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Abstract

Poincaré’s geometric representation, while historically fundamental in dynamical system analysis,
faces challenges with high-dimensional and uncertain systems in modern engineering and data
analysis. This article extensively explores Koopman Operator Theory (KOT) and Dynamic Mode
Decomposition (DMD) within data-driven science and engineering and advocates for a conceptual shift
toward observable dynamics, emphasizing KOT’s capacity to capture nonlinear dynamics in infinite-
dimensional space. The potential practical applications of Koopman-based methods are highlighted.
Leveraging Poincaré’s framework, the limitations of traditional methods are discussed. The review
also addresses the growing significance of data-driven methodologies for modelling, predicting, and
controlling complex systems.
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1 Introduction

Poincaré’s geometric representation, which delves into the dynamics of states [1], underpins most
of the methodologies employed in dynamical system analysis, particularly in applied contexts.
Despite its century-long dominance in the field, this depiction has exposed limitations in handling
high-dimensional, poorly described, and uncertain systems, which are increasingly prevalent in
engineered system design and extensive data analysis.
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This review article introduces a distinct conceptual framework for dynamical systems centred on
the dynamics of observables. The primary focus is on the Koopman operator, a linear operator in
infinite-dimensional space capable of accurately capturing nonlinear dynamics. The survey aims
to demonstrate the interconnectedness of various approaches that have emerged across diverse
publications and settings, all linked by the spectral properties of the Koopman operator. This
examination of spectral properties serves two main objectives. Firstly, it will elucidate how these
methodologies are interrelated. Secondly, it will present these methodologies concisely, facilitating
accessibility for researchers seeking not only to implement them but also to extend and enhance
them. The Koopman framework has proven successful in leaping academic theory to practical
applications, demonstrating its versatility and effectiveness in real-world contexts.
Poincaré introduced a geometric framework that has become central to the analysis and design of
dynamical systems today. This framework extensively utilizes concepts from differential geometry,
trajectories, and invariant manifolds. Its effectiveness has been demonstrated across various
contexts. However, geometric analysis has limitations when dealing with the full spectrum
of behaviours in non-linear dynamical systems. Specifically, unstable manifolds in hyperbolic
regimes can lead to trajectories that diverge exponentially, showcasing a complexity that requires
more than just geometric insights to understand and predict fully. This complexity of real-world
systems is both a challenge and an exciting opportunity, underscoring the need for advanced
analytical, numerical, and computational methods to grasp their intricate behaviours.
Most of the real-world non-linear dynamical systems consist of noise and uncertainty. A single
initial state does not deterministically lead to a unique trajectory for such a system—instead,
it may give rise to various possible trajectories. Addressing inquiries about the behaviour of
specific trajectories under such conditions can pose significant challenges. Many geometric
arguments, such as Bendixson’s criterion [2, 3] for demonstrating the absence of periodic orbits
in the plane, are applicable only in low dimensions. Hence, systems with higher dimensions
require reassessment. Even within these complex scenarios, practical implementations necessitate
dimensional constraints. High-dimensional systems typically require unique symmetries or
constraints to mitigate their dimensions. Furthermore, fundamental geometric analyses become
complex without explicit Ordinary Differential Equations (ODEs). Given the critical role of
dynamical systems theory in addressing pressing issues such as big data, new methodologies must
emerge to manage high-dimensional, ambiguous, and poorly characterized systems, especially
when dealing with historical time-evolution data that requires precise mathematical interpretation.
Koopman and Perron-Frobenius (PF) operators are the most commonly used among the opera-
tionalized systems for system analysis. They are expected to function similarly when operating
as duals in proper function spaces. However, practical considerations continually influence our
approaches. Questions arise regarding the construction of the operator from issue descriptions and
data. How well do finite approximations align with the ideal theoretical framework? Are numeri-
cal artefacts overshadowing genuine intuition? These are essential considerations underpinning
these operators’ practical application in system analysis.
The Perron-Frobenius operator portrays the dynamics of density through groups of trajectories.
Extensive efforts have been dedicated to approximating the Perron-Frobenius operator with a
Markov chain to compute invariant densities, representing objects over an infinite time horizon.
However, the pursuit of accurate representations within specific areas of interest imposes limita-
tions on the number of initial conditions that can be simulated. When simulating dynamics over
short and long periods in large dimensions, the entire space often requires meshing, even for a
low-dimensional attractor.
Constraining the mesh size becomes feasible when prior information about the low-dimensional
subspace containing the attractor is available. However, for arbitrary systems, this information
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may not be readily accessible, necessitating the utilization of the entire mesh.
On the other hand, the Koopman operator encapsulates the evolution of observables. In fluid
mechanics, the distinction between the Eulerian and Lagrangian perspectives finds a counterpart
in the differentiation between the Koopman representation and the Eulerian view. The Koopman
representation aligns with the Lagrangian viewpoint, where measurements are conducted along
trajectories or paths.
The numerical construction of the Koopman operator offers the advantage of requiring fewer
initial conditions, albeit at the expense of extended computational runtimes. This characteristic
makes it well-suited for applications in physical investigations. For instance, in testing a jet engine,
initiating the engine from a relatively limited set of initial conditions and allowing it to operate
for an extended duration proves more practical than preparing numerous initial conditions and
running for a few seconds under each condition.
Extensive research has been dedicated to understanding system behaviour, driven by the necessity
of prolonged run durations. However, the complexity of transient dynamics presents a significant
challenge that requires further exploration and innovation.
Examining a few two-dimensional cross-sections in the state space can reveal overlapping invariant
structures when visualizing nonlinear dynamical systems. However, employing the Perron-
Frobenius operator complicates this approach, as it requires calculating the invariant density for
the entire state space before deriving the densities on specific slices of interest.
The late 20th and early 21st centuries witnessed a dramatic increase in data availability, sparking a
sensing revolution that spans diverse data acquisition methods. However, a significant portion of
this data remains unprocessed and untapped, leading to missed opportunities in fields such as
health, commerce, technology, and network security. This underscores the crucial importance of
your work in data processing and utilization.
Various mathematical methodologies have emerged in response to this need, with Deep Neural
Networks gaining particular prominence. Inspired by biological neurons, these networks have
achieved remarkable success in areas such as image recognition, speech recognition, and natural
language processing, grounded in supervised machine learning principles.
The introduction of convolutional neural networks, which mimic the hierarchical architecture of
the animal visual cortex, has led to significant advances in image recognition and the creation of
realistic images through Generative Adversarial Networks (GANs). While these accomplishments
are notable, they mainly pertain to static pattern recognition or generation tasks. Deep learning
methods face more significant challenges in dynamically evolving contexts, such as autonomous
driving, where the intrinsic characteristics of the temporal variable must be accommodated.
On the other hand, the Koopman operator framework, with its inherent symmetry related to
temporal translation, presents a promising avenue. It offers a robust approach to unsupervised
learning, capable of extracting insights from limited data. This paper provides a concise historical
overview, tracing its lineage from its roots in quantum mechanics to its contemporary focus on
dynamic process representation. Along this journey, connections to geometric dynamical systems
theory methods are drawn, facilitating the data-driven discovery of essential components of the
theory, including stable and unstable manifolds. This intricate interplay offers a robust framework
for unsupervised learning, aligning more closely with human cognition principles than previous
machine learning paradigms. The potential of the Koopman operator framework is a beacon of
hope for the future of unsupervised learning.
As this article emphasizes, linear systems offer a more tractable path to solutions, as they can be
decomposed into manageable components through techniques like Fourier analysis and Laplace
transforms. However, conventional methods struggle with nonlinear systems due to the intricate
nonlinear interactions at play. Introducing external forces adds another layer of complexity, further
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complicating the solution process. This underscores the urgent need for new approaches that can
effectively deal with the limitations of conventional methods.

In traditional practice, nonlinear systems are often linearized and use linearised equilibrium
points to facilitate analysis. However, what if the system exhibits a high dimensionality, rendering
numerical solutions impractical? Take, for instance, turbulent systems or power networks, both of
which characterize nonlinear dynamics and vast dimensions. In the case of power systems, the
uncertainties stemming from renewable energy sources (RESs) add layers of complexity, intro-
ducing countless degrees of freedom as these sources fluctuate with changing weather patterns
and temperatures [4, 5]. Moreover, human intervention often amplifies model complexity [6].
Consider the human brain, whose internal neural networks defy simple differential or difference
equations, rendering the basic geometric properties and system characteristics exceedingly elu-
sive. Furthermore, how do we address systems perturbed by significant disturbances far from
equilibrium? Is there a robust model capable of handling such disruptions? These challenges
prompt the exploration of alternative methodologies. The proliferation of computational power
has propelled data-driven approaches into the spotlight, particularly in system identification and
control, where big data and machine learning have sparked a paradigm shift [7–10]. By their very
nature, data-driven methodologies scrutinize the lens of data, making them especially well-suited
for systems characteristics and high dimensionality. One such data-driven methodology garnering
substantial research attention is the Koopman operator theory. This systematic framework offers a
means to obtain linear representations of nonlinear systems, a topic we delve into in the following
sections.

2 Koopman operator and dynamic mode decomposition: basic results

The genesis of the Koopman operator traces back to the seminal contributions of B. Koopman [11],
who introduced an operator facilitating unitary transformations within Hamiltonian dynamical
systems. This foundational endeavour was further illuminated through collaborative efforts with
John von Neumann in 1932 [11, 12]. Despite its conceptual significance, this line of inquiry lay
dormant for seven decades, owing to the formidable computational challenges inherent in its
application without external support. The early 2000s marked a resurgence of interest in the
Koopman operator, catalyzed by the pioneering investigations of [13, 14]. Mezic demonstrated
the reduction and reconstruction of high-dimensional state spaces from empirical data, leveraging
salient eigenvalues of the Koopman operator to discern and characterize trends in ostensibly
chaotic dynamics, colloquially referred to as Koopman modes. Subsequently, [15] harnessed
the Koopman operator to analyze complex fluid dynamics, showcasing the efficacy of capturing
pertinent structures through Koopman mode decomposition (KMD). This data-driven approach
established a direct link between system measurements and the underlying dynamics in the
state space, facilitated by dimensional reduction algorithms advanced by [16]. Schmid et al.’s
methodological breakthroughs, particularly in dynamic mode decomposition (DMD), elucidated
the dynamic information extraction from flow fields, exemplified by studies on cylinder wake
dynamics [16]. The symbiotic relationship between KMD and DMD, elucidated by [16] and [15],
has emerged as a cornerstone in investigating nonlinear flows [17–20] and other interdisciplinary
domains, as elaborated further Sections.

Koopman operator for discrete-time system

In the context of nonlinear dynamical systems, a conventional depiction entails a collection of
states governed by a functional relationship dictating their temporal evolution or interrelation
[18, 21]. Such systems are typically elucidated through continuous and discrete methodologies.
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For a generalized continuous system represented by:

d
dt

x(t) = F (x(t), t; µ) , (1)

where x(t) ∈ Rn denotes the state of the dynamical system at time t, n signifies the number of
state components, µ encapsulates parameters dictating system dynamics, and F(·) delineates
the continuous-time state evolution. Concurrently, these continuous dynamics can be discretely
modelled and evaluated at finite intervals ∆t, expressed as xk = x(k∆t), with subscript k. The
discrete-time system evolution can be formally articulated as follows:

xk+1 = F(xk), (2)

where xk represents an n-dimensional column vector of system states at time tk, k = 1, 2, 3, . . . , m,
for m time steps, and xk+1 signifies the subsequent states following xk. The rules dictating system
state advancements typically manifest as nonlinear equations, thereby capturing the complexities
of practical systems. However, the analytical resolution of nonlinear system dynamics presents
a formidable challenge. Consequently, contemporary control methodologies often resort to
approximations when designing high-fidelity controllers. Nevertheless, linear representations
offer a notable advantage in predicting system advancements accurately. We aim to demonstrate
this phenomenon through the lens of Koopman operator theory.

In the context of employing Koopman operator theory, we introduce a novel function g : Rn →
Mp, where p denotes the dimensionality of an almost infinite column vector representing the
observables of x at a specific time step. Consequently, the Koopman operator extends across all
observables, resulting in an infinite-dimensional operator K. Strategies for addressing this infinite
dimensionality will be subsequently explored. Here, g denotes a real-valued, scalar measurement
function belonging to an infinite-dimensional Hilbert space referred to as an observable. The
action of the Koopman operator on this observable is defined as:

Ktg = (g ◦ F)(x(t)), (3a)

K∆tg(xk) = (g ◦ f )(xk). (3b)

In continuous and discrete representations, respectively. Eq. (3a) illustrates the constant evolution
of the observable under the Koopman operator over time, while in (3b), it governs the discrete-time
dynamics with ∆t representing the interval between k and k + 1 in the time series m. Further
elucidation of the interrelations between these representations is provided in [17, 21–26]. Eqs. (3a)
and (3b) enable the formulation of analogues for continuous and discrete-time dynamical systems,
respectively, as depicted below:

d
dt

g = Kg, (4a)

g(xk+1) = K∆tg(xk). (4b)

However, as depicted in Figure 1, this operator facilitates the measurement of dynamic evolution
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Figure 1. Schematic for illustrating the advancement of a dynamical system as defined by the Koopman operator
on nonlinear dynamical systems [27]

over time [21, 23, 25]. Revisiting (2) where the rule F maps xk from F : Rn → Rn, introducing
Koopman operator theory presents an alternative rule, g, where g maps xk from Rn to Mp, with p
denoting the dimensionality of the nearly infinite column vector characterizing the observable
at that time step of xk. Consequently, the Koopman operator is defined across all observables,
implying that the Koopman Operator K is also infinite-dimensional. Here, g represents a real-
valued, scalar measurement function within an infinite-dimensional Hilbert space H, denoted as
an observable. The Koopman operator operates on g as follows:

Kg(x) = (g ◦ F)(x).

The Koopman operator K transforms a nonlinear dynamical system into a linear framework
within the space H, meaning it linearly advances observables:

g(xk+1) = Kg(xk).

This operator encapsulates the system’s dynamics within the observable space H, including x
itself. The key characteristic of the Koopman operator is its linearity, which can be expressed as:

K(αg1 + βg2) = αKg1 + βKg2,

where α and β are constants, and g1, g2 ∈ H.

An eigenfunction-eigenvalue pair (ϕi, λi) of the Koopman operator is defined by the relation:

Kϕi = eλitϕi where λi ∈ C.

A notable property of Koopman eigenfunctions is that if (ϕi, λi) and (ϕj, λj) are distinct pairs,
then (ϕiϕj, λi + λj) is also an eigenfunction-eigenvalue pair. The spectral characteristics of the
Koopman operator describe the state space dynamics. Specifically, the Koopman eigenvalues, the
point spectra, allow for the evaluation of the system’s stability. See [28–30] for more properties.

Assuming that all system observables can be expressed as a linear combination, we have:

g(x) =
∞∑

i=0

νiϕi(x). (5)

Where νi’s are the coefficients in the Koopman expansion, known as Koopman modes associated



568 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 4, 562–594

with the eigenfunction-eigenvalue pair (ϕi, λi). According to this equation, the Koopman modes
are determined by projecting the observable onto the corresponding eigenfunction. The evolution
of observables can then be described as:

Kg(x) =
∞∑

i=0

νiϕi(x)eλit. (6)

The Koopman linear expansion in this equation applies to a broad class of nonlinear dynamical
systems, including those with limit cycles and hyperbolic fixed points. For detailed examples,
refer to [31].

Koopman operator for continuous-time system

Our focus has been on the Koopman operator formalism for discrete-time systems to align with
measurement data from real-world experiments or simulations. However, to ensure a comprehen-
sive discussion, we also consider continuous-time systems. Let us examine the continuous-time
system described by:

ẋ = f (x). (7)

For a continuous-time system, we can define a one-parameter semi-group of Koopman operators
{Kt}t≥0, where each element of this group is expressed as:

Ktg(x) = g(x) ◦ Ft(x). (8)

Here, g represents the observable of the system. Eq. (8) can also be written as:

Ktg(x) = g(Ft(x)). (9)

This system maintains the linearity of the composition operation, thus sharing the same properties
as the Koopman operator for discrete systems. The evolution of observables in this context is
given by:

Ktg(x) =
∞∑

i=0

νiϕi(x)eλit.

Example of a Koopman embedding

Consider the following non-linear dynamical system with two variables x1, x2:

ẋ1 = µx1, (10a)

ẋ2 = λ(x2 − x2
1). (10b)

For λ < µ < 0, the system exhibits a slow attracting manifold defined by x2 = x2
1. It is possible to

augment the state x with the nonlinear measurement g = x2
1, thereby defining a three-dimensional

Koopman-invariant subspace. In these coordinates, the dynamics presented by (10a)-(10b) become
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linear:

d
dt

y1
y2
y3

 =

µ 0 0
0 λ −λ

0 0 2µ

y1
y2
y3

 , (11)

where y1
y2
y3

 =

x1
x2
x2

1

 .

The entire three-dimensional Koopman observable vector space is visualized in Figure 2. Trajec-

Figure 2. Visualization of three-dimensional linear Koopman system from (11) along with projection of dynamics
onto the x1 − x2 plane. The attracting slow manifold is red, the constraint y3 = y2

1 is blue, and the slow, unstable
subspace of (11) is green. Black trajectories of the linear Koopman system in y project onto the full nonlinear
system trajectories in x in the y1 − y2 plane. Here µ = −0.05 and λ = 1. Reproduced from [27]

tories that start on the invariant manifold y3 = y2
1, visualized by the blue parabolic surface, are

constrained to remain on this manifold.
A slow subspace exists, spanned by the eigenvectors corresponding to the slow eigenvalues µ

and 2µ; this subspace is visualized by the green planar surface. Finally, there is the original
asymptotically attracting manifold of the original system, y2 = y2

1, which is visualized as the
red parabolic surface. The blue and red parabolic surfaces always intersect in a parabola that is
inclined at a 45◦ angle in the y2 − y3 direction. The green surface approaches this 45◦ inclination
as the ratio of fast to slow dynamics becomes increasingly large. In the full three-dimensional
Koopman observable space, the dynamics produce a single stable node, with trajectories rapidly
attracting onto the green subspace and then slowly approaching the fixed point.
The left eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigen-observables).
The Koopman eigenfunctions of Eq. (11) corresponding to eigenvalues µ and λ are:

φµ = x1 and φλ = x2 − bx2
1 with b =

λ

λ − 2µ
.

The constant b in φλ captures the fact that, for a finite ratio λ/µ, the dynamics only shadow the
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asymptotically attracting slow manifold x2 = x2
1, but follow neighbouring parabolic trajectories.

This is illustrated more clearly by the various surfaces in Figure 2 for different ratios λ/µ.
This way, a set of intrinsic coordinates may be determined from the observable functions defined
by the left eigenvectors of the Koopman operator on an invariant subspace. Explicitly,

φα(x) = ξαy(x), where ξαK = αξα.

These eigen-observables define observable subspaces that remain invariant under the Koopman
operator, even after coordinate transformations. They may be regarded as intrinsic coordinates
[32] on the Koopman-invariant subspace.

Dynamic mode decomposition

The original Dynamic Mode Decomposition (DMD) algorithm, introduced by [16], was initially
conceived using a Companion matrix framework. Later, [15] linked the DMD algorithm to
the modified Arnoldi algorithm and Koopman operator theory. However, [20] argued that an
algorithm based on Singular Value Decomposition (SVD) provides better numerical stability.
Let us delve into this algorithm. Consider a scenario where sequential data arises from linear
dynamics described by:

xk+1 = Kxk, k = 0, 1, 2, . . . , (12)

with the matrix K being unknown. Even if the data originates from nonlinear dynamics, it is
assumed that an operator K can approximate the underlying dynamics. The sequential data from
the linear dynamics (12) can be represented as:

X1 =
[
x0 x1 x2 . . . xN−1

]
, (13)

X2 =
[
x1 x2 x3 . . . xN

]
. (14)

Next, we perform the Singular Value Decomposition (SVD) of X1:

X1 = UΣV∗, (15)

where U is an n × r real or complex matrix, Σ is an r × r diagonal matrix with non-negative real
numbers on the diagonal, V is an m × r real or complex matrix, and r represents the rank of X1.
We then define the matrix K̃ as:

K̃ = UX2VΣ−1. (16)

Next, we compute the eigenvalues and eigenvectors of K̃, given by:

K̃w = λw. (17)

The DMD mode associated with the DMD eigenvalue λ is expressed as:

ṽ = Uw, (18)

where ṽ represents the projected DMD modes.
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Exact dynamic mode decomposition

The Dynamic Mode Decomposition (DMD) algorithm was initially developed to analyze sequential
and ordered data vectors {x0, x1, x2, . . . , xn} under the dynamics defined by:

xk+1 = Kxk, k = 0, 1, 2, . . . , (19)

[20] extended this algorithm by relaxing the constraints on the data. They considered pairs

{(x1, y1), (x2, y2), . . . , (xN , yN)},

leading to the following definitions for the data matrices:

X1 =
[
x1 x2 . . . xN

]
; X2 =

[
y1 y2 . . . yN

]
. (20)

Table 1 compares the data comparison for the standard DMD and the extended DMD. It shows that
the data matrices for the DMD algorithm are a specific case for the exact DMD, where yk = xk+1.

Table 1. Comparison between data matrices

Data Matrix DMD Exact DMD
X1

[
x0 x1 . . . xn−1

] [
x1 x2 . . . xn

]
X2

[
x1 x2 . . . xn

] [
y1 y2 . . . yn

]
For the dataset given by (20), the operator K is defined as:

K = X2X†
1 . (21)

The dynamic mode decomposition of the pair (X1, X2) involves the eigendecomposition of K,
where the DMD modes and eigenvalues correspond to the eigenvectors and eigenvalues of K.
The exact DMD algorithm is as follows: arrange the data pairs {(x1, y1), (x2, y2), . . . , (xN , yN)} into
matrices X1 and X2 as defined in (20). Perform the reduced Singular Value Decomposition (SVD)
of X1:

X1 = UΣV∗. (22)

Next, define the matrix K̃ as:

K̃ = UX2VΣ−1. (23)

Compute the eigenvalues and eigenvectors of K̃:

K̃w = λw. (24)

Finally, the DMD mode corresponding to the DMD eigenvalue λ is expressed as:

v =
1
λ

X2VΣ−1w. (25)
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For a more detailed exploration of the exact DMD, refer to [20].

Extended dynamic mode decomposition

The extended Dynamic Mode Decomposition (EDMD), initially introduced in [32], was further
refined in [33]. In contrast to the original approach, [33] utilized left eigenvectors of the finite-
dimensional approximation of the Koopman operator for a similarity transformation, while [32]
used right eigenvectors. This subtle distinction is crucial for the participation factors discussed in
[34]. Following [33], consider a sequence of system state snapshots xk. The matrices are defined as
follows:

X1 =
[
x1 x2 . . . xN

]
; X2 =

[
y1 y2 . . . yN

]
, (26)

where X1, X2 ∈ Rn×N . Additionally, define a vector of observable functions:

g(xk) =
[
g1(xk) g2(xk) . . . gq(xk)

]⊤ , (27)

where g : Rn → Rq, and the matrices of observables:

OX1 =
[
g(x1) g(x2) . . . g(xN)

]
, (28)

OX2 =
[
g(y1) g(y2) . . . g(yN)

]
, (29)

where OX1 , OX2 ∈ Rq×N . A finite-dimensional approximation of the Koopman operator is con-
structed as follows:

K = OX2O†
X1

, (30)

where K ∈ Rq×q. The eigenvalues of K provide a finite-dimensional approximation to the
Koopman eigenvalues, and the Koopman eigenfunctions ϕi are expressed as:

ϕ(xk) = Ψg(xk), (31)

where

Ψ =
[
ψ⊤

1 ψ⊤
2 . . . ψ⊤

q

]
,

contains the left eigenvectors of K, and

ϕ(xk) =
[
ϕ1(xk) ϕ2(xk) . . . ϕq(xk)

]⊤ .

To derive the Koopman modes for the full-state observable g(xk) = xk, let B ∈ Rn×q be a matrix
defined such that:

xk = Bg(xk). (32)
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From (31), we have g(xk) = Ψ−1ϕ(xk), and:

xk = Bg(xk) = BΨ−1ϕ(xk), (33)

where Ψ−1 contains the right eigenvectors. Thus, the Koopman modes are the column vectors vi,
i = 1, 2, . . . , q, of Υ = BΨ−1 ∈ Cn×q, and:

xk =

q∑
i=1

ϕi(xk)vi =

q∑
i=1

ϕi(x0)viλ
k
i . (34)

The convergence of EDMD to the Koopman operator was demonstrated in [35, 36].

3 Data-driven spectral analysis of dynamical systems using Koopman operator theory

[13, 14] uses the Koopman operator’s spectral properties to compare dynamical systems with
physical systems, incorporating a statistical Takens theorem [37] and an ergodic-theoretic approach for
parameter identification and model validation. [38] addresses model reduction and validation,
proposing a decomposition method based on the Koopman operator’s spectral theory and the
statistical Takens theorem [37]. [39] extends the Hartman–Grobman Theorem to the entire basin of at-
traction, linking the linearization with the Koopman operator’s spectrum. [28] explores Lyapunov
functions’ connection to the Koopman and Perron-Frobenius operators, introducing a stability
theory and a numerical technique for smooth eigenfunctions. [40] introduces isostables, extending
isochrons for asymptotically periodic systems, with an algorithm for computing isostables using
the Koopman operator’s spectral properties. [29] leverages the Koopman operator’s spectral
characteristics to extend linear stability analysis to nonlinear systems, establishing a correlation
between specific eigenfunctions and global stability. [41] applies the Koopman operator theory to
non-smooth dynamical systems, focusing on a pendulum with state resets, linking geometric and
operator-theoretic perspectives. [42] examines the interplay between Koopman operator eigen-
functions and the topological conjugacy in nonlinear systems, introducing the principle algebra
for observables. [43] extends the Koopman operator framework to nonautonomous systems using
time-paramtime-parameterized and Floquet theory.
[44] investigates Koopman’s principal eigenfunctions in cascaded systems, establishing the asymp-
totic equivalence of the dynamics. [31] characterizes through Koopman operator spectral proper-
ties, defining the principal dimension of data and analyzing quasi-periodic attractors. [45] uses the
Koopman operator framework for nonlinear control, connecting Dynamic Mode Decomposition
(DMD) with Koopman Mode Decomposition (KMD) and character characterizing and isochrons.
[46] derives convergence rates for Perron-Frobenius and Koopman operators, focusing on approx-
imation spaces and sample-based operator estimates. [47] addresses nonautonomous dynamical
systems, proposing algorithms to mitigate errors in computing nonautonomous Koopman eigen-
values using dynamic mode decomposition. [48] studies numerical approaches for Koopman
Modes in Banach spaces using generalized Laplace analysis, investigating convergence in the finite
section method and Krylov subspace approximations.
[32] presents a data-driven method for approximating Koopman operator eigenvalues and modes,
extending dynamic mode decomposition (DMD). It also approximates Kolmogorov backward
equation eigenfunctions for Markov processes. Examples demonstrate the method’s performance
on deterministic and stochastic data, with further results by [33, 36].
[49] introduces a technique using Koopman operator eigenfunctions for integrating sensor data in
nonlinear systems. This method, requiring time series data and shared measurements, combines
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static and dynamic state estimation to create Koopman eigenfunction approximations. [50] applies
Koopman Mode Decomposition (KMD) to low-dimensional dynamic datasets, comparing DMD,
Arnoldi KMD, and Prony algorithms. The study highlights Prony’s superior performance in low
frequencies and explores timeshifted time-series approaches for linear oscillation attenuation.
[51] proposes a framework using Koopman operators to compare dynamical systems or align
them with empirical data, focusing on nonlinear behaviours and non-Gaussian noise. It combines
ergodic partition theory with Hardy space theory, enriching the discourse on comparing dynamical
systems and empirical data. [52] explores data-driven approaches for chaotic systems using the
Takens embedding theorem and Koopman operator theory. The HAVOK model predicts lobe-
switching events, while sparse regression techniques prevent overfitting, integrating machine
learning with Koopman’s theory for linear representations of chaotic dynamics. [53] introduces
a methodology for modal decomposition using the Koopman operator, integrating parametric
functions into neural networks. This method, leveraging LKIS-DMD, withstands observation
noise and adapts to data uncertainties.
[54] employs KMD to analyze lid-driven flow dynamics, highlighting Koopman operator spectral
properties. The study reveals KMD’s superior performance over proper orthogonal decomposition
in reconstructing flows with quasi-periodic components. [35] establishes the convergence of
DMD algorithms for computing Koopman operator eigenvalues and eigenfunctions. Leveraging
ergodicity, the article shows that DMD applied to Hankel data matrices accurately determines
Koopman eigenfunctions and eigenvalues. [55] discusses an agent-based model to explore the
impact of preferential gathering sites on urban insurgency. It finds a non-monotonic relationship:
a moderate number of sites reduces large-scale outbursts compared to a few or numerous sites,
which either concentrate or dilute insurgent activity. Koopman Mode Analysis reveals quasi-
periodic spatial-temporal dynamics in insurgency and law enforcement interactions. Lattice size
refers to the grid representing the simulation area, with larger lattices accommodating more agents
and influencing visibility and interaction patterns.
In [56], the paper has two objectives: First, it introduces a robust computational tool for data-
driven Koopman spectral analysis using Krylov decomposition and the Frobenius companion
matrix, mitigating ill-conditioning via the discrete Fourier transform. This transforms the Van-
dermonde matrix into a generalized Cauchy matrix, enabling precise numerical computations.
Second, it explores optimal reconstruction weights for snapshots using subsets of Koopman
modes, demonstrating explicit reconstruction formulas that align with Koopman spectral theory,
notably Generalized Laplace Analysis. In [57], a novel methodology combines compositional
Koopman operators and graph networks for efficient dynamics modelling of complex systems.
A linear approximation strategy overcomes neural network limitations. Scalability challenges
are addressed by leveraging the system structure. The model, utilizing graph networks, excels
in generalizing across environments, handling uncertainty, and enhancing control efficiency.
Object-centric sub-embeddings and a block-wise Koopman matrix structure enable modelling and
controlling multi-object systems. A least squares problem-solving approach identifies Koopman
and control matrices, reducing parameter complexity. The model outperforms baselines in tasks
involving ropes, soft materials, and swimming, making it advantageous in real-world scenarios
with unknown parameters. Incorporating metric loss enhances prediction accuracy and distance
preservation, particularly in novel environments with elusive physical parameters.
In [58], spectral properties of linear and nonlinear dynamical systems with globally stable attractors
are explored. The Kato decomposition is used to formulate spectral expansions for linear systems,
while generalized eigenfunctions linked to the Koopman operator elucidate stable, unstable,
and centre subspaces. Open eigenfunctions and joint zero-level sets provide insights into centre
manifolds for nonlinear systems. A novel class of Hilbert spaces is also introduced to capture
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dissipative dynamics, with modulated Fock spaces facilitating spectral expansions for systems
with stable limit cycles and tori.
In [59], a method for computing the fine structure of the Koopman operator’s spectrum from
measured data is presented. The approach partitions the spectrum into atomic and continuous
components, with guaranteed convergence as the number of moments increases. It also identifies
the singular continuous portion and offers two approaches for approximating the spectral measure,
adaptable to large-scale systems. The method’s simplicity and computational efficiency make it
suitable for various applications, illustrated through numerical examples, including examining the
spectrum in lid-driven cavity flow. [60] applies Koopman-operator analysis to partial differential
equations describing relaxation to a stable state. It introduces Koopman eigenfunctions and
analyzes analyzed nonlinear systems, including diffusion and phase-diffusion equations. [61]
addresses rare event occurrence in dynamical systems using Koopman operators, identifying
invariant subspaces through neural networks.
In [62], a Laplace-domain theory is developed for analyzing nonlinear dynamical systems, fo-
cusing on the Koopman semigroup and its generator. The Koopman resolvent is introduced
and characterized spectrally for different types of nonlinear dynamics, shedding light on its
role in Laplace-domain representation. Computational aspects, especially nonstationary Koop-
man modes, are explored. In [63], the method for computing the Koopman operator’s spectral
decomposition is extended to measure-preserving flows on compact metric spaces. Spectral
decomposition is approximated through temporal discretization of the flow, with a condition
ensuring weak convergence of spectra. Numerical results demonstrate spectral computations for
volume-preserving flows using periodic approximations.
[64] introduces spectral methods for long-term forecasting of signals from quasi-periodic sys-
tems, utilizing theory for nonlinearities. The algorithms provide uncertainty quantification and
demonstrate efficiency in synthetic and real-world applications. In [65], game balancing is ad-
vanced using a Koopman model to optimize in DeepMind’s SC2 DefeatRoaches mini-game. The
study identifies critical parameters to minimize criterion "J" by modelling game dynamics and
validating with empirical data. This approach yields extended game durations with players near
zero health, suggesting scalable applications for more complex games. Future research will focus
on the impact of initial conditions, employing AI algorithms for precise game balancing beyond
traditional methods. In [66], gait recognition distinguishes individuals by walking styles, utilizing
techniques like CNNs and the SMPL model. The GaitVIBE + LDS model combines the VIBE
model with a transformer network, enhancing performance on specific datasets without extra
data. The study evaluates various loss functions and achieves notable results on the CASIA-B
dataset, addressing ethical and privacy concerns while discussing real-world applications such as
identifying individuals to combat poaching or locating missing persons.
In [67], a novel lifting technique is introduced for nonlinear system identification using the
Koopman operator. This technique identifies the linear Koopman operator in a lifted space of
observables, avoiding direct state space computations. Two numerical schemes are proposed:
primary parametric and dual methods for high-dimensional systems with limited data. The
effectiveness of these methods is demonstrated through various examples. [68] applies the
Koopman operator to vehicle dynamics, transforming the state space into a higher-dimensional
linear space using basis functions. Two strategies are discussed: one using Extended Dynamic
Mode Decomposition and another constructing eigenfunctions from nonlinear dynamics. These
approaches are exemplified through numerical examples. [69] extends [68] by approximating
a nonlinear vehicle model with a higher-order linear predictor-the Koopman operator. This
approximation is used in a linear Model Predictive Control framework, effectively handling the
vehicle’s nonlinearities-a comparison with classical local linearization provided.
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[70] addresses the challenges of identifying latent structures in nonlinear systems using Koopman
operator-based linearization proposed by [67] is enhanced to mitigate numerical instability in
high-dimensional spaces. A novel implementation algorithm is introduced to address these issues.
In [71], the Koopman operator theory is explored for nonlinear infinite-dimensional systems.
A finite-dimensional projection of the Koopman semigroup is introduced, allowing for linear
approximation and spectral property extraction from data. This method is applied to identify a
finite-dimensional approximation of the Lie generator associated with the Koopman semigroup.

4 Past surveys in applied Koopman operator theory

In [72], the Koopman operator’s advancement for analyzing and examining signal dynamical
systems are explored emphasising academic and industrial applications. Key theoretical con-
cepts, numerical methods, and areas for further research are detailed. Continuous indicators for
ergodicity and mixing are derived, with applications in vehicle path-planning and micro-scale
fluid mixing. The paper examines the Koopman operator’s spectral properties in Banach spaces,
including continuous-time dynamics, and discusses eigenfunctions, eigenvalues, and ergodic
transformations. Practical applications include the heat equation and dynamical system evaluation
using spectral decomposition and projection of observables. Koopman mode decomposition is
introduced, illustrating its use in harmonic oscillators, model reduction, and coherency analysis
in power systems. The Dynamic Mode Decomposition (DMD) algorithm, a robust variant of the
Arnoldi algorithm, is presented, demonstrating its application in fluid flow analysis and building
energy efficiency. The paper discusses temporal Fourier transforms, Sobolev space metrics, and
eigen-quotient maps, highlighting convergence errors and proposing enhanced simulation time
adjustments. Finally, ergodicity computation is applied to technical systems, proposing negative
index Sobolev norm ∥·∥2,−s for scenarios like search-and-rescue and micro-mixer design. In [73],
Koopman Mode Decomposition (KMD) is surveyed as a flow analysis technique based on [14] and
[11, 12]. KMD dissects dynamic systems into single-frequency components or modes, providing
insights for researchers using data-driven Koopman analysis. The survey covers mathematical
foundations and applications in flow analysis, power grids, and building thermal and biomedical
analysis. Challenges in Koopman analysis, including computational complexity and comparison
with proper orthogonal decomposition, are addressed. [74] surveys Koopman operator techniques
in intelligent mobility and vehicle engineering, highlighting various applications and theoretical
aspects with the potential for addressing open problems in these domains.
Building on the foundational surveys by [72], which laid the groundwork for understanding the
Koopman operator’s theoretical constructs and applications, and [73], which explored the role of
Koopman Mode Decomposition (KMD) in specific domains like flow analysis, this survey takes
a broader and more integrative approach. Unlike [74], which focuses narrowly on intelligent
mobility and vehicle engineering, our work systematically spans various disciplines, including
power systems, robotics, aerodynamics, building energy management, and stochastic systems.
Furthermore, this survey uniquely addresses challenges such as noisy, high-dimensional, and
multiscale systems, emphasizing the Koopman operator’s potential in data-driven discovery under
uncertainty. In addition to cataloguing applications, our survey provides critical evaluations of
algorithmic advancements like Extended Dynamic Mode Decomposition (EDMD) and neural
network-based Koopman embeddings, offering a detailed analysis of their efficacy and limitations.
Finally, this work highlights limitations and future research directions in KOT, such as its role
in stochastic dynamics, multiscale interactions, and chaotic systems, proposing pathways for
future research. This survey provides a comprehensive guide for researchers seeking to advance
Koopman-based approaches in data-driven science and engineering by bridging theoretical
developments with practical implementations and underscoring existing methodologies’ strengths
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and constraints.

5 Koopman operator of autonomous nonlinear system

Koopman operator exhibits unitary properties, meaning it bijects points in Hilbert space while
preserving the inner product of any two observables [11]. This revelation opens up a new world of
possibilities in studying nonlinear dynamical systems and control theory. Numerous studies have
shown that classical attributes of dynamical systems can be seamlessly translated into the Koop-
man formalism. Notably, it has been demonstrated that the level sets of Koopman eigenfunctions
can serve as invariant partitions within the state space of a dynamical system [75]. Furthermore,
utilizing the Koopman operator, the local linearization rooted in the Hartman–Grobman theorem
has been expanded to cover the entire basin of attraction of a stable equilibrium or limit cycle. This
local linearization, a key concept in dynamical systems theory, involves approximating a nonlinear
system by a linear one in a small neighbourhood of a fixed point, as per the Hartman-Grobman
theorem. This linearization applies to both flows and maps [39].
The Koopman operator transforms a nonlinear system into a linear, high-dimensional space,
presenting new and exciting challenges. In big data, the Koopman operator is particularly
appealing because it relies on measurement data to linearly approximate nonlinear systems
without traditional linearization around specific fixed points. This approach often expands the
stability region around the equilibrium, as discussed in [34, Chapter 7]. However, a crucial
question arises: Which data should be used? The variables essential for constructing the Koopman
operator, known as observables, are paramount and deserve careful consideration. Observables are
typically functions of system states that encapsulate the dynamics of interest. For instance, rotor
speeds and angles are pivotal in determining system dynamics in a power system governed by the
swing equation, a mathematical model used to simulate the behaviour of synchronous machines
in an electric power system. Therefore, due to their correlation with system states, terminal bus
voltages, generator electrical power, and system frequency are primary candidates for observables.
Conversely, the reactive power of the generator is suboptimal as an observable due to its minimal
dependence on rotor angle and speed. These practical implications make the Koopman operator
a powerful tool in nonlinear dynamical systems and control theory, engaging researchers in its
potential applications. However, the complexity of controlling the system depicted by [34, Chapter
1, Figure 4.1] precludes unfettered access to all system states or the straightforward determination
of observables using conventional power system knowledge, as noted by [76]. This underscores
the urgent need for a methodology to discern observables capable of accommodating partial states
or functioning without state information. The forthcoming sections will elucidate a method for
constructing the Koopman operator tailored to such systems, particularly those characterized by
input-output dynamics. This research is of utmost importance in nonlinear dynamical systems
and control theory.

6 Data-driven Koopman-based methodologies in power systems research

In [77], Koopman mode analysis is explored for detecting coherent swings in power systems,
comparing it with other modal analysis methods. The paper demonstrates its effectiveness in
identifying dominant components and coherency within transient stability analysis. Similarly,
[78] introduces Koopman Mode Analysis (KMA) for analyzing and controlling power systems,
presenting its theoretical foundation and application to multi-machine systems. Numerical
outcomes from applying KMA and acknowledgment of diverse funding sources are discussed.
[79] leverage Koopman Mode Analysis to address transient stability issues in multi-machine
power systems. By identifying Coherent Swing Instability (CSI) transmission paths, they develop
a data-driven approach for monitoring and mitigating transient stability loss.
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[80] discuss a pragmatic application of Koopman mode analysis in a separate study. Their data-
driven stability assessment method, based on Koopman operator theory, offers practical and
valuable insights into system instabilities, particularly during grid accidents, thereby providing a
sense of reassurance in critical situations. [81] introduces a groundbreaking method for integrating
measurements from diverse sensors within nonlinear systems. This approach, which harnesses
Koopman eigenfunctions and dynamic mode decomposition, allows for data parameterization
and system dynamics characterization, thereby advancing the potential of modern data-driven
techniques. [82] presents a data-centric control framework rooted in Koopman operator theory
for transient stabilization in power grids. This approach constructs a linear predictor within a
higher-dimensional state space, facilitating efficient control using model predictive control (MPC).
[83] proposes a robust and interpretable data-driven approach for load forecasting in power grids.
By combining dynamic mode decomposition and Gaussian process regression, their method not
only outperforms alternative forecasting techniques but also instills a strong sense of confidence
in its reliability and accuracy. These studies collectively demonstrate the efficacy of Koopman
operator theory in addressing various challenges within power systems research, from transient
stability analysis to load forecasting.

7 Koopman operator theory in control and optimization

Koopman operator theory, a crucial tool in control systems analysis and optimal control frame-
works, plays a significant role in understanding the dynamics of high-dimensional systems. In
[30], the theory analyses stable and unstable subspaces and explores the interplay between spectral
and geometric theories. The Koopman operator, representing the time evolution of observables, is
essential for understanding the dynamics of high-dimensional systems and optimal control, partic-
ularly when incorporating max-plus algebra. Koopman eigenfunctions enable the decomposition
of state space into stable, central, and unstable subspaces. [26] push the boundaries of Koopman
operator theory by extending it to include input and control effects. This novel approach addresses
the limitations of traditional Dynamic Mode Decomposition (DMD) in actuated systems. This
innovative method, dynamic mode decomposition with control, provides a robust framework for
analyzing nonlinear systems, as demonstrated through applications such as infectious disease
models.

[23] presents a method for developing linear predictors for nonlinear controlled dynamical systems.
This technique approximates the Koopman operator by embedding nonlinear dynamics into a
higher-dimensional space and employs Extended Dynamic Mode Decomposition (EDMD) to
create linear models. These predictors facilitate efficient model predictive control (MPC) designs
for nonlinear systems, effectively managing constraints and disturbances. Another contribution by
[84] focuses on data-driven learning of Koopman eigenfunctions for prediction and control. This
method constructs a comprehensive set of eigenfunctions from transient regimes, enabling linear
predictions and integration within the Koopman MPC framework. This data-driven approach
utilizes convex optimization to avoid non-convex machine learning tools.

[85] further refine the data-driven construction of Koopman eigenfunctions, emphasizing their
utility for linear prediction and control. This work solidifies the theoretical foundations and
demonstrates practical applications of Koopman-based control strategies, making the theory more
engaging and relevant to the audience. [86] demonstrate the practical implications of their research
by integrating Extended Dynamic Mode Decomposition (EDMD) with Model Predictive Control
(MPC) to control nonlinear partial differential equations (PDEs). Using the Burgers equation as an
example, they show how Koopman-linear systems can effectively control unsteady fluid flows
and enhance the suppression of travelling waves compared to traditional methods.
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[87] underscores the collaborative nature of academic research by highlighting the challenges in
approximating the Koopman operator in finite dimensions and proposing structured approaches to
reconcile theoretical and practical aspects. They discuss the paradigm’s relationship with system-
theoretic principles and suggest future research directions, inviting the audience to contribute to
improving control system modelling. Using the Koopman operator, [88] propose a data-driven
method for stabilizing discrete-time control-affine nonlinear systems. By transforming the system
into a higher-dimensional bilinear form, they develop a state feedback law for stabilization,
demonstrating its efficacy on systems like the Van der Pol oscillator and the chaotic Henon map.
Koopman analysis has been effectively used in nonlinear estimation [89, 90] and control [17, 23, 91].
Estimators and controllers derived from DMD or eDMD models have proven effective, as shown in
various applications, including fluid flow control [91, 92]. For more on comprehensive applications
of Koopman operator in control theory and related areas, see [93–100].

8 Koopman operator theory in fluid dynamics

In [15], model-reduction techniques for fluid flows are explored, emphasizing the spectral analysis
of the Koopman operator. The study demonstrates the efficacy of Koopman modes in capturing
flow dynamics, exemplified by a jet in crossflow, advancing model-reduction techniques for fluid
dynamics. [101] delves into Koopman modes in fluid mechanics, showcasing their emergence
within nonlinear dynamics. The study investigates the spectral attributes of the Koopman oper-
ator, offering insights into various computational methods and applications and enriching the
understanding of complex fluid behaviours. [102] discuss the connection between Koopman mode
decomposition and resolvent mode decomposition in turbulent flow patterns. They highlight
the role of time averaging and spatial shifts in approximating Koopman modes, extending the
theoretical framework to systems with continuous spectra.

9 Koopman operator: stochastic framework

[103] introduces Subspace Dynamic Mode Decomposition (Subspace DMD) for Koopman analysis
in noisy random dynamical systems. Through empirical validation, Subspace DMD showcases
robustness and utility, enhancing understanding of complex nonlinear systems affected by ob-
servation noise. [104] explores modelling equilibrium and non-equilibrium stochastic systems
via optimal low-rank approximation techniques applied to transfer operators. The discussion
emphasizes connections between methods, Markov state models, and metastability, with applica-
tions illustrated through numerical examples. [105] investigates the spectrum and eigenfunctions
of stochastic Koopman operators for linear random dynamical systems, introducing a stochastic
Hankel-DMD algorithm. Numerical examples demonstrate its applicability and potential for
model reduction strategies. [106] presents the Variational Approach for Markov Processes (VAMP),
a methodology for identifying optimal feature mappings and Markovian dynamics models based
on provided time series data. VAMP leverages Koopman operator insights for model optimization
and selection, which is applicable across reversible and nonreversible processes.
[107] develops deep learning Markov and Koopman models with physical constraints, leveraging
variational methodologies for optimization. The approach yields a universal approximator for
reversible Markov processes, offering systematic improvements in model performance, particu-
larly with biased data. [108] addresses stochastic safety verification in random dynamical systems
using barrier functions. The paper introduces random safety concepts and proposes data-driven
approximations of barrier certificates using Koopman operator techniques. [109] introduces a
robust DMD algorithm for approximating the stochastic Koopman operator in the presence of
noise. The algorithm adapts to time-delayed observables, demonstrating effectiveness across
various examples.
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[110] formalizes a framework for acquiring the Koopman operator from finite data trajectories
of Markov chains. The research establishes links between risk and spectral decomposition esti-
mation, motivating the development of a Reduced-Rank Operator Regression (RRR) estimator.
[111] proposes a data-driven nonparametric methodology for forecasting probability densities in
stochastic dynamical systems, leveraging the stochastic Koopman operator and extended dynamic
mode decomposition (EDMD). Numerical examples highlight its accuracy and efficacy in real-time
moment estimation.

10 Koopman operator theory in building energy management

[112] conducts an energy audit on a LEED Silver-certified university building, utilizing Koopman
mode analysis to identify energy wastage sources, such as malfunctioning equipment and subop-
timal HVAC conditions. Addressing these issues leads to a 13% reduction in energy consumption
without compromising occupant comfort. [113] proposes a method using the Koopman operator
to create zoning approximations for building energy models. The method simplifies models while
preserving accuracy, aiding energy data analysis and visualization by analysing building thermal
behaviour with Koopman modes. [114] introduces data-driven methods for thermal control and
energy management in buildings using Koopman operator theory. By analyzing thermal data
from sensors, the approach identifies spatial heating and cooling control modes directly, offering
insights without complex thermal models.

11 Koopman operator theory in robotics

[115] develops a data-driven model for motion control in soft robotic devices using Koopman
operator theory. The model accurately predicts system behaviour, aiding controller design while
reducing computational complexity. [116] employs Koopman Operator Theory (KOT) with Hankel
Dynamic Mode Decomposition (HDMD) to approximate soft robot arm dynamics and address
control challenges. Despite limitations, the method achieves static reference tracking and control,
with ongoing efforts to capture rapid dynamics and implement closed-loop control. [117] proposes
a method for modelling and controlling robotic systems using Koopman-inspired techniques
and Dynamic Mode Decomposition (DMD). The KEEDMD framework constructs Koopman
eigenfunctions from data, enabling the development of linear models and trajectory-tracking
controllers. Ongoing research focuses on addressing limitations and exploring alternative control
strategies.

12 Koopman operator theory in non-linear aerodynamics

In [118], Koopman operator mode decomposition techniques are applied to analyze dynamic
stalls, revealing insights into oscillatory phenomena and shedding light on complex aerodynamic
dynamics. [119] explores the impact of oscillatory incoming flow on wing dynamics using
Koopman operator theory, unveiling insights into pitching airfoil behaviour and shedding light
on the interplay between flow frequency and vortex shedding dynamics. [120] demonstrates
the application of analytically derived Koopman linearization for flight dynamics, offering a
structured overview of theory, applications, implementation, and performance demonstrations,
with future research directions outlined.

13 Application of DMD and EDMD algorithm

In [121], Dynamic Mode Decomposition (DMD) is highlighted as a robust tool for analyzing
extensive neural recordings, aiding in discerning sleep spindle networks and facilitating data
clustering via Gaussian mixture modelling. [122] explores reduced order models (ROMs) and
dynamic mode decomposition (DMD) for model reduction within intricate systems, proposing the
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synergistic combination of POD and DMD methodologies. [123] introduces higher-order dynamic
mode decomposition, extending DMD to address general periodic and quasi-periodic dynamics
beyond standard DMD’s reach, showcasing its efficacy in various applications.
[124] focuses on DDMD R (Refined Rayleigh Ritz Data Driven Modal Decomposition), enhanc-
ing DMD for computational data-driven analysis of fluid flows, showcasing tangible benefits
through numerical experiments. [125] explores operator-theoretic approaches to dynamical sys-
tems using Koopman and Perron-Frobenius operators, introducing CU-DMD as a novel method
to approximate the PF operator with accuracy and efficiency. In [126], Koopman mode analysis
through DMD is discussed, addressing mean subtraction and DMD mode selection within finite-
dimensional Koopman invariant subspaces. [127] discusses stochastic parameterization coupled
with DMD to represent unresolved small-scale dynamics and large-scale flow phenomena, intro-
ducing STO-DMD as an effective technique for enhancing variability in resolved flow dynamics.
[128] demonstrates the Koopman operator’s and DMD’s efficacy in iterated function systems (IFS),
showcasing their utility in analyzing and forecasting stochastic nonlinear dynamical systems.

14 In algorithm and neural network

In [129], the Koopman operator framework is applied to analyze and accelerate numerical algo-
rithms, showcasing advantages in constructing reduced operator representations for prominent
algorithms. In [130], the Koopman operator’s spectrum is utilized to determine network depth,
assess initialization, accelerate training, and enhance noise robustness in neural networks, offering
insights into network architecture and convergence. In [131], algorithmic equivalence is explored
through Koopman operator theory and spectra comparisons, showcasing the utility of Koopman
mode decomposition in identifying equivalent algorithms without explicit equations. In [132],
pruning algorithms motivated by Koopman operator theory are introduced, unifying magni-
tude and gradient-based pruning methodologies and shedding light on magnitude pruning’s
performance in early training stages. [100] proposes a framework integrating bilinear Koopman
embedding and Control Lyapunov Function (CLF) to stabilize controllers for unknown nonlinear
control systems, offering provable guarantees of asymptotic stability validated through numerical
simulations.

15 Koopman operator in other branches of science

[133] employs Koopman Mode Decomposition (KMD) to predict sea ice concentration dynamics,
revealing declining trends and heightened variability in specific regions. KMD-based forecasts
demonstrate skill in predicting future sea ice behaviour, outperforming linear fit models and
climatological benchmarks. [134] highlights how Koopman mode decomposition offers a data-
driven approach to analyze and forecast traffic dynamics, aiding transportation agencies in
managing highway network conditions. In [135], a novel methodology grounded in Dynamic
Mode Decomposition (DMD) is introduced to extract Resting State Networks (RSNs) from high-
dimensional fMRI data with acceptable temporal resolution, facilitating individualized RSN
analysis and occupancy pattern deduction.

16 Limitations of Koopman operator and DMD algorithm

[136] explores ways to extend the use of Koopman’s theory for analyzing PDEs commonly found in
image and signal processing. These PDEs describe processes of gradual signal changes, which can
sometimes include sudden shifts in behaviour (phase transitions). A key focus is understanding
when the Koopman eigenfunctions (KEFs) can be used and how they help in tasks like breaking
complex systems into simpler parts, reconstructing dynamics, and understanding the system’s
behaviour and control.
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The study highlights DMD’s weaknesses, which work well only under specific conditions, such as
when the system’s behaviour can be expressed as simple linear combinations of observations or
when the system’s behaviour has a consistent, predictable pattern (like exponential decay). DMD
struggles when the system does not decay exponentially, and a single component corresponds
to multiple patterns, the system has stable points (equilibrium), or specific patterns do not exist
throughout the system’s timeline. Additionally, some patterns may disappear entirely if the
system’s dynamics are not smooth everywhere. Koopman, EDMD and SDP-based methods were
described in [59, 137] to approximate invariant measures purely from data. However, the method
did not work well when trying to approximate invariant measures for the following two different
random dynamical systems generated by the iterated function systems [138, Section 2.1] as follows:

ϕu(x) = ux, (35a)

ψu(x) = x + u(1 − x), (35b)

where u is chosen uniformly on (0, 1) and ϕ and ψ are chosen with probability 1
2 . The invariant

density is

ρ⋆(x) =
1

π
√

x(1 − x)
, (36)

f1(x) =
x
2

, (37a)

f2(x) =
x
2
+

1
2

, (37b)

where f1 and f2 are chosen with probability 1
2 . The invariant density is

U(0, 1). (38)
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Figure 3. (a) Histogram approximation (blue) of the density (36) of the stochastic dynamical system (35a)- (35b).
(b) The approximated density using the Koopman, EDMD, and SDP-based method based on [137]
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Figure 4. (a) Histogram approximation (blue) of the density (38) of the stochastic dynamical system (37a)- (37b).
(b) The approximated density using the Koopman, EDMD, and SDP-based method based on [137]

This shows that the Koopman-EDMD-SDP-based methods may not work for data-driven discovery
of invariant measures for random dynamical systems and, generally, for pice-wise continuous
maps.

17 Future challenges and conclusion

The Koopman operator-theoretic approach, distinguished by its unique advantage, stands out from
traditional linearization methods. It enables spectral analysis of nonlinear systems without sacrific-
ing critical information, a feat not easily achieved by conventional spectral techniques that predict
geometry locally in state space. This method’s effectiveness in low and high-dimensional state
spaces is a testament to its versatility. Transforming nonlinear dynamics into a linear framework
shifts the analysis away from individual trajectories, making it especially suitable for studying
noisy systems. Its reliance on data derived from simulations or experimental measurements to
construct, approximate, or analyze operators makes it a flexible approach to understanding a
system’s underlying mechanisms, even when the system’s dynamics are complex.
While the Koopman operator-theoretic approach offers unique advantages, it also presents signifi-
cant challenges. These challenges include the demand for a departure from physical intuition, as
the approach emphasizes functions over individual state-space points. Even in finite-dimensional
state spaces, the technique fundamentally operates within an infinite-dimensional context, adding
complexity to its conceptualization and implementation. While this trade-off enables the encap-
sulation of nonlinear dynamics within a linear system framework, it necessitates sophisticated
numerical methods and approximations. Developing efficient numerical techniques, a critical
area of focus remains a key aspect of these methodologies. This survey thoroughly examined a
wide range of literature, incorporating seminal contributions, innovative methods, and diverse
applications across various domains.
Often, a system’s equations are unknown or partially known, or, in other words, there are situations
where there are no governing fundamental physics equations that we can rely on. Discovering
governing equations from data is crucial for the Koopman operator to show promising future
research. Nonlinear dynamics still need to be better understood; even an epsilon non-linearity or
a quadratic non-linearity confounds our understanding. We do not even know if solutions exist
in closed form or topologically and are unique for some of these systems, and that is something
Koopman’s spectral analysis and linear embedding is going to help, as we have seen a toy example
in Section 2. In nonlinear control theory, chaos, transients, intermittent and uncertain phenomena
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are challenging.

Much of what we saw in the review here is still quite tricky for chaotic systems or systems with
significant intermittent phenomena or non-stationary systems. Then, multiscale physics, one of the
grand challenges of this kind of substantial data era, is in the past; a lot of what has been done has
been applying analysis and computations and these dynamic systems models to uni-scale physics
now. However, the need for multiscale analysis is urgent. These Koopman-based methods will
help if we apply them to a multiscale problem like turbulence, climate, disease, or neuroscience.
Data with noise and stochasticity is a foundational area to explore. Even computing derivatives
from noisy data is a big challenge. However, there is optimism in the potential of Koopman
and DMD techniques in dealing with noisy data, especially in scenarios with limited, irregularly
sampled, or noisy data, which is common in real-world applications. The potential of extending
Koopman operator frameworks to account for stochastic systems or systems with uncertainties,
where the operator acts on probability distributions rather than deterministic states, is still a vast
area to explore.

After scrutinizing over one hundred papers, numerous monographs, and a substantial array of
doctoral dissertations [4, 8, 20, 34, 139–148], we can confidently assert the profound influence and
adaptability of Koopman Operator Theory and DMD in contemporary research. The amalgamation
of theoretical rigour with practical applicability underscores the transformative potential inherent
in these techniques. From revealing concealed patterns in high-dimensional datasets to enabling
predictive modelling and control within dynamic systems, Koopman Operator Theory and DMD
have proven to be pivotal pillars in the arsenal of data-driven methodologies, reassuring their
applicability in diverse research areas.
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[28] Mauroy, A., Mezić, I. and Moehlis, J. Isostables, isochrons, and Koopman spectrum for the
action–angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenomena,
261, 19-30, (2013). [CrossRef]
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[44] Mohr, R. and Mezić, I. Koopman spectrum for cascaded systems. ArXiv Preprint,
ArXiv:1705.06790, (2017). [CrossRef]

[45] Mezic, I. and Arbabi, H. On the computation of isostables, isochrons and other spectral
objects of the Koopman operator using the dynamic mode decomposition. In Proceedings,
2017 International Symposium on Nonlinear Theory and Its Applications (NOLTA2017), pp. 1-4,
Cancun, Mexico, (2017, December).

[46] Kurdila, A.J. and Bobade, P. Koopman theory and linear approximation spaces. ArXiv Preprint,
ArXiv:1811.10809, (2018). [CrossRef]

[47] Macesic, S., Crnjaric-Zic, N. and Mezic, I. Koopman operator family spectrum for nonau-
tonomous systems. SIAM Journal on Applied Dynamical Systems, 17(4), 2478-2515, (2018).
[CrossRef]
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