Transformer (DeiT) algorithm. To conduct 

our experiments, the wheat grain dataset previously introduced in our research was leveraged [21]. 

Additionally, the aim to deepen our comprehension of wheat grain features by employing the You Only Look 

Once version 8 (YOLOv8) model for segmentation on a dataset containing bulk wheat grains was pursued. As 

part of this segmentation process, each wheat kernel was individually recorded as a separate image, leading to 

the generation of a novel and enriched dataset through diverse data augmentation techniques. Our study 

contributes to the literature in various ways by improving the existing studies on wheat grain species and sunn 

pest-damaged wheat grain classification. 

i.Our study provides an adaptable model for grains not in the whole wheat form in a production line by 

including broken and partial wheat grains in the dataset. 

ii.In addition to the data augmentation techniques applied to the dataset separately in the literature, the model's 

performance was increased by combining various techniques to create a dataset that can be adapted to many 

environmental conditions, such as lighting conditions, image contrast, and the presence of shadows. This 

versatile approach allows our model to perform effectively in various scenarios. 

iii.Our study is the first in the available literature to examine sunn pest damage to different wheat species. 

iv.Finally, the approach we presented is a pioneer in applying Transformer-based models in wheat grain 

analysis, with an accuracy score of 98.61%, and it is the first study of such an approach. 
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The remainder of this paper is structured as follows: Section 2 presents related works from reviewing the 

literature in the subsections Augmentation, Segmentation, and Classification. Section 3 describes the dataset 

used in this study and the YOLOv8 model used for the wheat grain segmentation. Section 4 encompasses a 

detailed explanation of the data augmentation techniques used. Section 5 presents an exploratory data analysis 

of the augmented dataset. Section 6 explains the sunn pest damage classification in different wheat species. 

Section 7 contains the analysis and comparison of the results of the presented experiment in the subsections 

Segmentation, Augmentation, and Classification. Section 8 encapsulates the conclusions drawn from the study 

and outlines potential avenues for future research. Last of all, the final section explains the future work. 

2. Related Work 

Upon reviewing the literature, it became evident that several methods exist for resolving the classification issue 

between sunn pest-damaged and healthy grain. The authors have used various segmentation models and 

augmentation techniques to achieve a higher accuracy score. This section focuses on various augmentation 

techniques, segmentation methods, and classification problems. 

2.1. Augmentation 

The reviewed literature demonstrates the necessity for more enormous datasets, which led to various 

augmentation methods. The authors conducted diverse studies about this specific problem. 

Shen et al. [22] utilized a dataset of 130 images that included damaged but beneficial wheat grains, such as 

unsound grains, injured grains, speckled grains, broken grains, germinated grains, and moldy grains. 

Subsequently, they applied five data augmentation methods to process the images to enhance recognition 

accuracy and deliberately highlight local characteristics and regions of interest. These methods included 

brightness reduction, noise addition, random point insertion, translation, and flipping. Bernandes et al. [23] 

sampled 1200 seeds, with 600 seeds infected by Fusarium Head Blight (FHB) and 600 healthy seeds. In this 

study, signs of fungal colonization in wheat seeds due to FHB infection were characterized by roughness, a 

wrinkled appearance, and pink-colored tissues. To avoid overfitting during hyperparameter optimization, they 

randomly rotated images by up to 30° and applied a 20% variation in height, width, offset, and zoom. 

Furthermore, they rotated half of the images horizontally and used the closest strategy to fill in any newly 

created pixels that might appear after rotation or width/height shifting. Unlersen et al. [24] applied rotation and 

zoom operations to wheat grain bulk samples. First, they randomly determined an angle to rotate the image 

between -30 to +30 degrees. Then, the zoom operation was executed with a randomly determined rate between 

-10% and +10% on the rotated images. After the data augmentation, they obtained 3200 images, 800 from 

each wheat variety. In their study, Sabanci et al. [8] rotated and applied Gaussian noise to cropped wheat grain 

images. They also adjusted the zoom, size, and positioning of the images. This process expanded the dataset, 

yielding 1200 wheat grain images, 600 of which are healthy samples and 600 of which are sunned pest-

damaged samples. Out of these, 1000 images were allocated for training deep learning models, while the 

remaining 200 were set aside for testing. 

2.2. Segmentation 

Segmentation is an image processing technique that divides an image into meaningful parts, enabling detailed 

analysis. In agriculture, this technique helps to identify different wheat species and detect damage from sunn 

pests or other bugs. This technique outlines grain boundaries to distinguish healthy and damaged grains. While 

common in corn, beans, and coffee grain analysis, specific studies on wheat are less frequent.   

Researchers have studied various segmentation techniques to better examine the characteristics of wheat 

grains. Gao et al. [25] present a study to detect unsound wheat kernels based on an improved Residual Neural 

Network (ResNet), six kinds of wheat, including the sound kernel, broken kernel, sprouted kernel, injured 
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kernel, moldy kernel, and spotted kernel are considered as the samples. The designed two-kernel adhesion 

wheat segmentation algorithm based on a concave mask exhibits high accuracy, with an error rate of 0.93% 

for 9988 wheat grains. Sharma and Singh [15] utilized Artificial Neural Networks (ANN), Support Vector 

Machine (SVM), partial least squares discriminant analysis, Random Forest (RF), and K-Nearest Neighbor 

(KNN) to classify wheat seed varieties using near-infrared hyperspectral imaging. The ANN model with 

Savitzky-Golay second derivative preprocessing achieved the highest accuracy of 97.77%. 

2.3. Classification 

There are two different kinds of wheat classification issues: The classification of wheat species and the 

classification of damaged or healthy grains. This section investigates both approaches.  

Considering damage classification problems, the research conducted by Motie et al. [26] utilized SVM with a 

radial basis function kernel to achieve an accuracy exceeding 90% in differentiating sunn pest-infected wheat 

clusters from healthy plants using near-infrared images. Abbaspour-Gilandeh et al. [27] achieved 100% 

accuracy in discriminating healthy wheat grains from grains infected with Fusarium using SVM. Fazel-Niari 

et al. [28] studied various classification algorithms, including linear and quadratic statistical discriminant 

analysis and SVM, and achieved an average accuracy of 97.6% in classifying wheat grain groups. Shedole et 

al. [17] developed a Convolutional Neural Networks (CNN) based classification system for wheat grain using 

900 images. The Decision Tree and Multilayer Perceptron classifiers achieved 98.7% accuracy, while the 

Naïve Bayes classifier had a lower precision of 94.22%. Additionally, the validation accuracy of the CNN 

model showed strong performance, ranging from 94% to 96%. Kaya and Saritas [29] developed a classification 

system using ANN for classifying type-1252 durum wheat kernels based on their clarity, achieving a maximum 

classification accuracy of 93.46%. In a study conducted by Erkinbaev et al. [30] achieved overall classification 

accuracies ranging from 83% to 100% using spectral data and ML techniques with a unified heuristic approach. 

Zhang and Ji [31] classified wheat grains into different states using hyperspectral imaging, with an SVM model 

achieving an average recognition accuracy of 98.5%.  

Using pre-trained models such as Resnet, Alexnet, or Densely Connected Networks (DenseNet), which are 

trained with large datasets, is often more advantageous than training a model from scratch. In the literature, 

authors used a transfer learning approach to achieve higher accuracy scores in wheat grain classification 

problems. They used pre-trained models directly or combined different pre-trained model architectures with 

their models [8, 9, 24, 32]. Table 1 summarizes related work, including whether the paper is used as an 

augmentation, segmentation, or classification reference. Then, there is a studies column, a dataset column that 

shows a summary of the dataset, a methods column, and a column that explains the essential outcomes. 

 

Table 1. Literature summary 

Category Studies Dataset Methods Used Key Outcomes 

Augmentation 

[22] 
130 wheat grain images 

(damaged and unsound) 

Brightness reduction, noise addition, 

random point insertion, translation, and 

flipping 

Enhanced recognition accuracy by 

emphasizing local characteristics. 

[23] 

1200 wheat grain images 

(600 FHB infected, 600 

healthy) 

Random rotation (up to 30°), height/width 

shifting (20%), horizontal flip, closest 

pixel strategy 

Avoided overfitting, characterized 

fungal colonization. 

[24] 
3200 wheat grain bulk 

images 

Rotation (-30° to 30°) and zoom (-10% to 

10%) 

Processed 800 images per wheat 

variety. 

[8] 
1200 wheat grain (600 

healthy, 600 damaged) 

Rotation, Gaussian noise, zoom, resizing, 

positioning adjustments 

Expanded dataset for training deep 

learning models. 
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Table 1. (Continued) Literature summary 

Category Studies Dataset Methods Used Key Outcomes 

Segmentation 

[25] 9988 wheat grain images (6 types of kernels) 

Improved ResNet, concave 

mask-based two-kernel 

adhesion segmentation 

algorithm. 

Achieved an error rate of 

0.93% in segmentation. 

[15] 
Near-infrared hyperspectral imaging (15 different 

wheat varieties; 936 wheat from each variety) 

ANN, SVM, Random 

Forest, KNN with 

Savitzky-Golay second 

derivative preprocessing 

ANN model achieved the 

highest accuracy of 97.77%. 

Classification 

[26] 
Near-infrared images of wheat clusters (Sunn-

pest damaged and healthy wheat grains) 

SVM with radial basis 

function kernel 

Over 90% accuracy in 

classifying sunn pest-

infected wheat clusters. 

[27] 
Wheat grains (300 healthy vs. 300 Fusarium 

infected) 
SVM Achieved 100% accuracy. 

[28] 
Wheat grain groups (7 different wheat types, a 

total of 21000 single wheat grains) 

SVM, linear, and quadratic 

discriminant analysis 

Achieved an average 

accuracy of 97.6%. 

[17] 

900 wheat grain images (dataset includes four 

classes: good grain, damaged grain, broken grain, 

and foreign particles. 

CNN, Decision Tree, 

Multilayer Perceptron and 

Naïve Bayes 

CNN model accuracy 

between 94% and 96%, 

Decision Tree/MLP 98.7%, 

Naïve Bayes 94.22%. 

[29] Durum wheat kernels ANN 
Maximum classification 

accuracy of 93.46%. 

[30] 
Spectral data (180 Healthy kernels, 60 Fusarium-

damaged kernels, and 60 Ergot-damaged kernels) 

ML techniques with a 

unified heuristic approach 

Classification accuracy 

ranges from 83% to 100%. 

[31] 

Hyperspectral imaging of wheat grains (220 

healthy wheat grains, 220 germinated wheat 

grains, 220 mildewed wheat grains, and 220 

shriveled wheat grains (wheat grains infected 

with fusarium head blight) 

SVM 
Achieved average accuracy 

of 98.5%. 

3. Data Collection 

The Related Work section explains that the authors handle wheat grain differently. These datasets vary in many 

aspects, including being created in controlled or uncontrolled environments, camera models and equipment in 

the shooting environment, camera angle, direction and type of wheat, and the focused problem such as species 

classification or damaged region detection. The dataset used in this study was prepared for the classification 

stage after preprocessing and segmenting different types of wheat grains affected by the sunn pest, presented 

in [21]. 

3.1. Raw Wheat Grain Dataset  

In [21], a new dataset was introduced, which was used to develop an image classification model for classifying 

wheat grain species as Damaged and Healthy. The dataset includes a wide variety of wheat and covers six 

species: Bezostaja, Müfitbey, Nacibey, Sönmez-2001, Tosunbey, and Ekiz, the species made in Türkiye. 

Wheat grains differ in various parameters, such as width, length, color, stain condition, and wrinkled texture. 

The dataset comprises 83 images of sunn pest damage and 87 images of healthy wheat grains. Additionally, 

2502 healthy and 1063 damaged wheat grains were extracted from 170 bulk wheat grain images. Wheat grains 

vary in width, length, color, stain status, and wrinkled texture. The distribution of the cultivars is displayed in 

Table 2. 
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Table 2. Distribution of wheat grains 

Cultivar Healthy Damaged 

Bezostaja 427 107 

Müfitbey 311 120 

Nacibey 342 203 

Sönmez-2001 370 120 

Tosunbey 322 183 

Ekiz 730 330 

Due to the wheat grain dataset being multiclass and may be used for variety classification, it stands out from 

others due to its diverse species and condition, including broken, sunn pest damaged, and healthy wheat grain. 

However, the dataset is appropriate for detecting sunn pest damage when the condition of sunn pest damage is 

considered. Furthermore, the dataset contains grains that come into contact with one another, increasing its 

applicability to real-world issues. As can be seen, the dataset includes a range of wheat species that are 

impacted by sunn pests, demonstrating that the promised dataset is appropriate for many ML tasks, including 

segmentation, detection, and classification. 

3.2. Wheat Grains Segmentation with YOLOv8 

The dataset used in our study is the most crucial contribution that distinguishes the study from other studies in 

the literature. Although studies conducted with wheat grains in a particular order, facing the same direction, 

and of the same size give promising accuracy scores, it is not expected that the ML model will be able to solve 

the problem correctly in the face of wheat grains scattered in the real-life production line. For this reason, some 

processes were applied to the raw dataset to bring a new perspective to academic studies and to offer realistic 

solutions that can be adapted to real life in wheat agriculture. 

In the segmentation process, the dataset was split into 60%, 20%, and 20% as train, test, and validation, 

respectively. The split 60%-20%-20% is commonly used to ensure a balanced model training and evaluation 

approach. The 60% training set provides enough data for the model to learn underlying patterns effectively. 

The 20% validation set helps tune the model's hyperparameters and avoid overfitting. The 20% test set is 

reserved to evaluate the model's generalization performance on unseen data, ensuring a reliable assessment of 

its accuracy. Then, to transfer the data to the model during training, the file paths of the train, test, and 

validation sets were given to the file data.yaml, and the class name was set as wheat.  

The model YOLOv8 was utilized for the training process. YOLOv8, known for its efficiency and accuracy in 

object detection tasks, is particularly suitable for our problem due to its ability to handle varying object scales 

and dense environments. The default parameters of YOLOv8 were used, which include an initial learning rate 

of 0.01, momentum of 0.937, and weight decay of 0.0005. 

YOLOv8's architecture consists of a backbone network that extracts essential features from input images and 

a head network that predicts bounding boxes and class probabilities. The model is pre-trained on the Common 

Objects in Context (COCO) dataset, allowing it to leverage transfer learning for better initial performance on 

our wheat grain dataset. 

In the training process, YOLOv8's advanced anchor-free detection mechanism plays a significant role in 

accurately predicting the locations and sizes of wheat grains, which can vary significantly in a production line 

setting. After each epoch, the model's performance was continuously monitored by evaluating the Mean 

Average Precision (mAP) on the validation set. Train results, including precision, recall, and mAP scores, will 

be discussed in the Results section, comprehensively evaluating our model's performance. 
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4. Data Augmentation 

After the segmentation process, augmentation techniques were applied to segmented wheat grains to expand 

our data by a factor of seven. 15 different augmentation methods were applied. Initially, two distinct kinds of 

augmentation were used: morphological and texture-based.  

The morphological augmentation techniques include;  

i.Affine: Scales images to a value of 40 to 80% of their original size. 

ii.Fliplr: Reflects photos horizontally. 

iii.Flipud: Reflects photos vertically. 

iv.Furthermore, texture-based augmentations contain; 

v.Add to Brightness: This function adds a constant value to an image's brightness. The range is set from +30 

to -30. 

vi.Linear Contrast: Adjusts the contrast of each image by 127𝛼(𝑣 − 127), where 𝑣 represents the pixel value, 

and alpha is uniformly sampled (once per image) from the interval [0.4, 1.6]. 

vii.Multiply Saturation: The augmenter first converts images to Hue Saturation Value (HSV) colorspace, 

doubling the pixel values in the H channel before converting back to RGB. The range is determined between 

0.5 and 1.5. 

In addition to these six techniques, all of them are combined. Firstly, one from morphological and one from 

texture-based are picked to acquire a combined augmentation technique. The first method is used, followed by 

the second. For instance, if both Fliplr and Linear Contrast are picked, the image is flipped horizontally first, 

and then linear contrast is applied. With this process, nine more augmentation techniques are obtained. In Table 

3, the combined augmentation techniques are shown. 

Table 3. Combined augmentation techniques 

Morphological Texture-Based Combined 

Affine (AF) Add To Brightness (BR) AFBR 

Affine (AF) Linear Contrast (LC) AFLR 

Affine (AF) Multiply Saturation (MS) AFMS 

Flipud (FUD) Add To Brightness (BR) FUDBR 

Flipud (FUD) Linear Contrast (LC) FUDLR 

Flipud (FUD) Multiply Saturation (MS) FUDMS 

Fliplr (FLR) Add To Brightness (BR) FLRBR 

Fliplr (FLR) Linear Contrast (LC) FLRLC 

Fliplr (FLR) Multiply Saturation (MS) FLRMS 

Table 3 shows the new combined augmentation techniques and what is used to create them. When 

augmentation, morphological, and texture-based techniques are combined in Table 3, 15 augmentation 

techniques are obtained. None of these augmentation techniques were utilized on a single wheat grain image. 

Initially, six were selected for every image. For each image, 2 out of 3 morphological and texture-based 

augmentation techniques and 2 out of 9 combined techniques were selected. First, two morphological 

augmentations are performed, chosen at random, for each image. Subsequently, two texture-based techniques 

were picked randomly and applied, and finally, two combined techniques were selected randomly and 

implemented. Ultimately, each image has been featured seven times, including itself. In Figure 1, the rows 

represent texture-based augmentations, and the columns represent morphological augmentations. Their 

crossing image illustrates the combination of these two augmentation techniques. As a result, the raw image 

and 15 images representing the 15 different augmentation techniques were used. 
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Figure 1. Image before and after each augmentation technique 

Ultimately, when the data is augmented with the raw images, there are 24759 images. For each of the wheat 

varieties, the augmented image count without the raw images is as follows: 

i.Bezostaja: 3144  

ii.Müfitbey: 2538 

iii.Tosunbey: 2988 

iv.Nacibey: 3336 

v.Ekiz: 6222 

vi.Sönmez-2001: 2994 

 
Figure 2. Augmented image count according to wheat varieties 
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In Figure 2 the distribution of all augmented image counts according to their relative wheat varieties has been 

illustrated. The combined augmentation techniques' counts are lower than the initial augmentation techniques' 

counts because 4 out of 6 in the initial ones were picked. However, in the combined techniques, 2 out of 15 

were picked. So, the probability of choosing the same augmentation technique is less in combined 

augmentation methods. Conversely, the Ekiz varieties have a far larger count than the others since their raw 

version likewise has a higher count, and the difference widens when it is increased 6 times. 

Wheat grains were segmented from the raw image, then these augmentation methods were applied. Following 

the augmentation process, zero padding was added based on the segmentation coordinates of the wheat grains. 

At the end of this process, all of the wheat grains were extracted one by one with a black background, leading 

to the final dataset. 

5. Exploratory Data Analysis  

In this section, exploratory data analysis is presented in our augmented dataset. In our research, graphs 

displaying brightness for wheat damaged by sunn pests against healthy wheat were carefully examined. As can 

be seen in Figure 3, a significant disparity in average brightness values was discovered. The damaged wheat 

grains had an average brightness of 85.23, compared to 116.40 for the healthy wheat grains. This significant 

difference shows that brightness may effectively distinguish between the two conditions. Moreover, 

uncommon brightness levels, or outliers, were examined in damaged and healthy wheat. Despite finding 

extreme levels, it is seen between the 0-200 range, they distribute similarly. This means that using only 

brightness might not be enough to separate damaged and healthy wheat, which presents a challenge, for 

instance, classification in wheat grain condition. 

 
Figure 3. Brightness-frequency histogram 

6. Sunn Pest Damage Classification in Different Wheat Species  

When the literature is examined, it is seen that CNN and state-of-the-art models are preferred in studies that 

use image data. Since this transformer-based algorithm is not available in the literature, the DeiT model with 

the transfer learning approach was used in our research. Touvron et al. [33] assert that the DeiT represents a 

significant advancement in training Transformers to enhance CV performance. Despite CNN being the 

prevailing method for CV tasks in the past eight years and benefiting from numerous enhancements and 

adjustments, DeiT's performance is already on par with them. DeiT stands for data-efficient transformer, which 

focuses on making a convolution-free model trained on less data and can outperform CNN-based algorithms. 

DeiT model pre-trained and fine-tuned on ImageNet-1k at resolution 384x384. The last layer of the DeiT 

model was frozen, and seven layers were added with fine-tuning: Linear, Relu, and Dropout. Figure 4 shows 

the model architecture and classification process. 
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Figure 4. Our model architecture 

Our experiments were conducted with two datasets: segmented wheat grains and expanded with augmentation 

techniques of these data. In both scenarios, the datasets' train, test, and validation sets were split, with 

proportions of 80%, 20%, and 20%, respectively. The learning rate is 0.00005, the batch size is 128, and the 

epochs are 200. During the training stage, early stopping was used to prevent the model from memorizing the 

training data and from overfitting the test data. Early stopping was controlled according to validation loss, with 

a patience coefficient of 3. The results of both scenarios were discussed comparatively in the Results section. 

7. Results  

7.1. Segmentation 

In the wheat segmentation process, YOLOv8 was utilized to segment wheat grains from the images. This 

model was chosen for its advanced object detection and segmentation capabilities, making it well-suited for 

tasks involving dense and overlapping objects such as wheat grains. YOLOv8 represents a significant 

advancement in real-time object detection and segmentation, building upon the solid foundation laid by 

previous versions of the YOLO family. The defining feature of YOLO models is their ability to predict multiple 

bounding boxes and corresponding class probabilities in a single forward pass through the neural network. 

This design ensures that the model operates with exceptional speed and efficiency, making it suitable for real-

time applications. 

The YOLOv8 model incorporates several state-of-the-art enhancements for superior performance. The 

network architecture is significantly deeper and wider, capturing complex features and finer details. Advanced 

feature pyramid networks (FPN) combine features from different layers, improving precision and recall by 

detecting objects at various scales. YOLOv8 also uses an optimized anchor-free detection strategy to directly 

predict object centers and scales, reduce computational complexity, and enhance accuracy, especially for small, 

densely packed objects. Cross Stage Partial Network (CSPNet) also improves gradient flow and reduce 

computational load, leading to more efficient training and inference while maintaining high accuracy. 

The high precision and recall values indicate that the YOLOv8 model is highly effective in correctly 

identifying and segmenting wheat grains within the test images. The precision score reflects the model's 

accuracy in detecting true positives among the identified grains. In contrast, the recall score indicates the 

model's ability to identify all actual grains in the images. The mAP values comprehensively measure the 

model's performance. The mAP50 value, which considers a single Intersection over the Union (IoU) threshold 

of 50%, shows an impressive score of 99.4%. This high score signifies that the model can accurately detect 
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and segment wheat grains with a moderate overlap threshold. The mAP50-95 value averages the precision 

across multiple IoU thresholds from 50% to 95%, slightly lower at 93.3% for bounding boxes and 91.3% for 

segmentation masks. This indicates that while the model performs exceptionally well at moderate thresholds, 

there is a slight decrease in performance at higher thresholds. This decrease could be attributed to the 

challenges in segmenting wheat grains with fine details or densely packed regions. 

7.2. Augmentation 

When the segmentation process was finished, different augmentation techniques were performed. There are 

morphological augmentation techniques, texture-based augmentation techniques, and combined augmentation 

techniques consisting of one morphological and one texture-based technique. When the augmentation is 

considered, it is seen that performing augmentation techniques dramatically increased the accuracy by %5 -

from %93.36 to %98.61-. The reason for the increase is not only the higher data number but also the chosen 

technique. Due to some of the augmentation methods, the grain color gets brighter, as a result, the sunn pest 

damage point has become more visible, and thus accuracy increased. In contrast, the sunn pest damaged point 

and the color of the grains both go darker in the Multiply Saturation method; nevertheless, the sunn pest 

damaged point becomes so much darker that it becomes more noticeable. On the other hand, in Linear Contrast, 

by enhancing the contrast of the images, the model can better distinguish between damaged and undamaged 

grains, leading to higher accuracy and more reliable predictions. 

7.3. Classification  

After the augmentation stage, two experiments were performed on the raw and augmented datasets. 

Determining optimal hyperparameters and layer values added to the end of the DeiT model was a critical step 

before model training. Parameters in the linear layer input sizes 1024, 512, 256, and 128 were tested to 

maximize classification accuracy. Additionally, dropout layer coefficients were tested as 0.20, 0.35, and 0.50 

for both models. In both cases, the best parameters were specified as an input size 512 and a dropout coefficient 

of 0.50. The models trained on the raw and augmented datasets utilized a V100 GPU, with training durations 

of 10359.64 and 1644.41 seconds, respectively. As a result of the binary classification, a test accuracy score 

of 93.36% and 98.61% were achieved. The precision score was obtained as 99.39%, recall as 98.62%, 

specificity as 98.56%, F1-Score as 99.00%, and Matthews Correlation Coefficient (MCC) as 96.67%. In the 

model trained with the raw dataset, these results were 95.93%, 95.01%, 95.47%, 93.60%, and 84.58%, 

respectively. Comparative results between these models are shown in Figure 5. 

 
Figure 5. Raw and augmented results comparison 
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As shown in Figure 5, accuracy, precision, recall, specificity, F1 score, and Matthews Correlation Coefficient 

(MCC) are the six critical metrics used to compare the performance analysis between raw and augmented data. 

Each axis represents one of these measures, ranging from 80 to 100. The blue polygon shows the performance 

of the raw data, while the green polygon shows the augmented data. The raw data performs admirably with 

accuracy at 93.36%, precision at 95.93%, recall at 95.01%, specificity at 95.47%, F1 score at 93.60%, and 

MCC at 84.58%. The augmented data, however, greatly improves these metrics: MCC increases to 96.67%, 

accuracy to 98.61%, precision to 99.39%, recall to 98.62%, specificity to 98.52%, and F1 score to 99.00%. 

The enhanced performance of the augmented data across all measures is evident in this visualization, 

suggesting that data augmentation is a valuable technique for improving the predictive powers of the model. 

The green polygon highlights these benefits's more extensive area than that of the blue polygon, which supports 

the use of data augmentation approaches in ML problems. 

The impressive performance of the self-attention mechanism in the Transformer-based Diet model lies behind 

the high accuracy score. Self-attention has been essential in identifying fine distinctions between sunn pest 

damage and healthy wheat grains. The self-attention mechanism helps the model handle long-range 

dependencies. This makes it more effective in understanding the relationships between different parts of wheat, 

ultimately leading to a more comprehensive classification structure. 

8. Conclusion 

One of the most critical forms of damage in agriculture is caused by sunn pests. Detecting sunn pest damage 

in wheat grains is a task that is both time-consuming and costly when done manually. Authors have studied 

this issue to make detecting sunn pest damage easier and classify healthy and damaged wheat grains, which is 

the purpose of our paper. This paper includes three critical processes: wheat grain segmentation, data 

augmentation, and classification with DeiT. The wheat grains were identified using YOLOv8 and cropped 

from the base image in the segmentation part. After that, 15 distinct augmentation methods were applied to 

these grains. These methods enrich the dataset and make it challenging for the model to understand the 

difference between healthy and damaged conditions. For this reason, significant success was achieved as 

results with a high accuracy score of 98.61% on the augmented dataset were yielded by our Transformer-based 

model, while 93.36% was obtained on the raw dataset.  

Our contributions include a combination of augmentation techniques, implying that two separate augmentation 

techniques, texture-based and morphological, were applied to the same image. Additionally, whole and 

broken/half grains are included in the dataset, making it more suitable for real-life production bands. 

Furthermore, -to the best of our knowledge- using a multiclass dataset makes it the first study to work on a 

multiclass wheat grain dataset for sunn pest damage detection. Lastly, implementing the RNN-based algorithm 

in the evaluation process is one of the most important contributions of our study. 

In future research, expanding the dataset and exploring alternative models and algorithms to enhance the 

model's accuracy would be beneficial. This exploration could include looking beyond RNN-based algorithms 

and considering architectures like CNNs or hybrid models that merge CNNs with Transformers. These 

alternatives might more effectively capture spatial features, complementing the Transformer's strength in 

handling temporal and sequential data. Additionally, exploring Graph Neural networks might offer a more 

intricate way to model the relationships between grain structures. Adopting such approaches could lead to new 

ways to improve the durability and efficiency of systems designed to classify damage caused by sunn pests. 
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