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Abstract 
In today's world, the relationship between social media and the internet is becoming increasingly important. 
Therefore, there is a need to determine the level of social media addiction. In addition to expressing social media 
addiction mathematically, equilibrium point analyses of such equation systems also illuminate the extent and 
impact of addiction. This study focuses on such a model. Discretization of the model was achieved using the 
nonstandard finite difference method. Equilibrium points were identified and analyzed using the Maple software 
package. The findings reveal critical thresholds that distinguish between balanced and excessive use, providing 
insights into the progression and potential control of social media addiction. Additionally, Maple working codes 
are presented, allowing for the replication and extension of the study by other researchers. These codes not only 
verify the accuracy of the mathematical model but also offer a practical tool for further exploration in this field, 
contributing significantly to the literature. 
Keywords: Maple package programming, Equilibrium point, Social media addiction model, Numerical 
Analysis. 

 

Sosyal Medya Bağımlılığı Modelinde Denge Noktalarının Analizine Yönelik Bir Maple 
Programı  

Öz 

Günümüz dünyasında sosyal medya ve internet arasındaki ilişki giderek önem kazanmaktadır. Bu nedenle 
sosyal medya bağımlılığının düzeyinin belirlenmesine ihtiyaç duyulmaktadır. Sosyal medya bağımlılığını 
matematiksel olarak ifade etmenin yanı sıra, bu denklem sistemlerinin denge noktası analizleri de bağımlılığın 
kapsamını ve etkisini aydınlatmaktadır. Bu çalışma böyle bir modele odaklanmaktadır. Modelin 
ayrıklaştırılması standart olmayan sonlu farklar yöntemi kullanılarak gerçekleştirilmiştir. Denge noktaları 
Maple yazılım paketi kullanılarak belirlenmiş ve analiz edilmiştir. Bulgular, dengeli ve aşırı kullanım arasında 
ayrım yapan kritik eşikleri ortaya koyarak sosyal medya bağımlılığının ilerlemesi ve potansiyel kontrolü 
hakkında içgörüler sağlıyor. Ek olarak, Maple çalışma kodları sunularak çalışmanın diğer araştırmacılar 
tarafından tekrarlanması ve genişletilmesi sağlanıyor. Bu kodlar yalnızca matematiksel modelin doğruluğunu 
doğrulamakla kalmıyor, aynı zamanda bu alanda daha fazla araştırma yapmak için pratik bir araç sunarak 
literatüre önemli katkı sağlıyor. 
Anahtar Kelimeler: Maple paket programı, Denge noktası, Sosyal medya bağımlılık modeli, Nümerik analiz. 
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1. Introduction 

The burgeoning prevalence of social media platforms has precipitated an urgent need to 
understand the dynamics of social media addiction through mathematical modeling. These 
models offer a quantitative framework to elucidate the complex interactions between users and 
the addictive features of social media. By employing differential equations and other 
mathematical tools, researchers can be simulating user behavior over time, identify critical 
factors influencing addiction, and predict long-term trends. Such models are crucial for 
developing effective interventions and informing policy decisions aimed at mitigating the 
adverse effects of social media addiction [1-2]. 

Social media addiction often stems from psychological and social factors that influence an 
individual's behaviour and interaction patterns. One of the main causes is the dopamine-driven 
reward system activated by social media use, where likes, comments and notifications provide 
instant gratification. This creates a cycle of dependency that reinforces the need for constant 
engagement. In addition, feelings of loneliness, low self-esteem or anxiety can lead individuals 
to seek validation and connection through social media platforms. The design of these 
platforms, with algorithms designed to maximise user engagement, exacerbates the problem by 
encouraging prolonged use. Peer pressure and fear of missing out are also significant 
contributors, especially among younger demographics who may feel compelled to stay 
connected to avoid social exclusion. 

The effects of social media addiction can manifest themselves in different aspects of an 
individual's life. Psychologically, it is associated with increased levels of anxiety, depression 
and stress, often due to unrealistic comparisons with others and cyberbullying. Academically 
and professionally, excessive social media use can lead to reduced productivity, poor 
concentration and procrastination. Physically, prolonged screen time contributes to problems 
such as disrupted sleep patterns, eye strain and a sedentary lifestyle, increasing the risk of 
obesity and other health problems. Socially, it can weaken real-life relationships as individuals 
prioritise virtual interactions over face-to-face communication. In extreme cases, social media 
addiction can lead to significant behavioural changes, such as withdrawal symptoms when 
access to platforms is restricted, highlighting the severity of its impact on overall well-being. 

There are diverse approaches to modeling social media addiction, ranging from deterministic 
models to stochastic processes. For instance, deterministic models often utilize systems of 
differential equations to represent the rate of change in user engagement, while stochastic 
models may incorporate random variables to account for unpredictable user behavior.  

Studies have demonstrated that these mathematical representations can capture the salient 
features of addiction, such as escalation, habituation, and withdrawal symptoms [3-4]. 
Furthermore, the integration of network theory has enhanced the ability to model the spread of 
addictive behavior through social networks, providing insights into how peer influence and 
social reinforcement contribute to addiction dynamics [5].  
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Significant studies have been conducted on mathematical modeling in the field of understanding 
social media addiction. For instance, Ishaku et al.  employed a compartmental model to examine 
the impact of social media on the academic performance of students in higher education. The 
model identifies two equilibria, Media Free Equilibrium (MFE) and Media Addiction 
Equilibrium Points and conducts stability analysis based on the basic reproduction number to 
demonstrate the local stability of MFE if greater than unity, otherwise unstable. Numerical 
simulations confirm significant effects of social media on academic performance, validating the 
local stability analysis of MFE [6]. Simsek et al. revealed a moderate level of social media 
addiction among both university and high school students. Significant differences were 
identified based on factors such as gender, duration of use, university department, and type of 
high school [7]. Shutaywi et al. develop a mathematical model using fractional calculus to 
understand the transmission dynamics of social media addiction (SMA) and its detrimental 
effects. The research identifies equilibrium points, computes the reproduction parameter	𝑅! to 
analyze SMA spread dynamics, and performs stability analysis with various input parameters 
to explore effective control strategies [8]. 

In their paper, Guo and Li developed a two-stage mathematical model to investigate the 
dynamic characteristics of online gaming addiction. They determined the equilibrium points. 
They demonstrated global asymptotic stability of both the disease-free equilibrium and the 
endemic equilibrium. They also used Runge-Kutta methods as numerical solutions [9]. 
Alemneh and Alemu utilized optimal control analysis in their mathematical modeling to 
identify effective strategies for reducing social media addiction, highlighting the importance of 
tailored interventions [10]. Finally, Savci et al. [11] and Çiftçi and Yıldız [12] integrated 
machine learning techniques to predict future trends in social media addiction. 

On the other hand, identifying equilibrium points in these mathematical models is of paramount 
importance, as they represent stable states where the system can maintain itself without external 
intervention. Equilibrium point analysis helps in understanding the conditions under which 
social media usage stabilizes, escalates into addiction, or diminishes. By determining these 
points, researchers can ascertain the thresholds for addiction and devise strategies to prevent 
users from crossing these critical boundaries.  

The stability of equilibrium points also sheds light on the resilience of the system to 
perturbations, offering valuable information for designing robust interventions [13]. 

The application of advanced mathematical tools, such as the Maple software package, facilitates 
the identification of equilibrium points and the analysis of differential equations in both 
ordinary and fractional forms. Distributed order differential equations, as a generalization of 
these two types of equations, allow for a more comprehensive analysis, capturing the memory 
effects and hereditary properties inherent in user behavior. This enables researchers to conduct 
analyses applicable to both ordinary and fractional systems. By utilizing these sophisticated 
equations, it can be drawing more precise conclusions about the progression and potential 
mitigation of addiction. For distributed order differential equations, applications of this type of 
equations, and different numerical solutions, see the following references. [14-21]. 
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In this study, the model developed by Alemneh and Alemu for social media addiction is 
considered [10]. This model is formulated as a distributed order differential equation, distinct 
from the conventional types of equations. Consequently, the analysis allows for commentary 
on both ordinary and fractional-order differential equation systems. Nonstandard finite 
differences are employed for numerical analysis. The primary objective here is to determine the 
equilibrium points of the system. As mentioned earlier, the analysis of these points enables 
examination of the stages and transitional states of addiction. Due to the complexity of this 
analysis, the Maple software package has been utilized. Additionally, the use of the Maple 
software package has been integrated into the article, aiming to contribute to the literature by 
providing a tool suitable for analyzing such or similar equation systems. 

The article is structured in four sections. The second part presents the basic concepts on the 
subject, focusing on distributed order differential equations and nonstandard finite differences. 
In section 3 addresses the discretization and analysis of the system by combining data from the 
Maple software package. Also, in this section contains the analysis of equilibrium points 
obtained with Maple files. Finally, in section 4 presents discussions and conclusions about the 
study. 

2.   Preliminaries 

Distributed order differential equations and the nonstandard finite difference method are pivotal 
concepts in advanced mathematical modeling [22-27]. The core component of distributed order 
differential equations is the density function, which facilitates the simultaneous expression of 
both integer-order and fractional order systems. This function eliminates the need for separate 
solutions for each system, streamlining the numerical process. Moreover, the nonstandard finite 
difference method, leveraging the denominator function, enhances the efficiency and reliability 
of stability analyses, providing a robust framework for solving complex differential equations. 

Definition 2.1: If the function 𝑣(t)  is integrable function in the range 
[𝑝", 𝑝#]	𝑤𝑖𝑡ℎ			𝑞	𝜖	ℕ$	and		𝑞 − 1 < 𝛼 ≤ q, then the Caputo fractional derivative of order 𝛼 is 
given by 

																																											𝐷%&' 𝑣(𝑡) =
1

Г(𝑞 − 𝛼)	>
𝑣())(𝑢)

(𝑡 − 𝑢)'+)$" 𝑑𝑢,
,

'
																																										 

where Г(. ) represents the Gamma function [28]. 

Definition 2.2: If the function 𝑣(𝑡) be an integrable function in the interval [𝑝", 𝑝#] with 𝑞 −
1 < 𝛼 ≤ 𝑞 for 	𝑞	𝜖	ℕ$. So, Riemann Liouville fractional derivative of order 𝛼 is defined by 
[28], 

																																												𝐷-'𝑣(𝑡) =
1

Г(𝑞 − 𝛼)
𝑑.

𝑑𝑡. 	>
𝑣())(𝑢)

(𝑡 − 𝑢)'+)$" 𝑑𝑢
,

'
.																																			 
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Definition 2.3: If the function g(/)(t)  is integrable function in the range [𝑣", 𝑡]  and 𝑣 =
1,2, . . , 𝑘 + 1 − 𝑡ℎ times differentiable function. Grünwald-Letnikov fractional derivative of 
order 𝛼 is defined by [28]: 

𝐷01' 𝑔(𝑡) = lim
2→!

𝑗+'K(−1)4 L
𝑘
𝑖 M 𝑔(𝑡 − 𝑖𝑗)

5

46!

. 

The approximate Grünwald-Letnikov derivative formula can be expressed as: 

𝐷,'𝑔(𝑡) =K𝑢4'𝑔(𝑡.+7),				𝑛 = 1,2,3, … ,
.

46!

 

where 𝑢4' = Q1 − "$'
4
R 𝑢4+"' , 𝑓𝑜𝑟	𝑖 = 1,2,3, … , 𝑣 = ℎ+' and h is chosen quite small [29]. 

Definition 2.4: The nonstandard finite difference (NSFD) scheme is a numerical method used 
to solve differential equations. It is designed to preserve the essential properties of the 
differential equations, such as positivity and stability, which standard finite difference methods 
may fail to maintain. The following steps outline the construction of an NSFD scheme: 

		𝑃(𝑤) → 𝑃(𝑤.),				𝑤(𝑡) → 𝑤(𝑡.),				
𝑑𝑤
𝑑𝑡 →

𝑤.$" −𝑤.
𝛿(ℎ) , 𝑡 → 𝑡., 

where  89
8,
= 𝑃(𝛾, 𝑤) is an ordinary differential equation with 𝛾: 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ,  𝛿(ℎ)  is a 

denominator function and it can be chosen as 𝛿(ℎ) = :!"+"
;
. The denominator function 𝛿(ℎ) is 

dependent on the step size ℎ and the variable 𝑎, which is calculated at the equilibrium point. 
The choice of the denominator function should ensure compatibility with the continuous model 
and stability of the discrete system concerning the step size. This guarantees convergence to the 
continuous model as the step size decreases. Furthermore, the selection of the function should 
ensure that the equilibrium points of the discrete model align with those of the continuous model 
and preserve positive solutions. These mathematical properties ensure that the model remains 
consistent with physical reality and accuracy. Using this method along with the Grünwald-
Letnikov approximation formula, the same scheme can be extended to fractional derivatives. 
Consequently, the NSFD scheme can be effectively applied to distributed order differential 
equations [30]. 

Definition 2.5: The integral operator of distributed order differential equations is defined as: 

𝐷,
9(')𝑓(𝑡) = > 𝑤(𝛼)

8#

8$
𝐷,'𝑓(𝑡)	𝑑𝛼, 

where 𝛼	𝜖	(𝑑", 𝑑#) , and ∫ 𝑤(𝛼)8#
8$

= 𝑘 > 0  with 𝑤(𝛼)  serving as the density function for 

distributed-order differential equations. The operator 𝐷,'𝑓(𝑡)	  represents the fractional 
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derivative operator, which can alternatively be defined using Caputo, Riemann-Liouville, or 
Grünwald-Letnikov derivatives. Utilizing the specified integral operator, the distributed-order 
derivatives are defined as follows [24]: 

𝐷,
9(')𝑓(𝑡) =K𝛼4> 𝑤4(𝛼)

8#

8$

.

46"

𝐷,4+'𝑓(𝑡)𝑑𝛼 +K𝑏2𝑓4(𝑡)
.

26!

. 

Theorem 2.6: Let e be the equilibrium point of the difference equation of the form below. 

𝑤.$" = 𝑃(𝑤., 𝑤.+", 𝑤.+#,...,𝑤.+5), 𝑛 = 0,1,2, . .. 

Here, P  is a continuously differentiable function defined in an open neighborhood of the 
equilibrium point e . In this case, the stability of the equilibrium point is determined by 
examining the roots of the characteristic equation derived from the Jacobian matrix. If all the 
roots of the characteristic equation have absolute values less than one, the equilibrium point e 
is locally asymptotically stable. Otherwise, if at least one root has an absolute value greater than 
one, the equilibrium point e is unstable [31]. 

3. Main Theorem and Proof 

In this section, the social media addiction population model is separated into five subgroups 
based on their addiction status. Susceptible individuals (𝑆) are those who are not currently 
addicted but are at risk of developing social media addiction. Exposed individuals (𝐸) are those 
who use social media infrequently and have not progressed to addiction. Addicted individuals 
(𝐴) are those who are addicted to social media and spend the majority of their time on it. 
Recovered individuals (𝑅) are those who have overcome their social media addiction. Finally, 
individuals who have permanently quit and no longer use social media are denoted by 𝑄	[10]. 
The updated version of the distributed order Social Media Addiction model can be expressed: 

𝐷,
9(')𝑆(𝑡) = 𝑟 + 𝑔𝑛𝑅(𝑡) − 𝑏𝑠	𝐴(𝑡)𝑆(𝑡) − (𝑘 + 𝑚)	𝑆(𝑡), 

𝐷,
9(')𝐸(𝑡) = 𝑏𝑠𝐴(𝑡)𝑆(𝑡) − (𝑑 + 𝑚)𝐸(𝑡), 

𝐷,
9(')𝐴(𝑡) = 𝑎𝑑𝐸(𝑡) − (𝑚 + 𝑒 + 𝑝)	𝐴(𝑡), 

𝐷,
9(')𝑅(𝑡) = (1 − 𝑎)𝑑	𝐸(𝑡) + 𝑒	𝐴(𝑡) − (𝑚 + 𝑛)	𝑅(𝑡), 

𝐷,
9(')𝑄(𝑡) = 𝑘𝑆(𝑡) + (1 − 𝑔)𝑛	𝑅(𝑡) − 𝑚	𝑄(𝑡). 

where, susceptible individuals are introduced into the population at a recruitment rate 	𝑟. These 
individuals begin using social media due to peer pressure at a contact rate	𝑏  from addicted 
individuals, with a probability of transmission 𝑠  , and thus transition to the exposed 
compartment.  Some susceptible individuals permanently abstain from using social media at a 
rate 𝑘. Exposed individuals become addicted and move to the addicted compartment at a rate 
𝑎𝑑, while the remaining proportion of exposed individuals recover through treatment at a rate 



A Maple program to the Analysis of Equilibrium Points in Social Media Addiction Model 

121 
 

(1	 − 	𝑎)𝑑 . Addicted individuals transition to the recovered compartment either through 
education and/or treatment at a rate 𝑒, or die due to addiction at a rate 𝑟. Recovered individuals 
may become susceptible to social media addiction again at a rate  𝑔𝑛	or completely cease using 
social media at a rate (1	 − 	𝑔)𝑛 . The entire population experiences an average mortality rate 
of 𝑚. 

When applying the Grünwald-Letnikov approximation and the NSFD scheme to the modified 
equation for discretization, the resulting equation is derived as follows: 

K
𝑤(𝛼4)
𝐿

1

46"

K𝑢2
'%𝑆.$"+2

.$"

26!

= 𝑟 + 𝑔𝑛	𝑅. − (𝑏𝑠𝐴. + 𝑘 +𝑚)	𝑆.$", 

K
𝑤(𝛼4)
𝐿

1

46"

K𝑢2
'%𝐸.$"+2

.$"

26!

= 𝑏𝑠	𝐴.	𝑆. − (𝑑 +𝑚)𝐸.$", 

K
𝑤(𝛼4)
𝐿

1

46"

K𝑢2
'%𝐴.$"+2

.$"

26!

= 𝑎𝑑𝐸. − (𝑚 + 𝑒 + 𝑝)𝐴.$", 

K
𝑤(𝛼4)
𝐿

1

46"

K𝑢2
'%𝑅.$"+2

.$"

26!

= (1 − 𝑎)𝑑	𝐸. + 𝑒	𝐴. − (𝑚 + 𝑛)	𝑅.$", 

K
𝑤(𝛼4)
𝐿

1

46"

K𝑢2
'%𝑄.$"+2

.$"

26!

= 	𝑘	𝑆. + (1 − 𝑔)𝑛	𝑅. −𝑚	𝑄.$" 

where 𝑖 = 1,2,3,4 and  0 < 𝛼4 < 1, 	𝑝!
'% = (𝛿(ℎ))+'% 	and denominator functions are: 

𝛿"(ℎ) =
𝑒(5$>)? − 1
𝑘 +𝑚 , 𝛿#(ℎ) =

𝑒(8$>)? − 1
𝑑 +𝑚 , 𝛿@(ℎ) =

𝑒(>$:$A	)? − 1
𝑚 + 𝑒 + 𝑝 ,	 

𝛿C(ℎ) =
𝑒(>$.)? − 1

𝑛 , 𝛿D(ℎ) =
𝑒(>)? − 1

𝑚 . 

By utilizing the Grünwald-Letnikov approximation formula and appropriate denominator 
functions for the discretization, the system transforms into the following form: 

𝑆.$" kK
𝑤(𝛼4)
𝐿

1

46"

(𝛿"(ℎ))+'% + 𝑏𝑠𝐴. + 𝑘 +𝑚l = 𝑟 + 𝑔𝑛	𝑅. −K
𝑤(𝛼4)
𝐿

1

46"

mK𝑢2
'%𝑆.$"+2

.$"

26"

n, 

𝐸.$" kK
𝑤(𝛼4)
𝐿

1

46"

(𝛿#(ℎ))+'% + 𝑑 +𝑚l = 𝑏𝑠	𝐴.	𝑆. −K
𝑤(𝛼4)
𝐿

1

46"

mK𝑢2
'%𝐸.$"+2

.$"

26"

n, 
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𝐴.$" kK
𝑤(𝛼4)
𝐿

1

46"

(𝛿@(ℎ))+'% +𝑚 + 𝑒 + 𝑝l = 𝑎𝑑𝐸. −K
𝑤(𝛼4)
𝐿

1

46"

mK𝑢2
'%𝐴.$"+2

.$"

26"

n, 

𝑅!"# "#
𝑤(𝛼$)
𝐿

%

$&#

(𝛿'(ℎ))()! +𝑚 + 𝑛. = (1 − 𝑎)𝑑	𝐸! + 𝑒	𝐴! −#
𝑤(𝛼$)
𝐿

%

$&#

8#𝑢*
)!𝑅!"#(*

!"#

*&#

:, 

𝑄.$" kK
𝑤(𝛼4)
𝐿

1

46"

(𝛿D(ℎ))+'% +𝑚l = 	𝑘	𝑆. + (1 − 𝑔)𝑛	𝑅. −K
𝑤(𝛼4)
𝐿

1

46"

mK𝑢2
'%𝑄.$"+2

.$"

26"

n, 

Thus, the system, when discretized, results in the following form: 

𝑆.$" =
𝑟 + 𝑔𝑛	𝑅. −∑

𝑤(𝛼4)
𝐿

1
46" Q∑ 𝑢2

'%𝑆.$"+2.$"
26" R

L∑ 𝑤(𝛼4)
𝐿

1
46" (𝛿"(ℎ))+'% + 𝑏𝑠𝐴. + 𝑘 +𝑚	M

, 

𝐸.$" =
𝑏𝑠	𝐴.	𝑆. − ∑

𝑤(𝛼4)
𝐿

1
46" Q∑ 𝑢2

'%𝐸.$"+2.$"
26" R

L∑ 𝑤(𝛼4)
𝐿

1
46" (𝛿#(ℎ))+'% + 𝑑 +𝑚M

, 

𝐴.$" =
𝑎𝑑𝐸. −∑

𝑤(𝛼4)
𝐿

1
46" Q∑ 𝑢2

'%𝐴.$"+2.$"
26" R

L∑ 𝑤(𝛼4)
𝐿

1
46" (𝛿@(ℎ))+'% +𝑚 + 𝑒 + 𝑝M

, 

𝑅.$" =
(1 − 𝑎)𝑑	𝐸. + 𝑒	𝐴. − ∑

𝑤(𝛼4)
𝐿

1
46" Q∑ 𝑢2

'%𝑅.$"+2.$"
26" R

L∑ 𝑤(𝛼4)
𝐿

1
46" (𝛿C(ℎ))+'% +𝑚 + 𝑛M

, 

𝑄.$" =
	𝑘	𝑆. + (1 − 𝑔)𝑛	𝑅. −∑

𝑤(𝛼4)
𝐿

1
46" Q∑ 𝑢2

'%𝑄.$"+2.$"
26" R

L∑ 𝑤(𝛼4)
𝐿

1
46" (𝛿D(ℎ))+'% +𝑚M

. 

Here, the discretized system is defined in the Maple software package as follows: 

Ø S:=(r+g*n*Rn-w(alpha)/L*u[j]*Sn)/(w(alpha)/L*q1^(-alpha)+b*s*An+k+m)-Sn=0; 

 

Figure 1: Definition of Susceptible Populations in Maple 
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Ø E:=(b*s*An*Sn-w(alpha)/L*u[j]*En)/(w(alpha)/L*q2^(-alpha)+d+m)-En=0; 

 

Figure 2: Definition of Exposed Populations in Maple 

Ø A:=(a*d*En-w(alpha)/L*u[j]*An)/(w(alpha)/L*q3^(-alpha)+m+e+p)-An=0; 

 

Figure 3: Definition of Addicted Populations in Maple 

Ø R:=((1-a)*d*En+e*An-w(alpha)/L*u[j]*Rn)/(w(alpha)/L*q4^(-alpha)+m+n)-Rn=0; 

 

Figure 4: Definition of Recovered Populations in Maple 

Ø Q:=(k*Sn+(1-g)*n*Rn-w(alpha)/L*u[j]*Qn)/(w(alpha)/L*q5^(-alpha)+m)-Qn=0; 

 

Figure 5: Definition of Quitted Populations in Maple 

Here, the summation symbol definitions are incorporated within 𝑤(𝛼). The definitions for the 
denominator functions are provided as follows: 

Ø q1:=(exp((k+m)*h)-1)/(k+m);q2:=(exp((d+m)*h)-1)/(d+m);q3:=(exp((m+e+p)*h)-
1)/(m+e+p);q4:=(exp((m+n)*h)-1)/(m+n);q5:=(exp((m)*h)-1)/(m); 
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Figure 6: Definition of Denominator Functions in Maple 

The constant values necessary for equilibrium point analysis are taken as follows:  𝑟 = 0.5,𝑚 =
0.25, 𝑏 = 0.6, 𝑠 = 0.5, 𝑎 = 0.7, 𝑝 = 0.01, 𝑑 = 0.25, 𝑒 = 0.7, 𝑘 = 0.01, 𝑔 = 0.35, 𝑛 = 0.4 0 
[10]. The constant values and commands for equilibrium points are entered into Maple as 
follows. Consequently, the equilibrium points are obtained as follows: 

Ø r:=0.5:m:=0.25:b:=0.6:s:=0.5:a:=0.7:p:=0.01:d:=0.25:e:=0.7:k:=0.01:g:=0.35:n:=0.4:L
:=100: 

Ø h:=0.01:alpha:=1.3: 

Ø w:=GAMMA(2-alpha):u[j]:=1: 

Ø Solve:=solve([S,E,A,R,Q],[Sn,En,An,Rn,Qn]); 

Figure 7: Solutions of Equilibrium Points with Maple 

The Jacobian matrix and eigenvalues for the analysis of the obtained equilibrium points are 
expressed in the Maple software package as follows. When examining the program for the first 
equilibrium point: 

Ø J:=Matrix([[diff(S,Sn),diff(S,En),diff(S,An),diff(S,Rn),diff(S,Qn)],[diff(E,Sn),diff(E,E
n),diff(E,An),diff(E,Rn),diff(E,Qn)],[diff(A,Sn),diff(A,En),diff(A,An),diff(A,Rn),diff(
A,Qn)],[diff(R,Sn),diff(R,En),diff(R,An),diff(R,Rn),diff(R,Qn)],[diff(Q,Sn),diff(Q,En
),diff(Q,An),diff(Q,Rn),diff(Q,Qn)]]); 

Ø Sn:=0.09204875679:En:=0:An:=0:Rn:=0:Qn:=0.0001697615420: 

Ø DE:= det(lambda-J); 

 
Figure 8: Characteristic Equations for Equilibrium Point 1 in Maple 

Ø SDE:=solve(DE,lambda); 
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Figure 9: Eigenvalues for Equilibrium Point 1 in Maple 

As a result, since all eigenvalues have an absolute value less than 1, it can be observed that the 
equilibrium point is asymptotically stable. Upon analyzing the second equilibrium point: 

Ø Sn:=658.9989919:En:=-632.1782780:An:=-18.11114282:Rn:=-
10.34479281:Qn:=0.7193235400: 

Ø DE2:= det(lambda-J); 

Figure 10: Characteristic Equations for Equilibrium Point 2 in Maple 

Ø SDE2:=solve(DE2,lambda); 

Figure 11: Eigenvalues for Equilibrium Point 2 in Maple 

Since not all eigenvalues have an absolute value less than 1, this equilibrium point is not stable. 
It can be observed that in this example, 𝛼 = 1.3.  is chosen. However, it is evident that 
interpretations can be made for different values of alpha and 𝑤(𝛼). When analyzing equilibrium 
points, the results are found to be quite consistent compared to fractional order and ordinary 
differential equations in the literature. In comparison with the Alemneh and Alemu [10] study, 
it was observed that the stability of the equilibrium points is the same, and the suitability of the 
Maple program for the system was confirmed. This Maple package program demonstrates that 
equilibrium stability of many such model systems can be investigated. 

4. Conclusion 

This study focuses on a mathematical model of social media addiction. Unlike previous 
literature, the model formulation uses fractional-order differential equations, providing a more 
flexible and accurate representation of the dynamic nature of addiction. The discretisation 
process uses the NSFD method, which ensures numerical stability and preserves the essential 
features of the original system. The main contribution of this study is the detailed analysis of 
the equilibrium points using the Maple software package. By providing source codes, this 
research provides a reproducible and extendable framework for the analysis of similar systems 
in future studies. These codes not only verify the accuracy of the mathematical model, but also 
allow researchers to explore the behaviour of social media addiction under different scenarios, 
including different levels of exposure and recovery rates. In addition, the results demonstrate 
how equilibrium point analysis can be used to identify critical thresholds that mark transitions 
between balanced and excessive use. This insight makes a significant contribution to the 
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academic field by providing a methodological approach to studying the progression, control 
and mitigation of behavioural addictions. By combining mathematical modelling with 
computational tools, this study bridges theoretical and practical aspects and promotes 
interdisciplinary research in psychology, sociology and computer science. 
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