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Abstract 

 

Since skin cancer is one of the most common types of cancer, prompt diagnosis is essential to successful 

treatment. Impressive performance in image-based classification tasks has been demonstrated by convolutional 

neural networks (CNNs), particularly in recent years. In this study, the proposed CNN model was applied to the 

ISIC skin cancer classification challenge. A proposed deep learning model and four popular deep CNN models 

(ResNet, GoogleNet, AlexNet, and VGG16) were used to classify the skin cancer images. High levels of 

accuracy on test data from the ISIC dataset were achieved by the proposed CNN model, according to 

experimental results. Preprocessing was performed on images with sizes of 64x64, 100x100, 224x224, and 

128x128 pixels. The experimental results show that the proposed CNN model achieved the highest accuracy rate 

of 86.76% on 128x128 size images.  

  

Keywords: Classification, Convolutional neural network (CNN), Deep learning (DL), Skin Cancer, ISIC 

dataset 

 

1. Introduction 

 

Skin cancer is a prevalent type of cancer that originates 

in the skin's epidermal layer. It accounts for one in three 

cancer cases globally[1]. At about 90.0%, exposure to 

ultraviolet light is one of the main causes of skin 

cancer[2]. It was one of the five illnesses that were 

prevalent in the US, particularly in an area with intense 

sunlight. 2019 saw almost 2490 females and 4740 males 

lose their lives to melanoma, translating to nearly 20 

deaths per day in the US alone[3, 4]. In contrast, an 

estimated 6850 novel fatalities associated with 

melanoma were documented in 2020, comprising 2240 

females and 4610 males[5]. Dermatologists most 

commonly use dermoscopic images, also known as 

epiluminescence light microscopy, to analyze 

pigmented skin lesions. Because of the similarities 

between the lesions and healthy tissues, a visual 

examination performed with the naked eye may contain 

errors in recognition [6-9]. Dermatologists' manual 

inspection is often difficult, subjective, and time-

consuming, resulting in varied recognition accuracy 

depending on their workload and skill[9-12]. A deep-

learning convolutional neural network (CNN) image 

classifier that outperformed 21 board-certified 

dermatologists in recognizing photos with malignant 

lesions was initially reported by Esteva et al. [13] in 

2017. During training, the CNN dissected digital photos 

of skin lesions and created its own diagnostic standards 

for melanoma identification. Deep neural networks 

(CNN) have been used to demonstrate dermatologist-

level skin cancer categorization in a number of follow-

up articles [14-17]. 

 

In this work, we trained a skin cancer convolutional 

neural network by using open source ISIC dataset. The 

classification results of the proposed CNN were 

compared with the four-pretrained models. To avoid 

bias in the creation of the data set, we implemented the 

ImageDataGenerator object with the desired 

transformations, which balanced the overall dataset 

images to 2500 for each class of (actinic keratosis, basal 

cell carcinoma, dermatofibroma, melanoma, nevus, 

pigmented benign keratosis, seborrheic keratosis, 

squamous cell carcinoma, and vascular lesion) images 

divided into training, validation, and testing. 
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2. Materials and Methods 

 

The materials and procedures used in this article to 

carry out the experiments are the main topics of this 

section. Section 2.1 describes ISIC datasets, whereas 

Section 2.2 explains the proposed Methodology. In 

Section 2.3, model performance and evaluation are 

presented. 

 

2.1. Dataset 

A dataset consisting of 2357 photographs of both benign 

and malignant oncological conditions, provided by the 

International Skin Imaging Collaboration (ISIC), was 

utilized. All photographs, except for melanomas and 

moles which are more prevalent in the photos, were 

categorized according to the ISIC classification. Each 

subgroup was then divided into an equal number of 

images[13]. Figure 1. displays a sample from the ISIC 

dataset . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1.Class-distribution of the ISIC Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Methodology 

 

Deep neural networks can be understood 

mathematically as functions with millions of freely 

variable parameters, or weights. The intensities of the 

pixels in an input image are transferred to a probability 

of a class label when these weights are modified for a 

specific image classification task. Training these 

functions necessitates a large number of images for 

which the class is known due to the enormous number 

of free parameters. The function's output is computed 

for each image, compared to the specified class label, 

and then the weights are gently adjusted to lower the 

error. With only the pixel intensities of each image as 

input, the function "learns" how to accurately predict the 

class labels through numerous repetitions of this method 

for every image in the training set. The function shows 

considerable generality in predicting the class labels for 

unknown images, thanks to the use of training data that 

accurately describe the potential input space. CNNs, 

which have a particular architecture, were used in this 

work. In normal neural networks, all pixel dependencies 

influence all weights, with the exception of the first 

layers. CNNs, on the other hand, first combine nearby 

local pixels to identify local features before combining 

them to create global features. Faster training and less 

complex models are the outcomes of this restriction on 

local connections. For this reason, CNNs have been 

successfully applied to many different problems [18-20] 

because they create different representations at different 

layers.  

 

The proposed convolutional neural network (CNN) 

model, which is intended for image classification tasks, 

was presented in this paper. The model begins with an 

input layer that requires images to have three color 

channels and four different resolutions, those of 64x64, 

100x100, 128x128 and 224x224 pixels. The next three 

convolutional layers use max-pooling to decrease spatial 

dimensions and progressively increase filter depth (32, 

64, and 128). After every convolutional layer, batch 

normalization is used to speed up and stabilize training. 

After that, a global average pooling layer is used to 

further reduce spatial dimensions. Dropout layers for 

regularization are then added after two dense layers with 

128 and 64 units, respectively, and rectified linear unit 

(ReLU) activation functions. The last layer uses softmax 

activation for multi-class output probabilities and is a 

dense layer with nine units, which correspond to the 

number of classes in the classification problem. For 

optimization, the Adam optimizer is selected, having an 

epsilon of 1e-07 and a learning rate of 0.001. Accuracy 

is the evaluation metric, and the model is created using 

the categorical crossentropy loss function. With the help 

of regularization approaches, this architecture seeks to 

extract hierarchical features from input images for 

efficient classification, improving generalization 

performance. 

 

The methodology of the proposed method is given in 

Table 2. As can be seen in the table, the imbalance 

between the classes in the dataset is eliminated in the 

first stage. Data augmentation methods were used to 

eliminate data imbalance.  After balancing the dataset, 

Class Name 
Number of 

Images 

actinic keratosis 130 

basal cell carcinoma 392 

Dermatofibroma 111 

Melanoma 454 

Nevus 373 

Pigmented benign 

keratosis 
478 

seborrheic keratosis 80 

Squamous cell 

carcinoma 
197 

vascular lesion 142 

Total Number of 

Images 
2357 

Figure 1. ISIC dataset sample 
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the dataset is divided into three parts: training, testing 

and validation. The CNN models run on the training and 

validation data were then tested with the test data and 

the final result was obtained. Four different state-of-the-

art models and an original new model were developed 

and used as CNN models.  

 
 

Figure 2. Proposed methodology diagram 

 

2.2.1. Data balancing 

Three techniques were employed by early machine 

learning researchers to address the classification 

problem with imbalanced data: class weight balancing 

[21, 22], under sampling [23, 24], and oversampling 

[25, 26]. Oversampling [25, 26]causes the data for 

categories with fewer photos to be duplicated. 

Oversampling does have one drawback, though: the 

duplicate image is identical to the original, making it 

useless for feature learning. Second, under sampling 

[23] eliminates data in categories with a higher number 

of photographs; however, this has the drawback of 

potentially removing a large number of images with 

useful attributes. The final step in the class weight 

balancing process is to multiply the loss weights by 

constants, each of which has an inverse relationship to 

the quantity of data in each category. The learning rate 

step may get too big to converge as a result of the class 

weight balancing; this is more noticeable in highly 

unbalanced data [27]. As a result, the suggestion in this 

article is to provide data for categories with fewer 

images. In order to enable the learning process to 

converge, the image generation approach [28] not only 

preserves the original data's features, but also adds 

random vectors to prevent overfitting. As shown in 

Figure 3. The original image data was resized to 64, 

100, 128, and 224 dimensions, and the resized images 

were used after the dataset was balanced using 

augmentation techniques. Finally, the diversity of 

created images is increased by employing data 

augmentation [36] approaches. 

 

 

 
Figure 3. Flowchart of the dataset balancing 

 

2.2.2. Data Augmentation 

  

More and more diverse training data sets are known to 

enhance the performance of deep learning neural 

networks [29]. The process of creating artificially 

altered copies of images from training data is known as 

data augmentation, which also enlarges the training 

dataset by combining the original training data with the 

altered versions of the images. In this work, we 

employed rotation, flipping, shearing, and zooming as 

the augmentation functions. The angle of random 

rotation was between 0 and 20 degrees. There was a 0.2 

random zooming range. The shearing range was 0.2, 

meaning that one axis would lengthen by 20% while the 

other would remain intact. It is extremely improbable 

that the legion will disappear from the image due to this 

slight degree of rotation, shearing, and zooming because 

it is located in the center of the image in both datasets. 

A few arbitrary enhanced pictures were taken from the 
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training dataset as shown in Table 2. ISIC Dataset Summary after augmentation  

 
Table 2. ISIC Dataset Summary after augmentation 

 

2.3 Model Performance and Evaluation  
 

This parameter is a measure of the statistical correctness 

of the prediction as defined in Equation-1[30]. Relying 

on this parameter alone can be sometimes misleading in 

evaluating the performance of a predictor because of its 

dependence on both the FP and FN. This means that two 

models can have the same accuracy, while one has high 

FP and low FN, and the other one has the opposite, i.e., 

low FP and high FN. Thus, the first model can be 

preferred to the other one, due to having a low FN for 

the sensitive medical scenario, which may not be 

decided only from the accuracy values of the models. 

 

True Positives (TP): Occurrences where a positive 

outcome was predicted, and the actual result was also 

positive. 

True Negatives (TN): Occurrences where a negative 

outcome was predicted, and the actual result was also 

negative. 

False Positives (FP): Occurrences where a positive 

outcome was predicted, but the actual result was 

negative. 

False Negatives (FN): Occurrences where a negative 

outcome was predicted, but the actual result was 

positive. [31]. 

Accuracy  is defined as the ratio of the total number of 

input samples to the number of right predictions[31]. 

 

  Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                   Eq ( 1 )  

 

Precision  is defined as the number of correct positive 

results divided by the total number of positive outcomes 

that the classifier predicted[31]. 

Precision and recall are measured with the statistical 

correctness of the final prediction as defined in 

Equation-2 and Equation-3, respectively. Precision 

measures among the predicted images for a particular 

class and how many of them are actually of that class. 

On the other hand, recall measures the total number of 

images from a particular class and what fraction of that 

are correctly classified as images from that class. 

Recall is the number of correct sure results divided by 

the total number of conjugate samples—that is, all the 

samples that should have been classified as sure[31]. 

 

      Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                          Eq (2) 

      Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 Eq (3) 

F1-score, It also goes by the name "harmonic mean," 

which seeks to strike a balance between recall and 

precision. It works well on an unbalanced dataset and 

requires both false positives and false negatives for 

computation[31]. F1-score, defined in Equation-4 is 

known as weighted average of recall and precision. 

 

       𝐹1 =       
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                            Eq (4) 

Additionally, we observe that the precision, recall, and 

F1 score range in values from 0 to 1. A model performs 

better for a certain classification job the greater its 

precision, recall, and F1 score values [32]. 

 

 

3. Results and Discussion 

 

3.1. Result of proposed CNN model with image size 

224x224 

 

For the purpose of the performance analysis, the dataset 

is split into three sets, one of which is the training set 

that is used to train the model. To prevent overfitting, 

the model's hyperparameters are adjusted using the 

validation set. And lastly, the testing set, which is used  

to evaluate the overall performance of the model. The 

training loss and validation loss gradually decreasing 

across the epochs indicates that the model is learning 

and generalising successfully. After epoch 50, the 

validation loss stops decreasing, suggesting that the 

model has reached its peak performance. It is important 

to keep in mind that the appropriate number of epochs 

can vary depending on the size of the dataset and the 

complexity of the model. Error! Reference source not 

found. shows the proposed model's with image size 

ISIC Train images Validation 

images 

Test images Total images 

actinic keratosis 631  167  202  1000 

basal cell carcinoma 631  167  202  1000 

dermatofibroma 634 163 203 1000 

melanoma 649 149  202  1000 

nevus 633  164 203  1000 

pigmented benign keratosis 647  153 200 1000 

seborrheic keratosis 660  153 187 1000 

squamous cell carcinoma 645  164  191  1000 

vascular lesion 645 164 204 1000 
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(224x224) training and validation accuracy over a range 

of epochs, and Figure 5.  shows the model's loss 

analyses over the same number of epochs. Figure 6. 

show the confusion matrix of proposed model with the 

same image size. 

 
Figure 4. Convergence graph of the training and 

accuracy loss values obtained by the proposed CNN 

model in the training phase on the 224x224 image size 

dataset. 

 
Figure 5. Convergence graph of the training and 

validation accuracy values obtained by the proposed 

CNN model in the training phase on the 224x224 image 

size dataset. 

 

 
Figure 6. The confusion matrix obtained by the 

proposed CNN model on the 224x224 test dataset. 

 

 

 

 

 

3.2. Result proposed CNN model with image size 

128x128 

 

After reducing the image to 128x128 pixels, the 

proposed CNN model result increased the accuracy of 

our model. Following this stage, our accuracy was 

86.76%. Figure 7 shows the loss convergence graph 

obtained by the model during the training phase, and 

Figure 8 shows the accuracy convergence graph. Figure 

9 shows the confusion matrix obtained by the model on 

the test data. When looking at the confusion matrix, it 

was seen that the model incorrectly labeled the 

“melanoma” class the most. 

 
Figure 7. Convergence graph of the training and 

accuracy loss values obtained by the proposed CNN 

model in the training phase on the 128x128 image size 

dataset. 

 

 
Figure 8.Convergence graph of the training and 

validation accuracy values obtained by the proposed 



 

              Celal Bayar University Journal of Science  
 Volume 20, Issue 4, 2024, p 82-91 

 Doi: 10.18466/cbayarfbe.1513945                                                                                                          B. Mohammed 

 

87 

CNN model in the training phase on the 128x128 image 

size dataset. 

 

  
Figure 9. The confusion matrix obtained by the 

proposed CNN model on the 128x128 test dataset. 

 

3.3. Result proposed CNN model with image size 

64x64 

The proposed CNN model was trained on a 64x64 

dataset. The loss convergence graph in the training 

phase is given in Figure 10, and the accuracy 

convergence graph is given in Figure 11. When looking 

at the convergence graphs, the model showed its best 

performance approximately from the 35th epoch, and its 

success continued horizontally after this epoch. The 

confusion matrix obtained by the model on the test data 

is given in Figure 12. When looking at the confusion 

matrix, it was seen that the model incorrectly labeled the 

“actinic keratosis” class the most. 

 

 
Figure 10. Convergence graph of the training loss and 

validation loss values obtained by the proposed CNN 

model in the training phase on the 64x64 image size 

dataset. 

 
Figure 11. Convergence graph of the training and 

validation accuracy values obtained by the proposed 

CNN model in the training phase on the 64x64 image 

size dataset 

 

 

 
 

Figure 12. The confusion matrix obtained by the 

proposed CNN model on the 64x64 test dataset. 

 

3.4. Result proposed CNN model with image size 

100x100 

 

The loss convergence graph of the CNN model trained 

on the 100x100 dataset in the training phase is given in 

Figure 13, and the accuracy convergence graph is given 

in Figure 14. When the convergence graphs are 

examined, the model showed its best performance 

approximately from the 36th epoch, and its success 

continued horizontally after this epoch. The confusion 

matrix obtained by the model on the test data is given in 

Figure 15. When looking at the confusion matrix, it was 

seen that the model incorrectly labeled the “melanoma” 

class the most. 
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Figure 14. Convergence graph of the training and 

validation accuracy values obtained by the proposed 

CNN model in the training phase on the 100x100 image 

size.

Figure 15. The confusion matrix obtained by the 

proposed CNN model on the 100x100 test dataset. 

3.5. Result of Used Original Popular CNN Model 

We first trained a number of well-known Convolutional 

Neural Network (CNN) models, including InceptionV3, 

AlexNet, ResNet, and InceptionV3, on the ImageNet 

dataset in order to tackle our classification task. For our 

9-class challenge, the early findings did not yield great 

accuracy, even with their outstanding feature extraction 

skills. In order to address this, we modified each of 

these models before using them again for our 

classification task. Specifically, we added more thick 

layers and dropout layers to enhance performance and 

avoid overfitting. 

During preprocessing, we used data augmentation 

approaches to improve the model's generalization 

capabilities across various skin conditions and reduce 

class imbalances within the ISIC dataset. Applying a 

number of transformations, such as rotation, shifting the 

width and height, shearing, zooming, and horizontal 

flipping, was required for this. By enhancing the 

existing photos, these methods guaranteed that each 

class was adequately represented in addition to adding 

diversity to the training data. Next, we made sure the 

dataset was carefully balanced by limiting the number 

of images to 1000 for each class. After that, several 

models were trained and assessed using the balanced 

and expanded dataset. The accuracy comparison of 

these models is shown in Table, which also highlights 

how well they classify various skin disorders. 

 

The parameter numbers of the models in the study are 

given in Table 3. When the table is examined, it is seen 

that the proposed CNN model has fewer parameters 

than all other models. 

 

Table 3. Parameter comparison of the proposed CNN 

model and the state-of-the-art CNN models. 

Models 
Number of 

Parameters 
Model Size 

Modified AlexNet 46803035 178.54 MB 

Modified VGG16 8266761 31.54 MB 

Modified ResNet50 24756644 94.44 MB 

Modified InceptionV3   48250537 184.06 MB 

Original AlexNet 71988013 274.61 MB 

Original VGG16 136362825 520.18 MB 

Original ResNet50 25695113 98.02 MB 

Original InceptionV3 23910185 91.21 MB 

Proposed CNN 

Model (64, 100, 

128,224) 

764041 465.04 KB 

 

The comparison of the results obtained in this study 

with the competitor studies is given in Table 4. The 

table shows the references of the studies on the ISIC 

dataset and the accuracy rates obtained in these studies. 

It is seen that some studies have achieved a higher 

success rate than the proposed method. However, since 

the training and test datasets used in the studies are not 

known, the accuracy values are not an absolute measure 

of success. Another parameter of model success is 

model computational complexity. In this context, the 

proposed CNN model obtained an accuracy value close 

to other models with a very low number of parameters. 

 

 

Figure 13. Convergence graph of the training and 

validation loss values obtained by the proposed CNN 

model in the training phase on the 100x100 image 

size dataset. 
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Table 4. Review of the studies performed on the ISIC dataset and comparison of the results of these studies with the proposed 

method. 

Reference Model 
Accuracy 

(%) 
Albahar [33]  CNN and Novel Regularizer 97.49 

Sanketh et al. [34]  CNN 98 

Daghrir, Tlig et al. [35] Hybrid approach 85.5 

Vipin, Nath et al. [36] U-Net 88.7 

Rahi, Khan et al. [37] CNN network with CGG16, RESNET50, DENSNET50 90 

Jojoa Acosta et al. [38] CNN combined with pretrained ResNet152 90.4 

Rahi et al. [37] CNN  76 

Yu et al. [39] CNN 94.9 

Majtner et al. [40] HCF+CNN 82.6 

Li and Shen  [41] CNN 85.7 

Mahbod et al. [42] CNN 90.5 

Zhang et al. [43] CNN 87.4 

Amin et al. [44] CNN 99.0 

Mahbod et al. [45] CNN 96.6 

Kwasigroch et al. [46] HCF+CNN 77.0 

Hameed et al. [47] HCF+CNN 96.5 

Khan et al. [48]  CNN 93.4 

Mporas et al. [49] ML+ANN 74.3 

Khan et al.  [50] CNN 92.8 

Pereira et al. [51] HCF 90.0 

Khan et al.  [52] CNN 90.7 

Proposed Work 

Proposed CNN Model_64 84.27 

Proposed CNN Model _100 86.5 

Proposed CNN Model_128 86.76 

Proposed CNN Model _224 83.22 

Modified AlexNet 89.56 

Original AlexNet 73 

Modified VGG16 86.50 

Original VGG16 64 

Modified ResNet50 88.94 

Original ResNet50 53 

Modified InceptionV3 90.56 

Original InceptionV3 64 

 

4. Conclusion 

In this paper, a novel CNN model working on RGB 

images for skin cancer classification is presented. In 

addition, ResNet, GoogleNet, AlexNet, and VGG16 

deep learning models are used by reorganizing them by 

changing some of their layers. The models are tested 

using ISIC datasets, with image enhancement in pre-

processing utilizing the Image class from the PIL or 

Pillow library to open and resize images, and np.asarray 

to translate the resized images into NumPy arrays. Data 

augmentation techniques are also used. The proposed 

novel CNN model achieved 84.27%, 86.51%, 86.76%, 

and 83.22% accuracy rates for different resolutions of 

64x64, 100x100, 128x128, and 224x 224 pixel image 

sizes, respectively. The proposed model has very few 

parameters and its success metrics are comparable to 

other studies.   

 

Furthermore, in this study compared a set of pre-trained 

modified CNN models using both original and 

customized models to compare their parameters and 

performance. After doing a comparative analysis, 

updated VGG16 achieved 86.50%, AlexNet 89.56%, 

ResNet 88.94%, and InceptionV3 90.56%. In future 

work, we would like to add more different images and 

revisions to the training dataset in order to improve the 

model's ability to generalize to varying skin tones and 

appearance changes. Optimizing the current model, 

attempting more complex architectures, or 

experimenting with different transfer learning 

algorithms or pre-trained models will all yield better 

results. 

 

 

 

 

 



 

              Celal Bayar University Journal of Science  
 Volume 20, Issue 4, 2024, p 82-91 

 Doi: 10.18466/cbayarfbe.1513945                                                                                                          B. Mohammed 

 

90 

 

 References 
 

1. Leiter, U., U. Keim, and C. Garbe, Epidemiology of skin cancer: 
update 2019. Sunlight, Vitamin D and Skin Cancer, 2020: p. 123-139. 

 

2. Narayanamurthy, V., et al., Skin cancer detection using non-
invasive techniques. RSC advances, 2018. 8(49): p. 28095-28130. 

 

3. Singer, S., et al., Gender identity and lifetime prevalence of skin 
cancer in the United States. JAMA dermatology, 2020. 156(4): p. 

458-460. 

 
4. Trager, M.H., et al., Biomarkers in melanoma and non‐melanoma 

skin cancer prevention and risk stratification. Experimental 

dermatology, 2022. 31(1): p. 4-12. 
 

5. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. 

CA: a cancer journal for clinicians, 2018. 68(1): p. 7-30. 

 

6. Jones, O., et al., Dermoscopy for melanoma detection and triage in 

primary care: a systematic review. BMJ open, 2019. 9(8): p. e027529. 
 

7. Phillips, M., et al., Detection of malignant melanoma using 

artificial intelligence: an observational study of diagnostic accuracy. 
Dermatology practical & conceptual, 2020. 10(1). 

 

8. Vestergaard, M., et al., Dermoscopy compared with naked eye 
examination for the diagnosis of primary melanoma: a meta‐analysis 

of studies performed in a clinical setting. British Journal of 

Dermatology, 2008. 159(3): p. 669-676. 
 

9. Carli, P., et al., Addition of dermoscopy to conventional naked-eye 
examination in melanoma screening: a randomized study. Journal of 

the American Academy of Dermatology, 2004. 50(5): p. 683-689. 

 
10. Al-Masni, M.A., D.-H. Kim, and T.-S. Kim, Multiple skin lesions 

diagnostics via integrated deep convolutional networks for 

segmentation and classification. Computer methods and programs in 
biomedicine, 2020. 190: p. 105351. 

 

11. Hasan, M.K., et al., Dermo-DOCTOR: A framework for 
concurrent skin lesion detection and recognition using a deep 

convolutional neural network with end-to-end dual encoders. 

Biomedical Signal Processing and Control, 2021. 68: p. 102661. 
 

12. Hasan, M.K., et al., DSNet: Automatic dermoscopic skin lesion 

segmentation. Computers in biology and medicine, 2020. 120: p. 
103738. 

 

13. Esteva, A., et al., Dermatologist-level classification of skin cancer 
with deep neural networks. nature, 2017. 542(7639): p. 115-118. 

 

14. Marchetti, M.A., et al., Results of the 2016 International Skin 
Imaging Collaboration International Symposium on Biomedical 

Imaging challenge: Comparison of the accuracy of computer 

algorithms to dermatologists for the diagnosis of melanoma from 

dermoscopic images. Journal of the American Academy of 

Dermatology, 2018. 78(2): p. 270-277. e1. 

 
15. Haenssle, H.A., et al., Man against machine: diagnostic 

performance of a deep learning convolutional neural network for 

dermoscopic melanoma recognition in comparison to 58 
dermatologists. Annals of oncology, 2018. 29(8): p. 1836-1842. 

 

16. Brinker, T.J., et al., A convolutional neural network trained with 
dermoscopic images performed on par with 145 dermatologists in a 

clinical melanoma image classification task. European Journal of 

Cancer, 2019. 111: p. 148-154. 
 

17. Brinker, T.J., et al., Skin cancer classification using convolutional 

neural networks: systematic review. Journal of medical Internet 
research, 2018. 20(10): p. e11936. 

 

18. İnik, Ö., et al., A new method for automatic counting of ovarian 

follicls on whole slide histological images based on convolutional 

neural network. Computers in biology and medicine, 2019. 112: p. 
103350. 

 

19. Celik, M. and O. Inik, Development of hybrid models based on 
deep learning and optimized machine learning algorithms for brain 

tumor Multi-Classification. Expert Systems with Applications, 2024. 

238: p. 122159. 
 

20. Inik, O., et al., Prediction of Soil Organic Matter with Deep 

Learning. Arabian Journal for Science and Engineering, 2023. 48(8): 
p. 10227-10247. 

 

21. King, G. and L. Zeng, Logistic regression in rare events data. 
Political analysis, 2001. 9(2): p. 137-163. 

 

22. Zhu, M., et al., Class weights random forest algorithm for 
processing class imbalanced medical data. IEEE Access, 2018. 6: p. 

4641-4652. 

 
23. Han, H., W.-Y. Wang, and B.-H. Mao. Borderline-SMOTE: a new 

over-sampling method in imbalanced data sets learning. in 

International conference on intelligent computing. 2005. Springer. 
 

24. He, H. and E.A. Garcia, Learning from imbalanced data. IEEE 

Transactions on knowledge and data engineering, 2009. 21(9): p. 
1263-1284. 

 

25. LemaÃŽtre, G., F. Nogueira, and C.K. Aridas, Imbalanced-learn: 
A python toolbox to tackle the curse of imbalanced datasets in 

machine learning. Journal of machine learning research, 2017. 18(17): 

p. 1-5. 
 

26. Ramentol, E., et al., Smote-rs b*: a hybrid preprocessing 
approach based on oversampling and undersampling for high 

imbalanced data-sets using smote and rough sets theory. Knowledge 

and information systems, 2012. 33: p. 245-265. 
 

27. Dong, Q., S. Gong, and X. Zhu, Imbalanced deep learning by 

minority class incremental rectification. IEEE transactions on pattern 
analysis and machine intelligence, 2018. 41(6): p. 1367-1381. 

 

28. Mariani, G., et al., Bagan: Data augmentation with balancing gan. 
arXiv preprint arXiv:1803.09655, 2018. 

 

29. Cubuk, E.D., et al. Autoaugment: Learning augmentation 
strategies from data. in Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. 2019. 

 
30. Çelik, M. and Ö. İnik, Detection of monkeypox among different 

pox diseases with different pre-trained deep learning models. Journal 

of the Institute of Science and Technology. 13(1): p. 10-21. 
 

31. Ali, M.S., et al., An enhanced technique of skin cancer 

classification using deep convolutional neural network with transfer 
learning models. Machine Learning with Applications, 2021. 5: p. 

100036. 

 
32. Chanda, D., et al., DCENSnet: A new deep convolutional ensemble 

network for skin cancer classification. Biomedical Signal Processing 

and Control, 2024. 89: p. 105757. 
 

33. Albahar, M.A., Skin lesion classification using convolutional 

neural network with novel regularizer. IEEE Access, 2019. 7: p. 
38306-38313. 

 

34. Sanketh, R.S., et al. Melanoma disease detection using 
convolutional neural networks. in 2020 4th International Conference 

on Intelligent Computing and Control Systems (ICICCS). 2020. IEEE. 

35. Daghrir, J., et al. Melanoma skin cancer detection using deep 
learning and classical machine learning techniques: A hybrid 

approach. in 2020 5th international conference on advanced 

technologies for signal and image processing (ATSIP). 2020. IEEE. 



 

              Celal Bayar University Journal of Science  
 Volume 20, Issue 4, 2024, p 82-91 

 Doi: 10.18466/cbayarfbe.1513945                                                                                                          B. Mohammed 

 

91 

 

36. Vipin, V., et al. Detection of melanoma using deep learning 

techniques: A review. in 2021 international conference on 
communication, control and information sciences (ICCISc). 2021. 

IEEE. 

 
37. Rahi, M.M.I., et al. Detection of skin cancer using deep neural 

networks. in 2019 IEEE Asia-Pacific Conference on Computer 

Science and Data Engineering (CSDE). 2019. IEEE. 
 

38. Jojoa Acosta, M.F., et al., Melanoma diagnosis using deep 

learning techniques on dermatoscopic images. BMC Medical 
Imaging, 2021. 21: p. 1-11. 

 

39. Yu, L., et al., Automated melanoma recognition in dermoscopy 
images via very deep residual networks. IEEE transactions on medical 

imaging, 2016. 36(4): p. 994-1004. 

 
40. Majtner, T., S. Yildirim-Yayilgan, and J.Y. Hardeberg. Combining 

deep learning and hand-crafted features for skin lesion classification. 

in 2016 Sixth International Conference on Image Processing Theory, 
Tools and Applications (IPTA). 2016. IEEE. 

 

41. Li, Y. and L. Shen, Skin lesion analysis towards melanoma 
detection using deep learning network. Sensors, 2018. 18(2): p. 556. 

 

42. Mahbod, A., et al., Fusing fine-tuned deep features for skin lesion 
classification. Computerized Medical Imaging and Graphics, 2019. 

71: p. 19-29. 

 
43. Zhang, J., et al., Attention residual learning for skin lesion 

classification. IEEE transactions on medical imaging, 2019. 38(9): p. 

2092-2103. 
 

44. Amin, J., et al., Integrated design of deep features fusion for 
localization and classification of skin cancer. Pattern Recognition 

Letters, 2020. 131: p. 63-70. 

 
45. Mahbod, A., et al., Transfer learning using a multi-scale and 

multi-network ensemble for skin lesion classification. Computer 

methods and programs in biomedicine, 2020. 193: p. 105475. 
 

46. Kwasigroch, A., M. Grochowski, and A. Mikołajczyk, Neural 

architecture search for skin lesion classification. IEEE Access, 2020. 
8: p. 9061-9071. 

 

47. Hameed, N., et al., Multi-class multi-level classification algorithm 
for skin lesions classification using machine learning techniques. 

Expert Systems with Applications, 2020. 141: p. 112961. 

 
48. Khan, M.A., et al., Developed Newton-Raphson based deep 

features selection framework for skin lesion recognition. Pattern 

Recognition Letters, 2020. 129: p. 293-303. 
 

49. Mporas, I., I. Perikos, and M. Paraskevas. Color models for skin 

lesion classification from dermatoscopic images. in Advances in 
Integrations of Intelligent Methods: Post-workshop volume of the 8th 

International Workshop CIMA 2018, Volos, Greece, November 2018 

(in conjunction with IEEE ICTAI 2018). 2020. Springer. 
 

50. Khan, M.A., et al., Pixels to classes: intelligent learning 

framework for multiclass skin lesion localization and classification. 
Computers & Electrical Engineering, 2021. 90: p. 106956. 

 

51. Pereira, P.M., et al., Skin lesion classification enhancement using 
border-line features–The melanoma vs nevus problem. Biomedical 

Signal Processing and Control, 2020. 57: p. 101765. 

 
52. Khan, M.A., et al., Skin lesion segmentation and multiclass 

classification using deep learning features and improved moth flame 

optimization. Diagnostics, 2021. 11(5): p. 811. 
 


