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ABSTRACT This paper introduces a novel 6D dynamic system derived from modified 3D Lorenz equations of
the second type using state feedback control. While the original 3D equations are formally simpler than the
classical Lorentz equations, they produce topologically more complex attractors with a two-winged butterfly
structure. The proposed system contains the fewest terms compared to existing literature. These terms
comprise two cross-product nonlinearities, two piecewise linear functions, six linear terms, and one constant.
The new 6D hyperchaotic system exhibits a rich array of dynamic characteristics, including hidden attractors
and dissipative behavior. A thorough dynamic analysis of this system was performed. In particular, bifurcation
diagrams were constructed, Lyapunov exponents and dimensions were calculated, and multistability and offset
boosting control were analyzed to understand the systems behavior further. An electronic circuit of the 6D
hyperchaotic two-winged butterfly system was developed in the Multisim computer environment. The designed
electronic circuit showed excellent agreement with the simulation results of the new 6D dynamic system.
Synchronization of two identical 6D hyperchaotic systems was achieved using the active control method.

KEYWORDS

Two-wing attrac-
tors
Chaotic behavior
Multistability
Offset boosting
control
Circuit implemen-
tation
Active control
synchronization

INTRODUCTION

Since Lorenz’s discovery of a three-dimensional (3D) chaotic sys-
tem (Lorenz 1963), chaos researchers have increasingly focused
on studying dynamic systems with dimensions higher than three.
This trend is driven by several reasons. Firstly, many physical
phenomena cannot be adequately modeled by three-dimensional
systems. Higher-dimensional systems can capture the more com-
plex behaviors and interactions observed in fields such as hydro-
dynamic turbulence theory (Bohr et al. 1998), climate modeling
(Soldatenko et al. 2021), and neurodynamics (Yin et al. 2022). An-
other reason is that higher-dimensional complex systems are often
employed in cryptographic applications due to their increased
unpredictability and difficulty in being reverse-engineered. This
makes them ideal for secure communications and information
encryption (Ramakrishnan 2018).

Numerous 4D hyperchaotic systems have been thoroughly doc-
umented in the literature. These include Lorenz’s hyperchaotic
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system (Jia 2007), Chen’s hyperchaotic system (Chen et al. 2006),
Liu’s hyperchaotic system (Li 2009), the hyperchaotic Wang sys-
tem (Wang and Chen 2008), the hyperchaotic Newton-Leipnik
system (Ghosh and Bhattacharya 2010), and the hyperchaotic
Vaidyanathan system (Vaidyanathan 2013). When constructing
new hyperchaotic models, it is essential to consider several factors:
the presence of multiple positive Lyapunov exponents, maintain-
ing the smallest number of terms to meet the simplicity criteria
established by researcher Sprott, and achieving the highest Kaplan-
Yorke dimension.

Moreover, noteworthy among the issues in chaos theory are
those of chaos control and synchronization. Chaos control for
practical systems has been the subject of extensive research. The
master, or drive system, and the slave, or response system, are
two systems whose synchronization is the subject of the chaos
synchronization problem. Control laws are created to address this
issue by ensuring that, asymptotically over time, the output of the
slave system tracks the output of the master system. Numerous
techniques have been proposed, including active control (Jung
et al. 2019; Bhat and Shikha 2019), adaptive control (Zhang et al.
2020; Tohidi et al. 2020; Vaidyanathan et al. 2014; Vaidyanathan
and Volos 2015), backstepping control (Chu and Hu 2016), sliding
mode control (Rajagopal et al. 2017a,b; Yousefpour et al. 2020), and
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■ Table 1 List of recently cited 6D dynamical systems.

Reference Total terms Number nonlinear terms Nature system

Benkouider et al. (2020) 17 2 Dissipative

Sabaghian et al. (2020) 15 2 Dissipative

Yang et al. (2020) 14 3 Dissipative

Al-Azzawi and Al-Obeidi (2021) 17 2 Dissipative

Aziz and Al-Azzawi (2022) 13 3 Dissipative

Al-Talib and Al-Azzawi (2022) 12 4 Dissipative

Al-Obeidi and Al-Azzawi (2022) 17 3 Dissipative

Michael Kopp and Andrii Kopp
(2022)

17 2 Dissipative

Al-Talib and Al-Azzawi (2023a) 12 4 Dissipative

Al-Azzawi and Al-Obeidi (2023) 17 3 Dissipative

Kopp et al. (2023) 21 4 Dissipative

Khattar et al. (2024) 12 4 Dissipative

This work 11 2 Dissipative

so on. Recently, a passive control method has also been pre-
sented in the literature. In paper (Adıyaman et al. 2020), a passive
control method was presented to stabilize a new 4D hyperchaotic
system at zero equilibrium and synchronize two identical new 4D
hyperchaotic systems with different initial conditions. In another
paper (Emiroglu et al. 2022), a passive control method was de-
scribed to stabilize and suppress chaos in a chaotic system. These
control techniques can also be used to achieve different types of
real chaos synchronization.

Recently, there has been a trend towards constructing hyper-
chaotic models with higher dimensions, such as 5D models with
three positive Lyapunov exponents (Hu 2009; Yang and Chen 2013;
Al-Azzawi and Hasan 2023), 6D models with four positive Lya-
punov exponents (Al-Talib and Al-Azzawi 2023b), and 7D models
with five positive Lyapunov exponents (Yang et al. 2018). Com-
pared to standard 3D and 4D models, these higher-dimensional
chaotic models exhibit greater unpredictability and complexity.
As can be seen from Table 1, most 6D dynamical systems (Benk-
ouider et al. 2020; Yang et al. 2020; Al-Azzawi and Al-Obeidi 2021;
Al-Obeidi and Al-Azzawi 2022; Kopp et al. 2023) consist of 12 or
more terms with dissipative nature, and no simple dissipative 6D
hyperchaotic system consisting of only 11 terms has been found.
In addition, the proposed 6D system has a simple structure, con-
taining only two control parameters. This motivated us to search
for a new hyperchaotic system that contains the smallest number
of terms.

This manuscript consists of the following sections. The In-
troduction provides a brief overview of the current state of the
problem. Section 2 gives the derivation of the new 6D hyperchaotic
dynamic system using state feedback control. In Section 3, we ex-
amine the dynamic characteristics of the new 6D nonlinear system

by analyzing the fixed points, constructing bifurcation diagrams,
and determining the spectrum and Lyapunov dimension. This sec-
tion also delves into multistability and offset boosting control for
the new system. Section 4 is dedicated to developing an electronic
circuit for a hyperchaotic chaos generator using the Multisim en-
vironment. The circuit’s operation was tested, and the simulation
results were compared with those obtained in the Mathematica
environment. Finally, in Section 5, we extend our focus to the
numerical analysis of synchronization between two identical 6D
hyperchaotic systems. We utilized the active control method (see,
for example, (Jung et al. 2019; Bhat and Shikha 2019)) to achieve
synchronization. The Conclusions section presents the main results
obtained in this article.

DERIVATION OF A NEW 6D HYPERCHAOTIC DYNAMIC
SYSTEM

In this section, we outline a method to derive a new six-
dimensional (6D) dynamical system from a modified Lorenz sys-
tem (Elwakil et al. 2002) of the following form:



dx1
dt

= a(−x1 + x2)

dx2
dt

= −x3sgn(x1)

dx3
dt

= |x1| − 1

(1)

Here |x| is the absolute value function, signum function sgn(x) of
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Figure 1 Plots depict two-wing butterfly attractors of system (1)
in phase planes x1x3, x2x3, and x1x2, respectively.

a real number x is a piecewise function which is defined as follows:

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(2)

Figure 1 shows typical two-wing butterfly attractors in different
phase planes for system (1) with a = 0.6 and initial conditions
x1(0) = x2(0) = x3(0) = 1. The corresponding Lyapunov expo-
nents are:

LE1 = 0.191212, LE2 ≈ 0, LE3 = −0.799337, (3)

and the corresponding Kaplan-Yorke (or Lyapunov) dimension
DKY = 2.239. By incorporating a state variable x4 into the first
equation of system (1) with a feedback strategy, we derive a four-
dimensional (4D) dynamic system:

dx1
dt

= a(−x1 + x2) + x4

dx2
dt

= −x3sgn(x1)

dx3
dt

= |x1| − 1

dx4
dt

= −bx1

(4)

Here b is the new control parameter. Using a coupling strategy
by adding state variables x5 and x6, a six-dimensional (6D) hyper-
chaotic model is constructed, described as follows:

dx1
dt

= a(−x1 + x2) + x4

dx2
dt

= −x3sgn(x1)

dx3
dt

= −1 + |x1|

dx4
dt

= −bx1

dx5
dt

= −x5 + x1x4

dx6
dt

= −x6 + x1x3

(5)

The resulting new 6D model of the dynamic system contains only
11 terms, which is one less than in recent paper (Al-Talib and Al-
Azzawi 2023b). In addition to the linear terms, system (5) includes
two nonlinearities (x1x4, x1x3) and two functions: sgn(x1) and
|x1|. In this paper, we found that system (5) is hyperchaotic when
the system parameters take the values a = 0.77 and b = 0.45. For
these parameter values and initial conditions (ICs)

x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = x6(0) = 1, (6)

Figure 2 Temporal diagrams for variables x1, x2, x3, x4, x5, x6.

all Lyapunov exponents of the new system (5) were calculated in
the following form:

LE1 = 0.13238, LE2 = 0.01280, LE3 = 0.00580 ≈ 0,

LE4 = −0.88594, LE5 = −1.01495, LE6 = −1.02017. (7)

It is also of interest to obtain time series data for the new 6D
dynamic system (5) with ICs (6). In the context of dynamic systems,
time series data reflects the behavior or evolution of a system over
time. Time series analysis can be used to study the state variables of
the new model xi (i = (1, 2, 3, 4, 5, 6)) over time, as shown in Figure
2. Here, the random nature of the dependence of the variables xi
on time t is clearly visible.

Next, we start the dynamic analysis of the recently introduced
systems (5).

DYNAMICAL ANALYSIS

In this section, we explore some fundamental dynamic properties
of the new proposed 6D system.

Symmetry and dissipativity of the system
It is easy to verify that system (5) satisfies the following coordinate
transformation T:

T : (x1, x2, x3, x4, x5, x6) → (−x1,−x2, x3,−x4, x5,−x6).

This means that each trajectory is symmetrical about x3 and x5
axises, and the system (5) is invariant for a given transformation T.

The divergence of the vector field Φ(ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6) of the
system (5) can be calculated as:

divΦ =
∂ẋ1
∂x1

+
∂ẋ2
∂x2

+
∂ẋ3
∂x3

+
∂ẋ4
∂x4

+
∂ẋ5
∂x5

+
∂ẋ6
∂x6

= −(a + 2) < 0,

ẋi ≡
dxi
dt

, i = (1, 2, 3, 4, 5, 6). (8)
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■ Table 2 Lyapunov exponents for different values of the parameter a.

a Lyapunov Exponents
(LE1, LE2, LE3, LE4, LE5, LE6)

Signs Behavior

0.005 0.0340,-0.0048,-0.0025,-
0.0147,-1.00094,-1.0159

(0,-,-,-,-,-) Periodic

0.15 0.0199,-0.0016,-0.0897,-
0.0680,-1.0020,-1.0083

(0,-,-,-,-,-) Periodic

0.3 0.0913,0.0020,-0.0017,-0.3713,-
1.0116,-1.0086

(+,0,0,-,-,-) Chaotic 2-torus

0.6 0.1484,0.0111,0.0076,-0.7418,-
1.0150,-1.0103

(+,+,0,-,-,-) Hyperchaotic

0.75 0.1367,0.0014,-0.0005,-0.8653,-
1.0074,-1.0148

(+,0,0,-,-,-) Chaotic 2-torus

0.77 0.1323,0.0127,0.0058,-0.8859,-
1.0149,-1.0201

(+,+,0,-,-,-) Hyperchaotic

1.5 0.0085,-0.0155,-0.0235,-
0.9894,-1.0088,-1.4712

(0,-,-,-,-,-) Periodic

Figure 3 Bifurcation diagrams for x1, x3 components of the sys-
tem (5).

Figure 4 Lyapunov exponents for system (5).

According to Liouville’s theorem, the phase volume V changes
over time as follows:

dV
dt

=
∫

...
∫

divΦdx1dx2dx3dx4dx5dx6 = (−(a + 2))V(t). (9)

In this case, the phase volume exponentially diminishes to zero
as time t approaches infinity: V(t) = V(0) exp((−(a + 2)t). As
a result, system (5) is dissipative, allowing for the emergence of
attracting sets, or attractors.

Equilibrium points
The equilibrium states of a dynamic system (5) are found from the
left-hand sides of the equations by setting ẋ1 = ẋ2 = ẋ3 = ẋ4 =
ẋ5 = ẋ6 = 0: 

0 = a(−x̃1 + x̃2) + x̃4

0 = −x̃3sgn(x̃1)

0 = −1 + |x̃1|
0 = −bx̃1

0 = −x̃5 + x̃1 x̃4

0 = −x̃6 + x̃1 x̃3

(10)

Solving the equations (10) under the assumption that a and b are
non-zero parameters results in x1 = 0 from the fourth equation.
Substituting this value into the third equation produces a contra-
diction −1 = 0, indicating the absence of equilibrium points in the
system. Consequently, all attractors generated by system (5) are
considered hidden attractors.

Bifurcation diagrams, analysis of Lyapunov exponents and di-
mension
Bifurcation diagrams represent changes in state variables of non-
linear dynamic systems graphically. They provide insights into
qualitative changes as control parameters are adjusted. We use
Mathematica software to solve the equations outlined in (5) with
the initial conditions from (6). In our analysis, we control the pa-
rameter a in the system (5), while keeping the parameter b fixed
at b = 0.45. Figure 3 displays bifurcation diagrams for the x1
and x3 components of the system (5) as a varies within the inter-
val a ∈ [0, 2]. These diagrams help identify stable regions and
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regular behaviors (represented by individual points) within the
system. They can also indicate areas where the system exhibits
periodic or quasi-periodic behavior. Each branch in the diagram
may correspond to different periodic orbits, reflecting various vi-
bration modes. Additionally, bifurcation diagrams can illustrate
period-doubling bifurcations as the parameter a changes. These
bifurcations represent a sequence in which the system transitions
from one periodic state to a period-doubling state, which can con-
tinue and may ultimately lead to chaotic behavior. As shown in the
bifurcation diagram in Figure 3, there are two branches of regular
oscillations: a lower (left) branch and an upper (right) branch. The
left periodic attractor undergoes a period-doubling bifurcation,
and a similar bifurcation occurs for the right attractor at the same
value of a. In other words, the left and right attractors are mirror
images of each other.

As is known, Lyapunov exponents (LEs) are an important crite-
rion for describing the behavior and stability of dynamic systems.
LEs characterize the rate of divergence or convergence of neigh-
boring trajectories in a dynamic system. A dynamic system is
assumed to be unstable or exhibit chaotic behavior when the LE
is positive, and a negative exponent indicates a tendency toward
stable equilibrium. Thus, by examining the sign of the LEs, one can
classify the system’s behavior as regular, quasi-regular (2-torus,
3-torus), chaotic, or hyperchaotic. The number of Lyapunov expo-
nents corresponds to the dimensionality of the dynamical system.
In the case of our system (5), there are six such indicators. Fol-
lowing the methodology (Binous and Zakia 2008), we computed
LEs for specific values of parameter a at fixed parameter b = 0.45
and ICs (6). Lyapunov exponents offer deep insights into how the
system’s dynamic behavior evolves with changes in the param-
eter a. According to Table 2, the dynamical behaviors of system
(5) can be categorized into the following groups based on the
Lyapunov exponents. In the future, we will be interested in the
hyperchaotic behavior of the system (5) for the parameter value
a = 0.77. In this case, the sum of all six Lyapunov exponents is
L1 + L2 + L3 + L4 + L5 + L6 = −2.77 < 0. This suggests that sys-
tem (5) exhibits dissipative behavior (see, for example, (Kozlovska
et al. 2024)). It is easy to verify that a hyperchaotic system (5) at
parameters a = 0.77, b = 0.45 satisfies the condition (Singh and
Roy 2016):

6

∑
i=1

LEi = divΦ = −2.77. (11)

Figure 4 illustrates the dynamics of the Lyapunov exponents ().
One of the most frequently used characteristics in the numer-

ical modeling of dynamic systems is the Lyapunov dimension,
proposed by Kaplan and Yorke (Frederickson et al. 1983). The
Lyapunov dimension helps to identify the fractal dimension of a
chaotic system, which is a measure of the complexity and entan-
glement of the system’s attractor. Higher Lyapunov dimensions
typically indicate more complex systems. For convenience, let us
present the spectrum of the Lyapunov exponents in descending
order: LE1 > LE2 > LE3 > LE4 > LE5 > LE6 and calculate

the Lyapunov Kaplan-Yorki dimension according to the following
formula:

DKY = ξ +
1

|LEξ+1|

ξ

∑
i=1

LEi = 3 +
0.1509
0.8859

≈ 3.17, (12)

where ξ is determined from the conditions

ξ

∑
i=1

LEi > 0 ⇒
3

∑
i=1

LEi = 0.1509,
ξ+1

∑
i=1

LEi = −0.735 < 0.

Figure 5 Hidden attractors of the new 6D rescaled system (13) in
different planes.

Figure 6 Plots demonstrating the multistability of two attractors
in different phase planes with two different ICs given in Table 3.

Here ξ is the number of first non-negative exponents Lyapunov in
the spectrum. From (12), it is evident that the Lyapunov dimen-
sion is fractal, indicating that the trajectories of system (5) exhibit
complex behavior.

Visualizing phase portraits in the rescaled 6D dynamic system

As mentioned in the previous subsection, the dynamic system (5)
can display hyperchaotic behavior. This makes the visual analysis
of phase portraits for hyperchaotic attractors especially insightful.
It is easy to see from Figure 2 that the temporal diagrams for the
variables x1, x2, x3, x4, x5, and x6 exhibit an aperiodic structure,
a defining feature of chaotic systems. Implementing the hyper-
chaotic system (5) in an electronic circuit presents challenges, as the
dynamic variables x2, x4, and x5 exceed the operational amplifiers’
power supply limits. To address this, we scale the variables in the
system () by setting x2 = 30X2, x4 = 30X4, and x5 = 40X5, while
keeping x1 = X1, x3 = X3, and x6 = X6. This transformation
results in the modified form of the hyperchaotic system (5) and ICs
(6) in the following form:
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■ Table 3 Multistability of the system (13) with fixed parameters a=0.77, b=0.45 and various ICs.

Figure planes Initial Conditions Color Sign of LEs

X3X1

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X3X1

(
−1,− 1

30 , 1,− 1
30 ,− 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

X3X6

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X3X6

(
5.2,− 1

3 , 3.5, 1
30 ,− 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

X1X6

(
1, 1

30 , 1, 1
30 , 1

40 , 1
)

red (+,+,0,-,-,-) hyperchaotic

X1X6

(
−5.2,− 1

3 , 3.5,− 1
30 , 1

40 , 1
)

blue (+,+,0,-,-,-) hyperchaotic

Figure 7 Signal X6 and phase portrait in the plane X3X6 for dif-
ferent values of the offset boosting controller k: k = 0 (blue),
k = 5 (green), k = −5 (red).



dX1
dt

= a(−X1 + 30X2) + 30X4

dX2
dt

= −X3
30

sgn(X1)

dX3
dt

= −1 + |X1|

dX4
dt

= − b
30

X1

dX5
dt

= −X5 +
3
4

X1X4

dX6
dt

= −X6 + X1X3

(13)

X1(0) = 1, X2(0) = 1/30, X3(0) = 1, X4(0) = 1/30,

X5(0) = 1/40, X6(0) = 1 . (14)

Systems (5) and (13) are equivalent, as the linear transformation
adjusts the variables without affecting the intrinsic properties of
the nonlinear system. Figure 5 illustrates the solutions of the trans-
formed equations (13) given the initial conditions () and parameter
values a = 0.77, b = 0.45. The phase portraits show hidden at-
tractors in the different planes. Notably, the dynamic range of the
variables x2, x4, x5 is considerably reduced compared to Figure 2.
This reduction facilitates the practical implementation of electronic
circuits using operational amplifiers, which operate within the
typical voltage limits of -15V to +15V.

Multistability and offset boosting control
Dynamic systems, as mathematical constructs used to describe
complex phenomena across various scientific fields, can possess

Figure 8 Circuit modules implemented based on a system of
equations (13): a) X̃1, b) X̃2, c) X̃3, d) X̃4, e) X̃5, f) X̃6.

multiple attractors. These attractors, which may be points, cycles,
tori, or more complex chaotic structures, represent distinct states
of the system. The specific attractor to which a system converges
depends on its initial conditions, meaning small changes in these
conditions can lead to different long-term behaviors. This leads
to the concept of multistability, where several attractors coexist
within the same set of system parameters.

In this subsection, we examine the multistability property of
system (5), demonstrating how different attractors can coexist
under the same system parameters when initial conditions are
varied. Table 3 provides data for two attractors obtained by solving
system (13) with identical control parameters a = 0.77, b = 0.45 but
different initial conditions. Figure 6 clearly illustrates the behavior
of these two attractors based on the data from Table 3.

Offset boosting control has numerous applications in hyper-
chaotic systems. This method allows for flexible shifting of the
attractor in a specific direction by introducing an offset, which
holds significant engineering application value (Wen et al. 2021).
Note that the state variable X6 appears only in the sixth equation
of the proposed system, making it easy to control. Consequently,
the X6 variable can be increased by introducing a k offset boosting
controller, replacing X6 with X6 + k. The sixth differential equation
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Figure 9 Schematic diagrams for the implementation of func-
tions: a) signum sgn(·); b) absolute value | · |.

Figure 10 Chaotic phase trajectories of a electronic circuit (Fig. 8)
displayed in Multisim oscilloscopes: a) X̃1X̃2, b) X̃1X̃3, c) X̃1X̃4,
d) X̃1X̃5, e) X̃1X̃6, f) X̃2X̃3, g) X̃2X̃5, h) X̃3X̃6, i) X̃6X̃5.

of system (13) can then be rewritten as follows:

dX6
dt

= −(X6 + k) + X1X3. (15)

Figure 7 depicts several positions of hyperchaotic attractors
boosted with different k values in the X3X6 plane. As shown on
the left side of Figure 7, adjusting the bias gain control k converts
the signal X6 from bipolar to unipolar. For a positive value of k, the
attractors are shifted in the negative direction, while for a negative
value of k, the attractors are shifted in the positive direction.

CIRCUIT IMPLEMENTATION

For the practical implementation of the proposed new 6D hyper-
chaotic system (5) (or (13)), circuit modeling must be performed
using Multisim software. According to Kirchhoff’s law for electri-
cal circuits, we can write the electrical analogue of the system (13)

Figure 11 Synchronization error behavior for 6D hyperchaotic
drive and response systems.

as follows: 

C1
dU1
dτ

= − U1
R11

+
U2
R12

+
U4
R13

C2
dU2
dτ

= −U3sgn(U1)

R21K

C3
dU3
dτ

=
|U1|
R31

− Ṽb
R32

C4
dU4
dτ

= − U1
R41

C5
dU5
dτ

=
U1U4
R51K

− U5
R52

C6
dU6
dτ

=
U1U3
R61K

− U6
R62

(16)

where Ṽb is a stable DC voltage source to implement the constant
(=1) in a system (5), Rij are resistors (i, j) = 1, 2, 3, 4, 5, 6, Ui(τ) are
voltage values, Ci are capacitors, and K is a scaling coefficient for
the multiplier. We choose the normalized resistor as R0 = 100kΩ
and the normalized capacitor as C0 = 1nF. Then the time constant
is equal to t0 = R0C0 = 10−4s. We rescale the state variables of the
system (16) as follows U1 = U0X̃1, U2 = U0X̃2, U3 = U0X̃3, U4 =

U0X̃4, U5 = U0X̃5, U6 = U0X̃6, K = U0K
′
, and τ = t0t. Next, we

can write equations (16) in a dimensionless form. By substituting
R0, C1 = C2 = C3 = C4 = C5 = C6 = C0, and K

′
= 10 into (16)

and comparing numerical values before the output voltages of the
system (13), we get the value of resistors:

dX̃1
dt

= −100k
R1

X̃1 +
100k
R2

X̃2 +
100k
R3

X̃4

dX̃2
dt

= − 100k
R4 · 10

X̃3sgn(X̃1)

dX̃3
dt

=
100k
R5

|X̃1| −
100k
R6

Vb

dX̃4
dt

= −100k
R7

X̃1

dX̃5
dt

=
100k

R9 · 10
X̃1X̃4 −

100k
R8

X̃5

dX̃6
dt

=
100k

R11 · 10
X̃1X̃3 −

100k
R10

X̃6

(17)

where

R1 = 129.87kΩ, R2 = 4.329kΩ, R3 = 3.333kΩ, R4 = 300kΩ,

R5 = R6 = 100kΩ, R7 = 6.666MΩ, R8 = 100kΩ,
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Figure 12 Synchronization of the states for 6D hyperchaotic
drive and response systems.

R9 = 13.33kΩ, R10 = 100kΩ, R11 = 10kΩ.

Figure 8 presents analog circuit modules for the equations of sys-
tem (17), which consists of standard components such as resistors
(R), capacitors (C), diodes D1,D2 (1N4001), multipliers M1-M3
(AD633), operational amplifiers A1-A23 (TL084ACN), and a sup-
ply voltage of ±15V. The constant 1 is implemented using a con-
stant voltage source Vb = 1V. In the modules shown in Figures
8b and 8c, we used standard electronic circuits that simulate the
signum sgn(·) (see, for example, (Yu et al. 2008)) and absolute
value | · | functions (Sedra and Smith 1998), which are presented
in Figure 9. Figure 10 presents the simulation results from Mul-
tisim of an electronic circuit, displaying hyperchaotic attractors
of system (17) in various planes. These results align with those
from the Mathematica simulation shown in Figure 5, confirming
the feasibility of the proposed circuit.

ACTIVE CONTROL SYNCHRONIZATION

Certainly, after developing a new chaotic oscillator based on 6D
nonlinear dynamic equations, it is crucial to investigate the syn-
chronization capabilities of this system to ensure its practical appli-
cability. In this section, we examine the active control synchroniza-
tion of two identical 6D hyperchaotic systems. System (13) was
chosen as the drive system, while the response system is described
as follows: 

dY1
dt

= a(−Y1 + 30Y2) + 30Y4 + u1

dY2
dt

= −Y3
30

sgn(Y1) + u2

dY3
dt

= −1 + |Y1|+ u3

dY4
dt

= − b
30

Y1 + u4

dY5
dt

= −Y5 +
3
4

Y1Y4 + u5

dY6
dt

= −Y6 + Y1Y3 + u6

(18)

where Y1, Y2, Y3, Y4, Y5, Y6 are the states and u1, u2, u3, u4, u5, u6, u7
are active controllers that we will define later. Our objective is to
synchronize the signals of both the drive and response systems,
even when their initial conditions differ. The state errors are de-
fined as ei(t) = Yi(t)− Xi(t), for (i = 1, 2, 3, 4, 5, 6). By subtracting

Figure 13 Time evolution of the synchronization errors with
controllers deactivated (t < 520s) and activated (t > 520s).

the drive system (13) from the response system (18), we obtain the
error system as follows:

ė1 = a(−e1 + 30e2) + 30e4 + u1

ė2 = − 1
30 (Y3sgn(Y1)− X3sgn(X1)) + u2

ė3 = |Y1| − |X1|+ u3

ė4 = − b
30 e1 + u4

ė5 = 3
4 (Y1Y4 − X1X4)− e5 + u5

ė6 = (Y1Y3 − X1X3)− e6 + u6

(19)

Next, we define active control functions aimed at producing an
asymptotically stable error system, thereby achieving synchroniza-
tion of the novel 6D hyperchaotic systems. The selected active
control functions are detailed below:

u1 = −e1 + ae1 − 30ae2 − 30e4

u2 = −e2 +
1
30 (Y3sgn(Y1)− X3sgn(X1))

u3 = −e3 − (|Y1| − |X1|)

u4 = −e4 +
b

30 e1

u5 = − 3
4 (Y1Y4 − X1X4)

u6 = −(Y1Y3 − X1X3)

(20)

Then, the dynamic equations of the error system are as follows:

ė1 = −e1

ė2 = −e2

ė3 = −e3

ė4 = −e4

ė5 = −e5

ė6 = −e6

(21)

Upon applying the proposed active control functions (20), the error
system transforms into a linear form. For convenience, we express
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this in matrix form as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ė1

ė2

ė3

ė4

ė5

ė6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1

ė2

e3

e4

e5

e6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(22)

It can be easily verified that all eigenvalues of the state matrix (22)
are negative. Therefore, according to the Routh-Hurwitz criterion,
the error system is stable, ensuring synchronization between the
drive system (13) and the response system (18).

Numerical simulation
The nonlinear equations (13) and (18) were solved using the 4th-5th
order Runge-Kutta-Fehlberg (rkf45) method in the Maple comput-
ing environment with the fixed parameters a = 0.77, b = 0.45. The
drive system (13) was initialized with the following conditions:

X1(0) =
1

10
, X2(0) =

7
60

, X3(0) =
1
2

, X4(0) =
1
5

,

X5(0) =
1
5

, X6(0) =
1
10

, (23)

and the response system was initialized with:

Y1(0) =
3
2

, Y2(0) =
1
2

, Y3(0) =
3
2

, Y4(0) =
5
6

,

Y5(0) =
3
8

, Y6(0) =
3
2

. (24)

Figure 11 illustrates the error curves resulting from the synchro-
nization between the drive and response systems, showcasing the
exponential convergence of synchronization errors ei to zero over
time. In Figure 12, the behavior of each state in both the drive and
response systems is depicted, demonstrating the convergence of
trajectories within a short time and indicating synchronization in
these hyperchaotic systems.

For a clear representation of synchronization using the active
control method, we select the following initial conditions for the
drive system (13) and response system (18):

X1(0) = 1. X2(0) =
1

30
, X3(0) = 1, X4(0) =

1
30

,

X5(0) =
1

40
, X6(0) = 1,

Y1(0) =
7
2

, Y2(0) = − 7
60

, Y3(0) =
7
2

, Y4(0) =
7

60
,

Y5(0) =
7
80

, Y6(0) =
7
2

. (25)

Ensure that the active controllers are switched on at t = 520 sec-
onds. The results depicted in Figure 13 indicate that the error
system states exhibit chaotic behavior over time when the active
controllers are deactivated (at t < 520 s), suggesting a lack of syn-
chronization. At t ≥ 520 s, the controllers are activated, and we
can see that the synchronization error states quickly converge to
zero.

Thus, simulation findings demonstrate the ability of the ac-
tive controllers (20) to synchronize two identical 6D hyperchaotic
systems starting from various initial conditions.

CONCLUSION

This work obtained a new 6D dynamic system with the smallest
number of terms (only 11) compared to the existing 6D dynamic
systems in the literature (see Tab. 1). It was found that the new
dynamic system has no equilibrium points, which may lead to the
formation of hidden attractors. For specific values of the system
parameters, a hyperchaos regime was discovered, for which all
Lyapunov exponents and the Kaplan-York dimension were calcu-
lated. The presence of two positive Lyapunov exponents indicates
the complexity of the new 6D dynamic system. In addition, exten-
sive studies of the dynamic properties of the system were carried
out, including bifurcation diagrams, phase portraits, Lyapunov ex-
ponents, multistability, and offset boosting control. The electronic
circuit of the proposed 6D system was designed using the Multi-
sim 14 software. The results of the electronic circuit simulation are
consistent with those obtained in the Mathematica environment.
Finally, the synchronization between the two identical new 6D
hyperchaotic systems was achieved by developing appropriate
active controllers. The new system has promising applications in
the field of encryption and decryption of information signals.

Acknowledgments
We thank three anonymous reviewers for their valuable sugges-
tions and comments.

Availability of data and material
Not applicable.

Conflicts of interest
The authors declare that there is no conflict of interest regarding
the publication of this paper.

Ethical standard
The authors have no relevant financial or non-financial interests to
disclose.

LITERATURE CITED

Adıyaman, Y., S. Emiroğlu, M. K. Uçar, and M. Yıldız, 2020 Dynam-
ical analysis, electronic circuit design and control application
of a different chaotic system. Chaos Theory and Applications 2:
10–16.

Al-Azzawi, S. F. and A. S. Al-Obeidi, 2021 Chaos synchronization
in a new 6d hyperchaotic system with self-excited attractors and
seventeen terms. Asian-European Journal of Mathematics 14:
2150085.

Al-Azzawi, S. F. and A. S. Al-Obeidi, 2023 Dynamical analysis and
anti-synchronization of a new 6d model with self-excited attrac-
tors. Applied Mathematics-A Journal of Chinese Universities 38:
27–43.

Al-Azzawi, S. F. and A. M. Hasan, 2023 New 5d hyperchaotic
system derived from the sprott c system: Properties and anti
synchronization. Journal of Intelligent Systems and Control 2:
110–122.

Al-Obeidi, A. S. and S. F. Al-Azzawi, 2022 A novel six-dimensional
hyperchaotic system with self-excited attractors and its chaos
synchronisation. International Journal of Computing Science
and Mathematics 15: 72–84.

Al-Talib, Z. S. and S. F. Al-Azzawi, 2022 A new simple 6d hyper-
chaotic system with nonhyperbolic equilibrium and its electronic
circuit. In 2022 Int. Conf. Computer Sci. Software Engineering
(CSASE) pp. 369–374.

CHAOS Theory and Applications 281



Al-Talib, Z. S. and S. F. Al-Azzawi, 2023a A new simple 6d hyper-
chaotic system with hyperbolic equilibrium and its electronic
circuit. Iraqi Journal for Computer Science and Mathematics 4:
155–166.

Al-Talib, Z. S. and S. F. Al-Azzawi, 2023b A new simple 6d hyper-
chaotic system with hyperbolic equilibrium and its electronic
circuit. Iraqi Journal For Computer Science and Mathematics 4:
155–166.

Aziz, S. M. and S. F. Al-Azzawi, 2022 A novel simple 6d hyper-
chaotic system with hidden attractors. In 2022 Int. Conf. Com-
puter Sci. Software Engineering (CSASE) pp. 7–12.

Benkouider, K., T. Bouden, M. E. Yalcin, and S. Vaidyanathan, 2020
A new family of 5d, 6d, 7d and 8d hyperchaotic systems from
the 4d hyperchaotic vaidyanathan system, the dynamic anal-
ysis of the 8d hyperchaotic system with six positive lyapunov
exponents and an application to secure communication design.
International Journal of Modelling, Identification and Control
35: 241–257.

Bhat, M. A. and M. Shikha, 2019 Complete synchronisation of
non-identical fractional order hyperchaotic systems using active
control. International Journal of Automation and Control 13:
140–157.

Binous, H. and N. Zakia, 2008 An improved
method for lyapunov exponents computation.
https://library.wolfram.com/infocenter/MathSource/7109/ .

Bohr, T., M. H. Jensen, G. Paladin, and A. Vulpiani, 1998 Dynamical
Systems Approach to Turbulence. Cambridge Nonlinear Science
Series, Cambridge University Press.

Chen, A., J. Lu, J. Lu, and S. Yu, 2006 Generating hyperchaotic lu
attractor via state feedback control. Physica A 364: 103–110.

Chu, J. and W. W. Hu, 2016 Control chaos for permanent magnet
synchronous motor base on adaptive backstepping of error com-
pensation. International Journal of Automation and Computing
9: 163–174.

Elwakil, A. S., S. Ozoguz, and M. P. Kennedy, 2002 Creation of
a complex butterfly attractor using a novel lorenz-type system.
IEEE Transactions on Circuits and Systems I 49: 527–530.

Emiroglu, S., A. Akgül, Y. Adı yaman, T. E. Gümüs̆, Y. Uyaroglu,
et al., 2022 A new hyperchaotic system from t chaotic system:
dynamical analysis, circuit implementation, control and synchro-
nization. Circuit World 48: 265–277.

Frederickson, P., J. L. Kaplan, E. D. Yorke, and J. A. Yorke, 1983 The
liapunov dimension of strange attractors. Journal of differential
equations 92: 185–207.

Ghosh, D. and S. Bhattacharya, 2010 Projective synchronization
of new hyperchaotic system with fully unknown parameters.
Nonlinear Dynamics 61: 11–21.

Hu, G., 2009 Generating hyperchaotic attractors with three positive
lyapunov exponents via state feedback control. International
Journal of Bifurcation and Chaos 19: 651–660.

Jia, Q., 2007 Hyperchaos generated from the lorenz chaotic system
and its control. Physics Letters A 366: 217–222.

Jung, W., S. J. Elliot, and J. Cheer, 2019 Local active control of road
noise inside a vehicle. Mechanical Systems and Signal Processing
121: 144–157.

Khattar, D., N. Agrawal, and M. Sirohi, 2024 Qualitative analysis
of a new 6d hyper-chaotic system via bifurcation, the poincare
notion, and its circuit implementation. Indian Journal of Physics
98: 259–273.

Kopp, M. I., A. V. Tur, and V. V. Yanovsky, 2023 Chaotic dynamics
of magnetic fields generated by thermomagnetic instability in a
nonuniformly rotating electrically conductive fluid. Journal of

Physical Studies 27: 2403.
Kozlovska, O., F. Sadyrbaev, and I. I. Samuilik, 2024 A new 3d

chaotic attractor in gene regulatory network. Mathematics 12:
100.

Li, X., 2009 Modified projective synchronization of a new hyper-
chaotic system via nonlinear control. Communications in Theo-
retical Physics 52: 274–278.

Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.

Michael Kopp and Andrii Kopp, 2022 A new 6d chaotic generator:
Computer modelling and circuit design. International Journal of
Engineering and Technology Innovation 12: 288–307.

Rajagopal, K., L. Guessas, S. Vaidyanathan, A. Karthikeyan, and
A. Srinivasan, 2017a Dynamical analysis and fpga implemen-
tation of a novel hyperchaotic system and its synchronization
using adaptive sliding mode control and genetically optimized
pid control. Mathematical Problems in Engineering 2017: 1–14.

Rajagopal, K., G. Laarem, A. Karthikeyan, and A. Srinivasan, 2017b
Fpga implementation of adaptive sliding mode control and ge-
netically optimized pid control for fractional-order induction
motor system with uncertain load. Advances in Difference Equa-
tions 2017: 1–20.

Ramakrishnan, R., 2018 Chaos and its applications to Communication
Systems. Scholars’ Press, Cambridge.

Sabaghian, A., S. Balochian, and M. Yaghoobi, 2020 Synchronisa-
tion of 6d hyper-chaotic system with unknown parameters in
the presence of disturbance and parametric uncertainty with
unknown bounds. Connection Science 32: 362–383.

Sedra, A. S. and K. C. Smith, 1998 Microelectronics Circuits, 4th ed.
Oxford University Press, New York.

Singh, J. P. and B. K. Roy, 2016 The nature of lyapunov exponents is
(+, +, -, -), is it a hyperchaotic system? Chaos, Solitons & Fractals
92: 73–85.

Soldatenko, S., A. Bogomolov, and A. Ronzhin, 2021 Mathematical
modelling of climate change and variability in the context of
outdoor ergonomics. Mathematics 9.

Tohidi, S., Y. Yildiz, and I. Kolmanovsky, 2020 Adaptive state
observers for incrementally quadratic nonlinear systems with
application to chaos synchronization. Automatica 121: 1–11.

Vaidyanathan, S., 2013 A ten-term novel 4d hyperchaotic system
with three quadratic nonlinearities and its control. International
Journal of Control Theory and Applications 6: 97–109.

Vaidyanathan, S. and C. K. Volos, 2015 Analysis and adaptive con-
trol of a novel 3-d conservative no-equilibrium chaotic system.
Archives of Control Sciences 25: 333–353.

Vaidyanathan, S., C. K. Volos, and V. T. Pham, 2014 Hyperchaos,
adaptive control and synchronization of a novel 5-d hyper-
chaotic system with three positive lyapunov exponents and its
spice implementation. Archives of Control Sciences 24: 409–446.

Wang, J. and Z. Chen, 2008 A novel hyperchaotic system and
its complex dynamics. International Journal of Bifurcation and
Chaos 18: 3309–3324.

Wen, J., Y. Feng, X. Tao, , and Y. Cao, 2021 Dynamical analysis of
a new chaotic system: Hidden attractor, coexisting-attractors,
offset boosting, and dsp realization. IEEE Access 9: 167920–
167927.

Yang, L., Q. Yang, and G. Chen, 2020 Hidden attractors, singularly
degenerate heteroclinic orbits, multistability and physical real-
ization of a new 6d hyperchaotic system. Communications in
Nonlinear Science and Numerical Simulation 90: 105362.

Yang, Q. and C. Chen, 2013 A 5d hyperchaotic system with three
positive lyapunov exponents coined. International Journal of

282 | Kopp and Samuilik CHAOS Theory and Applications



Bifurcation and Chaos 23: 1350109.
Yang, Q., D. Zhu, and L. Yang, 2018 A new 7d hyperchaotic sys-

tem with five positive lyapunov exponents coined. International
Journal of Bifurcation and Chaos 28: 1850057.

Yin, X., J. Chen, W. Yu, Y. Huang, W. Wei, et al., 2022 Five-
dimensional memristive hopfield neural network dynamics anal-
ysis and its application in secure communication. Circuit World
50: 67–81.

Yousefpour, A., A. H. Hosseinloo, M. R. H. Yazdi, and A. Bahrami,
2020 Disturbance observer-based terminal sliding mode control
for effective performance of a nonlinear vibration energy har-
vester. Journal of Intelligent Material Systems and Structures 31:
1495–1510.

Yu, S., W. K. S. Tang, J. Lu, and G. Chen, 2008 Multi-wing butterfly
attractors from the modified lorenz systems. 2008 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), Seattle, WA,
USA pp. 768–771.

Zhang, H., W. Zhang, Y. Zhao, and M. Ji, 2020 Adaptive state
observers for incrementally quadratic nonlinear systems with
application to chaos synchronization. Circuits, Systems, and
Signal Processing 39: 1290–1306.

How to cite this article: Kopp, M. I., and Samuilik, I. A New 6D 
Two-wing Hyperchaotic System: Dynamical Analysis, Circuit 
De-sign, and Sinchronization. Chaos Theory and Applications, 6(4), 
273- 283, 2024.

Licensing Policy: The published articles in CHTA are licensed
under a Creative Commons Attribution-NonCommercial 4.0 Inter-
national License.

CHAOS Theory and Applications 283

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

