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Understanding the causes of traffic collisions is crucial for road designers, engineers, and policymakers to 
improve road safety at intersections. Design standards aim to minimize the severity and frequency of collisions. 
However, the factors that may affect traffic collisions are extensive. Their causal mechanisms can be complex, 
with feedback loops between traffic flows, visibilities, speeds, risk perception, speed limits, and other geometric 
characteristics of intersections. Structural Equation Modelling (SEM) is commonly used in behavioural sciences 
to understand complex causal paths, including travel behaviour studies. However, SEMs cannot robustly 
represent non-normally distributed datasets and rare count events, and little literature exists on their application 
to road traffic collisions. To address this limitation, this paper proposes a piecewise Structural Equation 
Modelling (pSEM) technique, which can handle count responses (i.e. number of collisions) to represent the 
complex causal relationships that lead to collisions. Application of pSEM technique is compared with 
conventional SEM. The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values 
demonstrate that pSEM is a more robust approach to model collisions at unsignalized intersections than 
conventional SEM. In terms of prediction ability referring to explained variance, pSEM is much more robust than 
SEM. Piecewise Structural Equation Modelling is, therefore, recommended for policy implications.  
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Introduction 

A wide range of research has been undertaken worldwide 
to understand and address road traffic collisions at 
unsignalized intersections. In the United Kingdom, priority-
controlled intersections account for 49% of urban accidents, 
with T or staggered intersections accounting for 59% of these 
[1]. Many people were killed in these collisions, of which 66% 
were drivers, cyclists, or motorbike riders, 19% were 
passengers, and 15% were pedestrians [1]. 

Collision prediction models (CPMs) serve a variety of 
purposes, including estimating the anticipated number of 
collisions based on traffic volume and identifying factors 
related to the occurrence of collisions, such as geometric, 
environmental, and operational variables. To accurately 
determine the frequency and severity of collisions and reduce 
their likelihood, it is essential to comprehend the causal 
mechanisms that connect road conditions, environmental 
factors, drivers, vehicles, temporal variables, and operations to 
collisions [2–5]. By proactively utilizing CPMs, potential 
collision risks can be assessed, and collision-prone locations 
can be identified [6,7]. 

CPMs have evolved over decades from an early approach 
with multivariate linear regression analyses of traffic collisions 
to the most used method; generalised linear regression 
modeling (GLM) and most recently, machine learning. The 
logic behind this evolution lies in the nature of traffic collisions 
that are rare and non-normally distributed count responses. 
GLM seems convenient; however, it cannot overcome 
complex hierarchical interplay between explanatory variables, 
such as in the case of collisions. To represent such complexity, 
the conventional structural equation model using multivariate 
linear regression can be used using AMOS SPSS or other 
analytical software. However, the model treats the count 
response as a continuous variable that will cause unreliable 
results due to the nature of collisions [8]. On the other hand, 
the machine learning approach can handle complex problems, 
but interpreting results are problematic, due to their “black 
box” nature. Therefore, there is a need to have a new 
analytical regression method that can combine the structural 
equation model for representing complex and hierarchical 
interplay and GLM that accounts for non-normally distributed 
collisions.   

This paper developed a piecewise Structural Equation 
Model (pSEM) to road safety as a new analytical method, 
overcoming drawbacks of previous techniques. The new pSEM 
model is compared with the conventional SEM by analysing 
traffic collisions at 120 priority intersections in the city of 
Portsmouth, UK. 

The remainder of this paper begins by summarising the 
current literature's findings regarding collision prediction 
models at unsignalized intersections. Commonly used 
regression models relevant to this paper are described, along 
with their advantages and disadvantages. Then, the 
mathematical background of path analysis as a family of 
structural equation modeling is explained. In the method 
section, after briefly describing the data for this paper, 
piecewise Structural Equation Modeling is formulated, and a 
causal diagram of the model is illustrated compared to a 
standard SEM. The results are discussed and concluded. 

Literature Review 

Studies on unsignalized intersections 
Road traffic collisions (RTC) at unsignalized intersections 

are a major concern around the world, and several approaches 
have been used to better understand their causes.  

The approaches on modeling traffic collision of priority 
three-armed intersections can be broadly categorized into 
three main categories: observational research, experimental 
research and microsimulation studies as illustrated in Figure 1. 

The first category is observational research, which can be 
further divided into three sub-groups. The first group aims to 
determine the frequency or number of collisions. For example, 
Kitto [9] conducted a study in Wellington, New Zealand to 
examine the effect of physical and site characteristics on 
collisions. Similarly, Bonneson [10] examined unsignalized 
intersections in the USA (Utah, Minnesota, Illinois, etc.) to 
develop a model relating intersection traffic demand to 
collision frequency. As collisions are rare events and non-
negative count data, the most commonly used approach to 
modeling RTCs was Generalized Linear Modeling (GLM). Other 
studies have developed collision prediction models based on 
traffic flow to assess safety at unsignalized intersections, such 
as Salifu [6], who studied two cities in Ghana, and Kulmala [11], 
who developed separate models for different types of 
collisions in Finland.  

Figure 1. Categorization of studies on priority three-armed intersections. 
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The second approach to understanding RTCs is to 
determine the severity of collisions rather than the frequency. 
For instance, Chen et al. [12] applied logistic regression to 
examine the contribution of various factors to collision severity 
in Victoria, Australia, while Haleem and Abdel-Aty [13] 
examined the severity of injury collisions at unsignalized 
intersections in the USA. Both studies found that several 
variables, such as traffic volumes, the number of lanes, and 
driver age, were significant in determining collision severity.  

Statistical models are useful for drawing conclusions and 
establishing relationships, but they generally have poor 
predictive performance due to assumptions about the collision 
data [14]. Researchers have used artificial neural networks 
(ANNs) to classify collision severity, such as Akin and Akbas 
[15], who predicted intersection collisions in Michigan State, 
USA. 

The third approach to traffic safety at junctions is hot-spot 
identification. Sayed and Rodriguez [7] attempted to develop 
collision prediction models to identify collision-prone locations 
of urban unsignalized intersections on Vancouver Island, 
British Columbia, using the Empirical Bayesian (EB) method. 

Category two includes experimental research, such as 
Polus [16] who implemented a before-and-after study to 
investigate whether stop signs differ from yield signs in terms 
of their effect on traffic collisions at unsignalized intersections. 

Category three includes microsimulation studies based on 
traffic conflict techniques developed by General Motor 
Laboratory. Traffic conflicts refer to observed situations where 
two or more road users approach a collision course, which 
could result in a collision if no one acts to avoid it. Traffic 
conflict indicators, such as time to collision (TTC) and post-
encroachment time (PET), can be used to assess traffic safety. 
Microsimulation software, such as VISSIM and AIMSUN, can 
be used with the Surrogate Safety Assessment Model (SSAM) 
to classify whether PET and TTC have critical conflict values.  

Caliendo et al. [17] attempted to predict the number of 
collisions by using the number of critical traffic conflicts 
predicted. Pawar, Gore, and Arkatkar [18] investigated the use 
of accepted gaps to estimate the likelihood of a collision at 
unsignalized T-intersections. The best-fitting distribution was 
the generalised extreme value (GEV), which was used to 
estimate the likelihood of a collision using accepted gap and 
PET datasets. Accepted gap data was used for risk 
characterisation. Goyani [19] looked at the safety effect of 
mixed traffic conditions on different types of vehicles. The 
percentage of critical crossing conflicts (PCCC) was higher in 
the traffic stream with motorised two-wheelers and three-
wheelers, followed by cars, buses, LCVs, and trucks. Paul [20] 
figured out how motorised two and three-wheelers conflicts 
affect crossing conflicts at unsignalized T-intersections in India. 
They applied Truncated Negative Binomial regression to create 
models of crossing conflicts. The results showed that the 
number of critical and non-critical conflicts is greatly affected 
by the proportion of two and three-wheelers in the conflicting 
and offending stream, the presence of a central traffic island, 
and the total number of conflicts.  

Studies using microsimulation have also examined the 
effect of changes in speed limits on traffic safety at 
unsignalized intersections, such as Pirdavani [21], who used S-
Paramics to analyse whether changes in speed limits under 
different traffic volumes affect traffic safety. Srinivasula, 
Chepuri, and Joshi [22] investigated the critical speed of 

conflicting vehicles and the effect of speed bumps on PET and 
traffic collision frequencies. They concluded that while safety 
has improved, other appropriate measures should be 
implemented to improve safety levels further. 

Surrogate safety measures traditionally applied to single 
collision types. Gastaldi, Orsini, Gecchele, and Rossi [23]   
applied two bivariate extreme value theory (EVT) approaches 
in order to simultaneously evaluate multiple collision types at 
a three-leg unsignalized intersection. 

Commonly used regression models in traffic safety studies 

Linear regression models 
In the literature, early attempts at collision prediction 

studies were modelled by multiple linear regression that can 
be formulated as follows.  

𝐸𝐸 = 𝐵𝐵0 + ∑ 𝑥𝑥𝑗𝑗𝑏𝑏𝑗𝑗𝑛𝑛
𝑗𝑗=1                      (1) 

Where 𝐸𝐸 is the number or frequency of collisions, 𝐵𝐵0 is an 
intercept, 𝑥𝑥𝑗𝑗 represents explanatory variables such as road 
width and traffic flow, 𝑛𝑛 is the number of explanatory 
variables, and 𝑏𝑏𝑗𝑗 are the estimated coefficients.  

Kitto [9] examined the effect of various physical and site 
characteristics on collisions by using multiple regression 
techniques. Arndt and Troutbeck [24] described the 
relationship between the geometry of priority intersections 
and collision rate using multiple linear regression. However, 
there are many debates and controversial points regarding this 
modeling technique. Nambuusi [25] highlighted that multiple 
linear regression is not robust as the response variable is non-
negative count data. The linear regression model, while 
appealing and simple, has stringent assumptions that are 
frequently violated when applied to data on road safety [26]. 

Generalized linear regression models (GLMs) 
To overcome the limitations of conventional linear 

regression, GLM was used. These models allow the analysis of 
non-normally distributed data [27]. 

Poisson regression 
Different generalized linear models have been established 

in the literature. Poison GLM regression is one of the 
commonly used models since collisions are unavoidably 
discrete and rare random events [25]. Rahman [28] indicated 
that another advantage of Poisson regression is that it is 
suitable for categorical data. 

The commonly used form of Poisson regression with a log 
link function can be written as follows. 

𝐸𝐸 = 𝑡𝑡𝑖𝑖𝑒𝑒∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                    (2) 
Where E is the expected event, b𝑗𝑗 are the estimated 

coefficients, 𝑡𝑡𝑖𝑖 is the interval as an offset variable (i.e. time, 
length), 𝑋𝑋𝑋𝑋 represents an explanatory variable, and e is the 
natural number. 

This function above specified traffic collisions by adding 
traffic flow as the main exposure variable. The following 
structure is a general form used in the literature [7,11,29]. 

𝐸𝐸 = 𝑡𝑡𝑖𝑖𝑄𝑄1𝑏𝑏1𝑄𝑄2𝑏𝑏2                                    (3) 
Where 𝑄𝑄1 and 𝑄𝑄2 annual average daily traffic flows per 

1000 vehicles b1 and b2 are the estimated parameters, and 𝑡𝑡𝑖𝑖 
is the offset variable (year).  

What 𝑄𝑄1 and 𝑄𝑄2 depend on what kind of flow model was 
used. For example, in the major/minor inflow model, they are 
the sum of major and minor traffic flow at an intersection. 
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The following form was added to the model to include 
additional factors such as categorical and geometric variables 
[10,30,31]. 

𝐸𝐸 = 𝑄𝑄1𝑏𝑏1𝑄𝑄2𝑏𝑏2𝑒𝑒∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖            (4) 
The Quasi-Poisson and negative binomial regression 
Poisson models also have some drawbacks. Turner [32] 

observed that the Poisson model sometimes produces 
inaccurate results. The limitation is that the mean must be 
equal to the variance [33]. When this equality is not evident, 
under-dispersion or over-dispersion problems occur. The pure 
Poisson model can be modified to deal with the over-
dispersion problems through a Quasi-Poisson approach. The 
estimated parameters that result from the Quasi-Poisson (QP) 
model are the same as those from the pure Poisson model. 
The difference is just in their standard errors that are inflated 
by a factor of 'k' [30]  

Another way to model an over-dispersed response 
variable is to use the negative binomial (NB) regression (30)The 
assumption of the NB model is reported to be a more realistic 
approach than the Poisson regression [34]. Several researchers 
have attempted to use NB regression to deal with dispersion 
problems [i.e., 6,7,11,35].  

Theoretically, the variance (𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛)) in the negative 
binomial distribution is not equal to the mean (𝜆𝜆) as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛) = 𝜆𝜆 + 1
𝑟𝑟
𝜆𝜆2      (5)  

The term1
𝑟𝑟

= 𝜃𝜃 , which refers to the inverse of the over-
dispersion parameter (𝑟𝑟). In the mathematical limit situation 
where ' 𝑟𝑟 ' is close to infinity, the variance will equal the mean 
due to the standard Poisson model assumption as follows. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛)  = 𝜆𝜆 + 1
∞
𝜆𝜆2 = 𝜆𝜆         (6) 

Conventionally, Poisson regression is a particular instance 
of the negative binomial model where the 𝜃𝜃 parameter is zero 
[36]. The overall form of negative binomial regression is 
derived from the Poisson model by adding an independently 
distributed error term [37]. 

𝜆𝜆𝑖𝑖 = 𝑒𝑒∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝑏𝑏0+ Ɛ𝑖𝑖+𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖       (7) 
Where exp (Ɛ𝑖𝑖) is the gamma distributed error with mean 

1 and variance 1/r=θ. 

𝑃𝑃(𝑌𝑌 = 𝑦𝑦𝑖𝑖|𝜆𝜆𝑖𝑖 ,𝜃𝜃) = 𝛤𝛤(𝜃𝜃+𝑦𝑦𝑖𝑖)
𝛤𝛤(𝜃𝜃𝑦𝑦𝑖𝑖)

� 𝜃𝜃
𝜃𝜃+𝑦𝑦𝑖𝑖

�
𝜃𝜃
� 𝜆𝜆𝑖𝑖
𝜃𝜃+𝜆𝜆𝑖𝑖

�
𝑦𝑦𝑖𝑖

 (8) 
Where 𝑦𝑦𝑖𝑖 = 0, 1 ,2 , … ,𝑛𝑛  is the number of collisions, θ is 

the inverse dispersion parameter (1/r), and Γ (…) is the gamma 
distribution function. 

Poch and Mannering [37] concluded that the elements 
related to collision frequency in an intersection approach could 

logically identify significant traffic and geometric phenomena 
by using negative binomial regression modeling. 

The over-dispersion parameter as an extra variation in 
traffic collisions can be caused by some factors, such as 
misspecification in the model and an excessive number of zero 
collisions. In this regard, the zero-inflated Poisson or the zero-
inflated negative binomial models can be used [38, 39].  

Structural equation model (SEM): A path analysis 
In the 1920s, path analysis was developed by Sewall Wright, 

a geneticist. He attempted to measure the direct influence of 
one variable on another along with path diagrams by taking 
correlations into account. The path analysis method, therefore, 
depends on the degree of correlations in a system [40].  

Wright [41] obtained the basic formulation of path 
coefficients by explaining the representative path diagram 
illustrated in Figure 2. Variables are connected as a function of 
dependent relationships through the one-way arrows. Vi is a 
total residual determination, and the double arrows represent 
residual correlations between variables. Wright assumed that 
all relationships are linear.  

Each variable from the unidirectional perspective can be 
formalised as follows: 

(𝑉𝑉0 − 𝑉𝑉0′) = 𝑟𝑟01(𝑉𝑉1 − 𝑉𝑉1′) + 𝑟𝑟02(𝑉𝑉2 − 𝑉𝑉2′) + ⋯+
𝑟𝑟𝑜𝑜𝑜𝑜(𝑉𝑉𝑛𝑛 − 𝑉𝑉𝑛𝑛′)         (8) 

Where  𝑉𝑉𝑖𝑖′ is the mean, (𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖′) represents deviations 
from means, and 𝑟𝑟𝑜𝑜𝑜𝑜  is a coefficient.  

 𝑋𝑋𝑖𝑖 = (𝑉𝑉𝑖𝑖−𝑉𝑉𝑖𝑖
′)

𝛿𝛿𝑖𝑖
   (9) 

Where 𝑋𝑋𝑖𝑖 is a standard z score of a variable, and 𝛿𝛿𝑖𝑖 is the 
standard deviation.   

𝑃𝑃0𝑖𝑖 = 𝑟𝑟0𝑖𝑖
𝛿𝛿𝑖𝑖
𝛿𝛿0

 (10) 
𝑃𝑃0𝑖𝑖 is a standardised path coefficient reflecting a 

correlation.   
Equation 9 and Equation 10;  𝑋𝑋𝑖𝑖𝛿𝛿𝑖𝑖 =  (𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖′), 𝑃𝑃0𝑖𝑖 (𝛿𝛿0/

𝛿𝛿𝑖𝑖)  = 𝑟𝑟0𝑖𝑖   can be rearranged respectively. Then, they can be 
combined with Equation 11 as follows: 

𝑋𝑋0𝛿𝛿0 = 𝑃𝑃01
𝛿𝛿0
𝛿𝛿1
𝑋𝑋1𝛿𝛿1 + 𝑃𝑃02

𝛿𝛿0
𝛿𝛿2

 𝑋𝑋2𝛿𝛿2 + ⋯+

𝑃𝑃0𝑛𝑛
𝛿𝛿0
𝛿𝛿𝑛𝑛

 𝑋𝑋𝑛𝑛𝛿𝛿𝑛𝑛   (11) 
So, if the unnecessary parameters in the equation above 

are eliminated, the final form of the equations will be as 
follows: 

𝑋𝑋0 = 𝑃𝑃01𝑋𝑋1 + 𝑃𝑃02 𝑋𝑋2 + ⋯+ 𝑃𝑃0𝑛𝑛 𝑋𝑋𝑛𝑛         (12) 

Figure 2. Path Analysis Diagram, (Wright, 1934) 
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According to Wright [41], the fraction of the standard 
deviation of the dependent variable in the above equation 
is measured by each path coefficient. The factor identified 
will be directly responsible for a change in the fraction of 
the dependent variable even if all other factors, including 
residuals are constant [41]. 

SEM is a multivariate technique that combines 
regression, factor analysis and analysis of variance in 
order to simultaneously estimate interrelated 
dependence relationships [42]. Even though conventional 
SEM methodology is well-known and widely applied in 
many different fields of research, nowadays, there are no 
robust, practical applications for collision prediction. 

SEM used multivariate linear regression that does not 
account for the nature of collision data, which are rare, 
non-negative counts and may not be normally distributed 
with respect to explanatory variables. The linear 
regression of a count response variable may not present 
meaningful results. As explained above, generalised linear 
modeling (GLM) approaches taking account of discrete 
responses would be more logical. Regarding traffic 
collisions at unsignalized intersections, such approaches 
have been applied in the UK  [30,43] and overseas [i.e., 7, 
10, 11, 29, 31, 34, 37] However, GLM may not be able to 
represent the complex inter-relationships between 
explanatory variables such as speeds, visibilities, speed 
limits and collisions. Therefore, in this paper, a piecewise 
structural equation model (pSEM) adapting GLM into a 
structural equation model will be introduced and 
compared with conventional SEM by analysing collisions 
at 120 priority intersections in the city of Portsmouth, UK. 

Method and Data 

Data collection in Portsmouth, UK 
Portsmouth is a city located in Southeast of the UK. It is 

about 19 miles south of Southampton and 70 miles south of 
London.  The city has the highest population density in the 
United Kingdom, with 5,100 people per square kilometres, 
significantly above the national average [44]. In 2007, 
Portsmouth was the first city in the UK to introduce a city-wide 
20mph speed limit [45]. 

The locations where data collection was conducted shown 
in Figure 3 were collected from 120 locations in Portsmouth 
and Gosport. Locations were reviewed between Sep 2020 and 
Aug 2021.  

The data collection process summarized in Figure 4. Speed 
data from approaching vehicles at 360 junction arms were 
measured by using an SL700 spot speed camera. Classified 15-
minute traffic counts were undertaken in the am, pm or both. 
These were converted to Average Annual Daily Traffic (AADT) 
using the standard conversion factors suggested by the 
Chartered Institution of Highways and Transportation [46]. 

As input variables, geometric factors (such as visibility, road 
width, and turning radii) are measured. To measure the 
geometric factors, the DIGIMAP service in the United Kingdom 
provides AutoCAD-compatible ".dwg" files. However, actual 
conditions, such as parking situations, could not be visualized 
in the AutoCAD drawing. As a result, visibility measurements 
were drawn in 3D using Google Earth. All junctions were visited 
to see if there were any discrepancies between Google Earth 
views and current junctions. 

Figure 3. Locations for the data collection [47] 
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As output variables, collision scenarios collected from 
STATS19 data provided by Department of Transport. In 
the UK, each accident has specific index number linking 
vehicle and collision information. These two massive 
datasets combined by R Studio, STATS19 package. Then it 
was put into ArcGIS online to see the collisions in the 
target locations (Figure 3). 

Piecewise Structural Equation Modeling (pSEM) 
pSEM was developed by Shipley's studies in the 2000s 

[48]. The relationships between variables in the 
conventional SEM are simultaneously estimated in a 
single variance-covariance matrix [49]. However, in pSEM, 
each set of relationships are estimated locally (or, in other 
words, independently) [48]. The conventional SEM uses 
chi-square tests to compare observed and predicted 
covariance matrix, while the goodness-of-fit of a pSEM is 
measured as a “test of directed separation” [50]. Shipley 
[48] highlighted that this test does not depend on
asymptotic methods, so it can be used with smaller

sample sizes. Secondly, many problems involving non-
normality and non-linearity can be overcome. Another 
aspect of the “test of directed separation” is that it does 
not conflict with some problems of covariance matrices 
involving a maximized loss function. Finally, it allows each 
piece of the local causal model to determine how much it 
contributes to the lack of fit [51]. Therefore, pSEM 
appears to be a robust technique for estimating collisions. 
R Studio was selected as the analytical package, as it can 
run with the “piecewiseSEM” package. 

The d-separation test of pSEM 
Shipley’s method of testing the path model is based on 

graph theory notation called directed separation (d-
separation) and its relation to conditional independence 
claims in the probability distribution developed by Pearl 
and Verma [52].  They explained the logic and mechanics 
of the d-separation test. Shipley [48] generalised and 
adapted this to deal with data with a hierarchical 
structure. 

Figure 4. Data collection and analysis process 
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Figure 5. An illustration of a causal path model (directed acyclic graph). 

Table 1. d-separation for independence claims 

The mathematical background of the d-separation test was 
introduced in Shipley [51] and detailed in Shipley [48,53]The 
process can be summarised in 6 steps as follows. 
1. First, the causal hypothesis should be formed in the

directed acyclic graph showing the variables involved in the 
hypothesis and directed causal links between each other as 
arrows. It can be seen in Figure 5 as an example where
Shipley [48] indicates the functional form of the equations 
(“fij”) that link variables between i and j. 

2. Identify each pair of variables (X, Y) in the graph for
variables that do not have an arrow from one direction to 
another, such as X1 X3 or X3X1. 

3. Find the causal parents that are mediating the links. For
instance, the causal parent of the relationship between X1 
and X3 is X2. Because there is no direct arrow between X1 
and X3, this set of variables (X1 X2 X3) is called the
conditioning set. 

4. Create an independence claim by converting each unique
pair and conditioning set. The independent claims of the
directed acyclic graph in Table 1 are listed below as an
example. 

5. means that Xi and Xj variables are a
probabilistically independent conditional set of variables in 
Q. 

6. Calculating the null probability (pi) for each predicted
independence claim. 

7. In the final step, a global test of the model requires
simultaneous testing of these independence relationships
given by Fisher [54]. Fisher’s C test can be written as follows. 
𝐶𝐶 = −2∑ 𝑙𝑙𝑙𝑙 (𝑝𝑝𝑗𝑗)    𝑘𝑘

𝑗𝑗=1           (12) 
The test follows the chi-square distribution with 2k degrees 

of freedom. Where k is the number of independent claims. This 
statistic also can be used to compute an AIC score for
comparisons in the model selection process [53]. 

𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐 = 𝐶𝐶 + 2𝐾𝐾         (13) 
Where C is Fisher’s C statistics, K is the likelihood degrees of 

freedom. 
The pSEM model in Figure 6 was specially designed in line

with the literature. Arrows from any variable into the response 
variables (4 types of crashes) were modelled by the GLM 
approach of Poisson regression with log link functions. In
contrast, multiple linear regression under the pSEM model
simultaneously modelled other connections with normal
distributions [55,56]. 
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Figure 6. Directed acyclic graph of the fully tested model. 

Figure 7. Comparing R-squared values of response variables for piecewise SEM and conventional SEM. 

The associations between speed variables (mean and 
standard deviation) and other factors were modelled with 
pSEM through multiple linear regression, as speeds are 
dependent variables. Kolmogorov-Smirnov and Shapiro-Wilk 
tests were used to check the normal distribution 
assumptions.  

Results and Discussion 

The results of this study indicate that the pSEM model 
showed better performance, especially for predicting 
collision frequencies. Overall, the collision frequencies of 
pSEM explained 57% more variance compared to those in 
the conventional SEM, as the differences were summarised 
in Figure 7.   

Differences in explained variance vary through the 
responses. Much greater differences have been observed 
where the responses are count variables (collisions) 
compared to the response variables that are continuous. This 
demonstrates the limited capability of linear regression to 
model traffic collisions. Even where the responses (mean 
speed) were suitable (continuous) for multivariate linear 

regression through SEM and pSEM models, the piecewise 
structural equation model generally shows better 
performances with 18.18% and 20.59% differences. All of 
these differences seem to depend on how estimations are 
done, and other factors as listed below: 
• pSEM estimates locally while SEM estimates

simultaneously [48].
• Whether it is an asymptotic method or not; pSEM does

not depend on asymptotic method and gives better
estimation performance with smaller sample sizes [48].

• The distribution of response variables 
Table 2 shows the Akaike Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC) values. The BIC and 
AIC are used to assess model performance. Model 
performance is measured by taking complexity into account. 
They include a term that assesses how well the model fits the 
data with a term that penalises the model based on how well 
it fits the data, dependent on the number of parameters in 
the model [57]. The same model structure in Figure 6 was 
used to compare the model fit. The SEM model performed 
better in terms of the AIC and BIC values than SEM. 

Difference
0

50

100

150

0.33 0.34 0.26 0.08 0.21 0.4 0.16

0.39 0.41 0.26 0.14 0.35 0.52 0.33

Mean of Major Road
Right to Left Speed

Mean of Major Road
Left to Right Speed

Mean of Minor Road
Speed (MMRS)

Left Turn from Minor
motorised Veh-

Bicycle Collisions

Left Turn from Minor
motorised Veh-Veh

Collisions

Right Turn from
Minor motorised Veh-

Veh Collisions

Right Turn from
Minor motorised Veh-

Bicycle

18,18 20,59
0

75 66,67
30

106,25

<- R2 of SEM
<- R2 of pSEM

% Differences in Explained Variances 
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Table 2. Comparison of model fit values 
Model AIC BIC 

pSEM 176.291 254.341 
SEM 267.642 387.505 

Table 3.  The results of the directed separation test 

PREDICTORS 

Mean of 
Minor 
Road 
Speed 

(MRMS) 

Left Turn 
from Minor 
Veh- Bicycle 

Coll. 

Right Turn 
from 

Minor 
Veh- Veh 

Coll. 

Right Turn 
from Minor 
Veh-Bicycle 

Coll. 

Mean of 
Major 

Road Left 
to Right 
Speed 

Left Turn 
from 

Minor 
Veh- Veh 

Coll. 

Mean of 
Major 

Road Right 
to Left 
Speed 

Traffic Flow 0.287 0.234 - - - - - 
Speed Limit - 0.286 0.323 0.942 - - - 
Minor Rd. Width - 0.751 0.883 0.316 0.513 0.973 - 
SD of Minor Rd. 
Speed 

- 0.917 0.743 0.523 0.504 - 0.727 

Vis. Right 2.4 0.234 0.348 - 0.882 0.090 0.086 0.109 
Vis. Left 2.4 0.454 0.511 - - - 0.353 - 
Vis. Right 9 0.705 0.141 0.765 - 0.093 0.850 0.070 
Vis. Left 9 0.591 0.539 0.931 - 0.011 0.792 0.044 
Mean of Major 
Road Right to 
Left Speed 

0.253 0.136 0.349 0.946 - 0.497 - 

Mean of Major 
Road Left to 
Right Speed 

0.068 0.319 - 0.599 - 0.85 - 

MRMS - - 0.017 - - 0.752 - 
Left Turn from 
Minor Veh-Veh 
Collisions 

- 0.595 0.463 0.253 - - - 

Right Turn from 
Minor Veh-Veh 
Coll. 

- 0.45 - 0.857 0.101 - - 

Left Turn from 
Minor Veh-
Bicycle Coll. 

- - 0.469 - - - - 

In terms of global goodness of fit, the SEM uses chi-
square tests to compare observed and predicted 
covariance matrices. The null hypothesis of the chi-square 
test is that the covariance matrix of observation (∑) is 
equal to the predicted covariance matrix (∑(θ)). The P-
value was less than 0.001 with a chi-square value of 
181.642 and 48 degrees of freedom. Predicted-observed 
covariance matrices significantly differ from each other. 
Thus, the alternative hypothesis (∑ ≠ ∑(θ)) is accepted. In 
contrast, in the piecewise SEM, the goodness-of-fit is 
tested using a test of directed separation. Fisher’s C 
statistic is 120.3 with P-value = 0.279 and on 112 degrees 
of freedom. The model indicates that there is no 
significant need to improve model fit.  

Lack of fit values of the directed separation test are 
shown in Table 3. The analysis revealed a few associations 
with high probability where p values are less than 0.05. 
For example, the relationship between the Mean of major 
road speed and left-hand visibility at 9 metres back (Vis. 
Left 9) is significant with a p-value = 0.012. However, one 
cannot reasonably infer a causal relationship between 
them. Minor road visibilities may be correlated to major 
road visibilities, which may moderate the mean speed on 

major roads. This connection and others were not added 
to the model because two reasons. Firstly, incorporating 
these relationships into the model is completely 
unnecessary. Secondly, Fisher's C statistic demonstrated 
that the model is adequate without the inclusion of new 
relationships.  

The connections between non-significant predictors 
and response variable in the initial tested model (Figure 6) 
were step by step removed using the backward 
elimination method. Then, the results of the final pSEM 
and SEM models (remining connections) were presented 
in Table 4 including the estimated coefficients, standard 
errors and corresponding p-values of the models. “NA” 
represents that connections between predictor and 
response variables were removed due to the backward 
elimination. However, the latest model forms for pSEM 
and SEM do not match each other. Some variables were 
kept in one of the models, while these variables were 
removed from the other. On the other hand, some 
variables were removed entirely from both models. For 
the “right turn from minor motorised vehicle-bicycle 
collision” scenario in Table 4, SEM lost many response 
variables while pSEM kept them. 



Ekmekçi et al. / Journal of Engineering Faculty, 2(2): 125-136, 2024 

Table 4.  Comparison of pSEM and SEM 
pSEM SEM 

Response Predictor Estimate S.E. P. 
Value 

Estimate S.E. P. 
Value 

Mean of Major Road Right to 
Left Speed 

Traffic Flow 0.0005 0.0001 0.00001 0.0010 0.0001 0.0001 

Mean of Major Road Right to 
Left Speed 

Speed Limit 3.9902 0.6910 0.00001 3.8610 0.6940 0.0001 

Mean of Major Road Left to 
Right Speed 

Traffic Flow 0.0005 0.0001 0.00001 0.0100 0.0001 0.0001 

Mean of Major Road Left to 
Right Speed 

Speed Limit 3.1690 0.6077 0.0001 3.0340 0.6060 0.0001 

Mean of Minor Road Speed 
(MMRS) 

Speed Limit 2.2128 0.5160 0.00001 2.2130 0.5120 0.0001 

Mean of Minor Road Speed 
(MMRS) 

Minor Rd. Width 
(MRW) 

0.6378 0.2111 0.0031 0.6380 0.2090 0.0020 

Left Turn from Minor Veh-
Bicycle Collisions 

MMRS 0.2116 0.0569 0.0002 0.0440 0.00001 0.0130 

Left Turn from Minor Veh-Veh 
Collisions 

MMRS NA NA NA 0.0440 0.0130 0.0001 

Left Turn from Minor Veh-Veh 
Collisions 

SD of minor Rd. 
Speed 

-0.9104 0.3819 0.0171 NA NA NA 

Left Turn from Minor Veh-Veh 
Collisions 

Vis. Right 2.4 NA NA NA 0.0010 0.0010 0.0250 

Left Turn from Minor Veh-Veh 
Collisions 

Traffic Flow 0.0002 0.0001 0.00001 0.0001 0.0001 0.0001 

Left Turn from Minor Veh-Veh 
Collisions 

Vis. Right 9 NA NA NA -0.0020 0.0010 0.0310 

Right Turn from Minor Veh-
Veh Collisions 

Traffic Flow 0.0002 0.0001 0.00001 0.0001 0.0001 0.0001 

Right Turn from Minor Veh-
Veh Collisions 

MRW x Left 
Radius 

0.0113 0.0031 0.0003 NA NA NA 

Right Turn from Minor Veh-
Veh Collisions 

Vis. Left 2.4 -0.0035 0.0016 0.0293 -0.0010 0.0001 0.0160 

Right Turn from Minor Veh-
Veh Collisions 

Vis. Right 2.4 0.0026 0.0013 0.0364 0.0020 0.0010 0.0180 

Right Turn from Minor Veh-
Bicycle Collisions 

Traffic Flow 0.0002 0.0001 0.0685 NA NA NA 

Right Turn from Minor Veh-
Bicycle Collisions 

Vis. Right 9 0.0174 0.0058 0.0024 0.0050 0.0010 0.0001 

Right Turn from Minor Veh-
Bicycle Collisions 

Vis. Left 2.4 -0.0183 0.0061 0.0027 NA NA NA 

Right Turn from Minor Veh-
Bicycle Collisions 

Vis. Left 9 0.0174 0.0058 0.0024 NA NA NA 

Right Turn from Minor Veh-
Bicycle Collisions 

MMRS 0.1222 0.0558 0.0285 NA NA NA 

Summary and Conclusion 

The present study was designed to propose piecewise 
Structural Equation Modeling and compare it with the 
conventional SEM for understanding the causality behind 
road traffic collisions. Two analytical models were run for the 
same model structure. The global model fit value of 
conventional SEM could not pass the chi-square test leading 
to improper results, while the goodness of fit for pSEM did 
with Fisher’s C statistic. Test of directed separation of pSEM 
also informed about other lack of fit for paths not included in 
the model. The pSEM model performed better, particularly 
in forecasting collision frequencies. Values for the 
Akaike 
134 

Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) used to evaluate model performance. When 
the same model structure was employed to examine model 
fit, the pSEM model outperformed the SEM model in terms 
of AIC and BIC values. 

SEM employed multivariate linear regression, which 
ignores the nature of collision data, which are infrequent, 
non-negative counts that may not be normally distributed in 
relation to explanatory factors. So, the results of SEM show 
that it seems not to be a proper approach to model traffic 
collisions. As previously stated, GLM techniques that take the 
discrete nature of responses into account would be a more 
reasonable approach. GLM, on the other hand, seems to be 
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incapable of representing the complicated interrelationships 
between explanatory factors such as speeds, visibility, speed 
limits, and collisions. Application of pSEM extends the 
generalised linear modeling approach one step further by 
allowing it a hierarchical model structure including 
intermediation and provides a new inferential test called the 
test of directed separation to measure model fits. This paper 
proposes that pSEM is a more robust approach for modeling 
collisions than conventional SEM.  

The collision frequencies of pSEM explained an average 
of 57% more variation when compared to those of the 
conventional SEM. Differences in explained variance differ 
between responses. Where the responses are count 
variables, much greater variation has been seen (collisions). 
This reveals linear regression's poor capacity to model traffic 
collisions. However, even when the response variable (in this 
case mean speed) is suitable for multivariate linear 
regression, due to it being a non-count variable, the 
piecewise structural equation model consistently 
outperforms SEM with 18.18% and 20.59% differences. 

The scope of this research is confined to a model 
structure developed to comprehend certain types of road 
traffic collisions at 120 priority three-arm intersections. More 
studies could be done to assess the efficiency of the 
piecewise Structural Equation Model at various types of 
intersection and collisions. 
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