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Abstract 
 
The need for energy in the world is increasing day by day and various energy production methods are used 
to meet this need. Production of hydrogen from biomass is one of these methods. Hydrogen production 
from biomass is a promising process to produce hydrogen and energy which has advantages such as the 
ability to use sustainable energy sources like biomass and solid waste, being carbon neutral, and increasing 
energy independence thanks to the variation of resources and the availability of local resources. The 
catalysts used in this process which can be conducted in three separate ways, affect hydrogen and energy 
production positively or negatively. One of the most important steps in effectively acquiring the ideal 
amount of product is predicting the outcomes of this procedure. This article compares a support vector 
regression (SVR) and random forest (RF) model to predict how various inputs used to produce hydrogen 
from biomass will affect hydrogen output. Additionally, the effect of catalyst addition on hydrogen yield 
in biomass processes was examined. In this context, 57 experimental studies from the literature were 
selected as a data set. From this data, 90% was selected for training and 10% for testing. The outputs were 
evaluated according to parameters such as R2, RMSE and MSE. The results show that RF and SVR models 
can significantly predict catalyst activity and hydrogen production. 
 
Keywords: Hydrogen, Biomass, Random forest, Support vector regression 
 
Biyokütleden Hidrojen Üretiminde Rastgele Orman ve Destek Vektör Regresyon 

Modellerinin Kıyaslaması 
 
Öz 
 
Dünyadaki enerji ihtiyacı günden güne artış göstermekte ve bu ihtiyacın karşılanması için, çeşitli enerji 
üretim yöntemleri kullanılmaktadır. Bu yöntemlerden biri biyokütleden hidrojen üretimidir. Biyokütle ve 
atık benzeri yenilenebilir enerji kaynaklarından yararlanma kabiliyeti, karbon nötr olması, kaynak çeşitliliği 
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ve yerel kaynakların kullanılabilirliği sayesinde enerji bağımsızlığını artırması gibi avantajları bulunan 
biyokütleden hidrojen üretimi, gelecek vaat eden bir hidrojen ve enerji üretim sürecidir. Üç farklı yöntem 
kullanılarak gerçekleştirilebilen bu süreçte kullanılan katalizörler, hidrojen üretimine olumlu ve olumsuz 
etki etmektedir. Bu sürecin sonuçlarını tahmin etmek, optimum miktarda ürünü verimli bir şekilde elde 
etmede kritik bir adımdır. Bu makalede, biyokütleden hidrojen üretmek için kullanılan çeşitli girdilerin 
hidrojen çıktısını nasıl etkileyeceğini tahmin etmek için bir destek vektör regresyonunu (SVR) ve rastgele 
orman (RF) modelini karşılaştırılmıştır. Ayrıca biyokütle süreçlerinde katalizör ilavesinin hidrojen verimi 
üzerinde etkisini incelenmiştir. Bu bağlamda literatürden 57 deneysel çalışma veri seti olarak seçilmiştir. 
Bu verilerden eğitim için %90 ve test için %10 seçilmiştir. Sonuçlar R2, RMSE ve MSE gibi parametrelere 
göre değerlendirilmiştir. Sonuç olarak RF ve SVR modellerinin katalizör aktivitesini ve hidrojen üretimini 
önemli ölçüde tahmin edebildiğini göstermektedir. 
 
Anahtar Kelimeler: Hidrojen, Biyokütle, Rastgele orman, Destek vektör regresyonu 
 
1. INTRODUCTION 
 
Nowadays, the majority of H2 is produced 
commercially using inefficient and unsustainable 
methods like coal gasification and methane vapor 
reforming. Using tried-and-true thermochemical 
processes like pyrolysis, liquefaction, and 
gasification, carbonaceous materials may be 
converted into H2-rich syngas and other 
hydrocarbons [1]. 
 
The effective thermochemical conversion process 
called gasification may combine solid biomass into 
flammable gases, such as carbon monoxide, carbon 
dioxide, hydrogen, methane, light hydrocarbons, 
and coal. Solid biomass may then be converted into 
electrical energy using this procedure. The catalytic 
gasification of municipal solid waste (MSW) is one 
of the best methods for producing syngas, or 
hydrogen-rich gas, from renewable sources [2]. 
This gas is utilized as feedstock for fuel cell 
applications and hydrogen combustion engines to 
release stored energy, or it can be used to create 
hydrogen to synthesize methanol and ammonia [3]. 
Moreover, because of the easy conditions and lower 
temperatures, it also lessens the creation of thermal 
NOx [2].  
 
Among thermochemical processes, gasification is 
seen as the most promising because of its high 
conversion efficiency and ability to manage various 
kinds of waste. Nonetheless, the tar produced 
during gasification is one of the primary issues. Tar 
content tends to clog pipelines, auxiliary 
equipment, and heat exchanger tubes, which raises 

maintenance costs and reduces process efficiency 
overall. Significant efforts have been made to 
remove tar from fuel gas. Thermal processes such 
as catalytic cracking and high-temperature cracking 
have been the primary methods used so far. Because 
catalytic cracking can operate at comparatively 
lower temperatures and has high tar removal 
effectiveness, it is believed to be the most effective 
technology for minimizing tar production in the gas 
mixture. Due to their unique features in a variety of 
sectors, nanomaterials have garnered a lot of 
interest recently as catalysts in comparison to their 
bulk counterparts. 
 
Many researchers have reported on various 
catalysts for gasification and pyrolysis processes, 
each with a different promoter and support [4,5]. 
Dolomite, nickel, dolomite, and olivine have been 
extensively used as catalysts in biomass gasification 
due to their affordability, availability, and ability to 
significantly reduce tar content in the gasifier 
effluent [2,6,7]. 
 
When paired with transition metal promoters, a 
catalyst may be used in a variety of ways to catalyze 
the conversion of MSW. For example, the impact of 
incorporating transition metal-containing Ni-CaO-
based catalysts into Ni-CaO-based catalysts (such 
as Fe, Cu, Co, and Zn) for gasification and pyrolysis 
processes has been studied [5,8]. This can improve 
the process's energy density and efficiency while 
also raising the total production of syngas and 
hydrogen [9]. Also, the catalytic characteristics of 
nanoscale NiO (nano-NiO) particles have garnered 
significant interest. More precisely, nano-NiO 
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particles may be applied to the surface of different 
carriers (such as alumina and Al2O3) to produce the 
supported catalyst at a lower cost [10]. 
 
Recently, as in many different fields, there has been 
a great interest in machine learning (ML) to 
optimize the operating conditions of the gasification 
system. Regression analysis, artificial neural 
networks (ANN) [11,12], tree-based approaches 
like classification and random forest (RF) [13] 
based on regression trees (RT) and extreme trees, 
and support vector machines (SVM) [14] are 
frequently supported when modeling hydrogen 
generation processes from biomass [15]. 
 
Random forest, first introduced by Breiman [16], is 
a machine-learning technique that has become 
popular for prediction, analyzing variable 
importance, outlier identification, classification, 
and variable selection. The RF model uses a group 
of decision trees and an average of their estimations 
to solve classification or regression problems 
effectively. The branches of a tree are visited 
according to a set of constraints and relationships 
from root to leaf, and each tree selects the most 
popular one from its branches. These forecasts of 
related trees are averaged to acquire estimation. 
Input handling without entries, a smaller number of 
parameters high accuracy and noise resistance are 
some of the advantages of RF [16]. 
 
Decision trees in RF improve the efficiency of 
optimization models thanks to their high diversity 
and low bias. Furthermore, RF has a lower 
overfitting risk, and it has a hyperparameter for 
determining the number of estimators (trees) in it. 
In Figure 1, the schema of the RF algorithm is 
given. As seen in Figure 1, input data is presented 
to all the decision trees in the RF. From top to 
bottom, the nodes of a decision tree are called root, 
node, and leaf. The root node does not have parent 
nodes, while leaves do not have any children [17]. 
 
A support vector regressor (SVR) is an SVM-based 
model that is specialized for regression problems. 
SVR is distinguished by its kernels, number of 
support vectors, margin control, and sparse 
solutions. The regression of the SVR is like the 
regression of neural networks. The main difference 

is that in the SVR, input layer weights are a subset 
of training samples. Even though SVR is less 
known than SVM, it has been a more effective tool 
in value estimation. In the training phase, it equally 
deals with high and low estimations that are 
wrongly done. In the SVR, the complexity of 
computations does not change according to input 
space; this is one of the benefits of the SVR. 
Besides, the SVR predicts highly accurately and is 
successful in generalization [18,19]. The schema of 
the SVR is given in Figure 2. 
 
Mathematical models of the catalytic gasifier 
system can help cut down on the cost and duration 
of labor-intensive trials. However, gasification and 
pyrolysis are complex processes that mostly occur 
because of overlapping interactions, including 
solid-gas and gas-gas [19]. In the literature, many 
researchers have reported on various RF, SVR, and 
hybrid models for gasification and pyrolysis (the 
production of hydrogen-rich gas with and without 
catalysts) processes. 
 
Mutlu, A.Y. and Yucel [20] employed RF and 
SVM-based classifiers to forecast the composition 
of syngas emitted during the gasification process 
because of their capacity to discern subtle patterns 
in noisy and complicated datasets. Both binary and 
multi-class classifiers, such as least squares SVM 
and RF, are trained using calorific values with 
discrete levels, yielding classification accuracy of 
over 89% and 96%, respectively. Two types of 
classifiers have been developed to anticipate the 
calorific value and composition of the producer gas 
generated in a downdraft gasifier during the 
gasification of woody biomass. The proposed 
methods were created and evaluated using 10-fold 
cross-validation on 5237 data samples. Binary and 
multi-class classifiers yielded prediction accuracy 
rates of more than 96% and 89%, respectively. 
 
Elmaz, F. et. al. [21] assessed regression techniques 
(SVR, DTR, PR, and MLP) to predict the CH4, H, 
CO, and heating value (HHV) outputs of the 
downdraft biomass gasification process using an 
experimentally acquired data set. For HHV 
determination coefficient (R2)>85 outputs and 
outputs, respectively, MLP and DTR were obtained, 
and they beat the other methods. Quadratic PR had 



Comparison of Random Forest and Support Vector Regression Models in Predicting Hydrogen Production Process 
from Biomass 

478 Ç.Ü. Müh. Fak. Dergisi, 39(2), Haziran 2024 

the worst performance of all the recommended 
techniques. With R2>0.9 for the majority of 
outcomes, multilayer perceptron and decision tree 

regression fared better than the other modeling 
approaches. 

 

 
Figure 1. The random forest algorithm 
 

 
Figure 2. The support vector regression 
 
Leng et. al. [41] developed RF models with high 
accuracy and outstanding generalization capacity to 
compare both pyrolysis conditions and 
comprehensive raw material parameters. In this 
work, gradient boosting, RF-based regression 

prediction models for three-phase product 
distribution and bio-oil HHV were built by 
collecting experimental data of rapid pyrolysis of 
lignocellulosic biomass in bubbly fluidized bed 
from earlier literature. As input attributes, 
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comprehensive raw material properties and 
pyrolysis circumstances were considered and 
compared. With its high accuracy and outstanding 
generalization ability, the RF has been 
demonstrated to be the most appropriate algorithm 
for predicting three-phase product yields and bio-oil 
HHV among other algorithms. 
 
Xing J et. al. [23] used an RF model to forecast the 
primary chemical components of biomass based on 
the final analysis. Two datasets were constructed 
for the RF model's training and application using 
previously published information. The application 
findings demonstrate that the current RF model can 
predict chemical components for a variety of 
biomasses with high accuracy; the predicted values 
for lignin, hemicellulose, and cellulose are 0.962, 
0.904, and 0.862, respectively. 
 
Considering this information, the RF and SVR 
models were chosen to optimize the conditions for 
hydrogen production processes from biomass and to 
predict the effect of the catalyst. To collect 
information for data set preparation, literature 
studies on hydrogen production by gasification or 
pyrolysis were evaluated. In this context, 57 
published data samples have been collected from 
experimental studies conducted in the literature. 
Data from 57 datasets were applied to build and 
evaluate ML models. As an information preparation 
process, the inputs are approximate analysis of 
biomass waste feedstocks, their volatile matter 
(VM), fixed carbon (FC), hydrogen (H), sulfur (S), 
carbon (C), nitrogen (N), and oxygen (O), 
temperature and the name of the catalyst were 
determined as. Only hydrogen production was 
considered as output. These examples were divided 
into training and application types, at rates of 90% 
and 10%, respectively, as in previous machine 
learning studies. To our knowledge, this is the first 
study in the literature on the effect of catalyst use. 
 
In the second stage of this study, the dataset, 
preprocessing methods, and model evaluation 
metrics were explained. Afterwards, at the third 
stage, results obtained from this study were given 
with related graphics. Finally, in the fourth chapter, 

a summary of this study and plans for further 
research were given. 
 

2. MATERIALS AND METHODOLOGY 
 
2.1. Sample Experimental Dataset Collection 
 
Literature studies on hydrogen obtained from 
pyrolysis and gasification experiments were 
evaluated for data set preparation. In the created 
dataset, MSW samples include kitchen garbage, 
paper, textiles, plastic, dried sewage sludge, cassava 
shells, pine sawdust, corn stalks, sawdust, etc. 
Different biomasses were used. According to earlier 
machine learning research, such samples are split 
into training and test types with proportions of 90% 
and 10%, respectively. In this case, the RF model's 
inputs are the carbon percent, hydrogen-carbon 
ratio, and oxygen-carbon ratio; the output is the 
hydrogen yield. Figure 3 is the visualization of the 
use of machine learning algorithms for hydrogen 
output prediction by input and output. Table 1 
describes the independent variables of the data set, 
and Table 2 shows examples of datasets. The data 
were collected from the sources specified in the 
literature [2,8,24-35]. Data in which catalysts were 
not used in production processes where hydrogen 
was released was also included in the study. 
 

 
Figure 3. ML algorithms for hydrogen prediction 

approaches 
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Table 1. The description of independent variables of input and output 

Input 

 Symbol Unit 
Carbon C wt% 

Hydrogen H wt% 
Oxygen O wt% 
Nitrogen N wt% 
Sulphur S wt% 

Volatile matter VM wt% 
Fixed carbon FC wt% 

Ash  wt% 

Catalyst 
 

Ni-Fe-WMP 
CaO 

NiO/MD 
Ni-Zn-WMP etc. 

- 

Temperature °C Celsius 
Output Hydrogen Yield HY (vol.%) 

 

Table 2. Sample of data set 
C H O N S VM FC Ash Catalyst Tem. HY 

52.2 5.5 40 2.3 0 82.7 12 5.3 Nickel based 850 46.5 
51.81 5.76 30.22 0.26 0.36 82.28 11.79 5.93 CaMg (CO3)2 700 27.01 
42.11 5.33 37.08 1.42 0.11 73.62 12.43 10.5 CaO 650 61.23 
50.48 5.92 42.14 0.27 0.02 75.6 22.9 1.5 without catalyst 848 15.5 
50.26 6.72 42.66 0.16 0.2 77.71 16.94 0.34 CaO 650 46.6 
42.11 5.33 37.08 1.42 0.11 73.62 12.43 10.5 CaO 650 58.69 
46.36 5.75 43.62 2.26 0.32 82.18 16.13 1.69 Nickel based 900 52.3 
52.2 5.5 40 2.3 0 82.7 12 26.14 Nickel based 850 46.3 

50.26 6.72 42.66 0.16 0.2 77.71 16.94 0.34 CaO 700 56.1 
50.26 6.72 42.66 0.16 0.2 77.71 16.94 0.34 CaO 800 53.8 
52.2 5.5 40 2.3 0 82.7 12 26.14 Nickel based 850 47.8 

42.11 5.33 37.08 1.42 0.11 73.62 12.43 10.5 CaO 650 60.28 
51.81 5.76 30.22 0.26 0.36 82.28 11.79 5.93 CaO 900 48.63 
42.54 5.86 31.35 1.07 0.2 64.19 16.87 9.26 CaO 700 29.8 
49.74 7.82 41.6 0.82 0.05 86.4 10.61 4.77 without catalyst 1000 51.36 
40.31 5.29 21.21 5.73 1.32 61.56 7.01 26.14 without catalyst 793 45.35 
51.81 5.76 30.22 0.26 0.36 82.28 11.79 5.93 CaO 750 34.7 
47.1 5.9 46.9 0.1 0 74.6 18.1 1.1 Nickel based 800 49 

50.26 6.72 42.66 0.16 0.2 77.71 16.94 0.34 CaO 750 60.8 

Both RF and SVR models have hyperparameters 
that affect model performance positively and 
negatively. The RF has hyperparameters such as the 
number of estimators (number of trees), criterion, 
max depth, min samples split, min samples leaf, 
max features, bootstrap, and random state. Cost (C), 

kernel, epsilon, gamma, degree and shrinking are 
hyperparameters used in the SVR model. In this 
study, the number of estimators, min samples split, 
and min samples leaf hyperparameters in the RF 
model and in the SVR model, C, kernel, and epsilon 
hyperparameters were used as presented in Table 3. 

 

Table 3. Tuning parameters and values of applied methods 
Method Tuning parameter Value 

RF 
Number of estimators 10 

Min samples split 2 
Min samples leaf 1 

SVR 
Cost (C) 2.811 
Kernel linear 
Epsilon 0.67 
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2.2. Feature Extraction and Preprocessing 
 
Once data collection was completed, some data pre-
processing techniques were applied to the dataset to 
improve the models’ performance. Since ML and 
deep learning models struggle to work with 
categorical data, they must be presented 
numerically. Therefore, the one-hot encoding 
method was applied to the dataset. This method 
transforms every categorical data into a column, and 
the presence and absence are respectively indicated 
with 1 and 0 values. Thanks to one-hot encoding, 
models understand the dataset better and perform 
better [12]. Another pre-processing technique that 
was applied to the dataset was normalization. 
Normalization is the scaling of data to a certain 
general range or distribution. That allows 
comparison between different data sets and 
improves performance. Besides, it reduces the 
complexity of the calculation process and 
calculation time. In this study, the dataset was 
normalized to a (-1, 1) interval by using the 
corresponding Python library [36]. The dataset was 
split into training and test sets once pre-processing 
was finished. The remaining 90% of the data was 

utilized in the test set for model evaluation, with the 
training set being used for model training. 
 
2.3 Evaluation 
 
Following model development, the model accuracy 
and performance were assessed. The models' 
performance was assessed using the determination 
coefficient (R2), variance, mean square error 
(MSE), root mean square error (RMSE), and mean 
absolute error (MAE) [2]. 
 
In our example, the RF and SVR models include 
storage data obtained from the biomass gasification 
and pyrolysis methods. As part of the information 
preparation process, the inputs were determined as 
the name of biomass waste feedstocks, VM, FC, C, 
H, N, S, O, temperature, and catalyst. The 
output/targeted variable was selected as H2. For the 
training data, a total of 52 runs (or 90% of the data) 
and 5 runs (10% of the data) were chosen by [37]. 
R2, RSME, MAE and MSE, represented by the 
equations in Table 4 respectively, were used for the 
model's accuracy values. 

 
Table 4. Evaluation indicators of models’ prediction performance 

Method Mathematical expression 

Mean absolute error 
1
𝑛
𝛴௜ୀଵ
௡ |𝑓௜ െ 𝑦௜| 

Mean square error 
1
𝑛
𝛴௜ୀଵ
௡ ሺ𝑓௜ െ 𝑦௜ሻଶ 

Root mean square error ඨ
1
𝑛
𝛴௜ୀଵ
௡ ሺ𝑓௜ െ 𝑦௜ሻଶ 

Determination coefficient 1 െ 𝛴௜ୀଵ
௡ ሺ𝑦௜ െ 𝑓௜ሻଶ/𝛴௜ୀଵ

௡ ቀ𝑦௜ െ 𝑦ቁ
ଶ
 

 
3. RESULT AND DISCUSSION 
 
3.1. Performance Evaluation of Test Results 
 
Table 5 shows the results of the two models' ML 
analyses (RF and SVR). The models used in this 
study were evaluated separately for both train and 
test sets based on MAE, MSE, RMSE, and R2. The 

values of each metric are given in Table 5 and 
Figure 4. The data that are divided into test and 
training data at different rates have a coefficient of 
determination that ranges from 0.57 to 0.98, 
according to the results. R2 was found to be 0.98 in 
the RF model and 0.94 in the SVR model. For the 
test data in the RF model, the minimal values of the 
criterion MAE, MSE, and RMSE were determined 
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to be 1.00, 1.31, and 1.15, respectively. For the test 
data in the SVR model as well, the minimum values 
of the criterion MAE, MSE, and RMSE were 
determined to be 1.34, 3.67, and 1.92, respectively. 
For the training data in the RF model, it was 
discovered that the minimal values of the criterion 
MAE, MSE, and RMSE were 2.64, 12.00, and 3.47, 
respectively These results indicate that the RF 
model is more performant than the SVR model. 
 
Figure 4 shows the hydrogen yield prediction 
performances of the RF (a) and SVR (b) models on 
the training set. The expected values are shown with 
the red line and predictions are shown with stars 
The RF model’s training RMSE and R2 values were 
obtained as 3.47 and 0.93, respectively, while these 
values were obtained as 1.15 and 0.98 in the test 
dataset. These values proved its dependability in 
forecasting unknown data. The performance of the 
SVR model in the test set (R2 = 0.94 and RMSE = 

1.92) showed that the model was good at 
forecasting unknown data. However, the SVR 
model's deficient performance on the training 
dataset, with an R2 = 0.57 and an RMSE = 8.80, 
showed its low predictive ability with known data. 
In Figures 5 and 6, prediction performances of the 
RF and SVR models in the test dataset are given. 
While real values are shown with the red line, 
estimations of the models are shown with circles. 
 
The relative error distribution of the models is given 
in Figure 7. Analysis of relative error distribution is 
used for analyzing the reliability and performance 
of the models. It helps to understand how accurate 
or inaccurate the predictions are and to improve the 
models accordingly. In Figure 7, The blue and 
orange dots show the test and train error distribution 
of the RF model, while the green and red dots show 
the test and train error distribution of the SVR 
model, respectively. 

 
Table 5. Analysis of train and test set outcomes of models 

Method Dataset MAE MSE RMSE 

RF 
Train 2.64 12.00 3.47 
Test 1.00 1.31 1.15 

SVR 
Train 6.35 77.42 8.80 
Test 1.34 3.67 1.92 

 

 
Figure 4. Hydrogen yield prediction performances of random forest (a) and support vector regressor (b) 

models on the training dataset 
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Figure 5. Prediction performance and R2 score of random forest model 
 

 
Figure 6. Prediction performance and R2 score of support vector regression model 
 

 
Figure 7. Relative error distribution of the models 
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3.2. Sensitivity Analysis 
 
When assessing the degree of relationship between 
two variables, the Pearson correlation coefficient is 
commonly employed. A Pearson correlation 
coefficient (r) matrix is displayed in Figure 8, with 
each row denoting a variable from the dataset and 
each column representing the same variables [38]. 
The correlation coefficient between two variables is 
shown in each cell. The hydrogen generation is 
shown to be significantly influenced by the 
feedstock and experimental operating conditions, as 
indicated by the Pearson correlation coefficient 
matrix. The high positive correlations between 
feedstock attributes show that the choice of 
feedstock has a major effect on hydrogen 
generation. The positive relationship between 
carbon, hydrogen, volatile mixtures, and fixed 
carbon mixtures shows that the composition of the 
feedstock has a direct effect on the hydrogen yield. 
In contrast, the mixture of nitrogen, sulfur, and 
temperature has a negative relationship with 
pyrolytic product yields [15]. Since each feature 
contributes separately to the model, the absence of 
significant correlations between multiple input 
features helps preserve all these features. The 
negative correlation in both trait values indicated 
that these products reduced yield. Other attributes, 
on the other hand, showed fewer effects on 
hydrogen yield, with absolute correlation values 
less than 0.15. For instance, there was a 0.49 
correlation coefficient between the carbon and 
oxygen levels of biomass characteristics. This result 
was in line with earlier experimental research [39]. 
 
The significance of specifying input variables in the 
hydrogen output of the RF model for the biomass 
process is illustrated in Figure 9. It is evident that 
the catalyst is a key factor in the predicted generated 
gas (26 % together), while it is also important for 
temperature (14%), H (16 %), N (7 %), FC (6 %), 
VM (6 %), ash (6 %) and less important for C (7 %), 
O (0.0256 %) and S (5%).  Therefore, this study has 
proven that the catalyst has a powerful, positive 
effect on HP. 

4. CONCLUSIONS AND FURTHER 
RESEARCH 

 
Because biomass has a high conversion efficiency, 
gasification has drawn interest from academic and 
industry researchers. Nonetheless, the primary 
obstacle to the advancement of biomass gasification 
is tar production. Researchers have employed 
different catalysts to break down tar and create H2-
rich gas. Machine learning can help the process, 
though, as there is still a dearth of material in this 
field in the literature. Based on earlier research, the 
best catalyst to employ for this purpose was 
identified. This work uses SVR and RF algorithms 
to anticipate hydrogen generation. The machine 
learning evaluation accurately predicted the sort of 
catalyst that would be utilized to produce hydrogen 
from waste biomass. In addition, an assessment of 
each variable's relative relevance was made. For the 
RF and SVR methods, the R2 values were 0.98 and 
0.94, respectively. From the modeling results, it was 
seen that nickel-based and calcium-oxide catalysts 
would be more suitable. Furthermore, the training 
phase yields accuracies of 1.15 to 1.92 of RMSE, 
and 1.00 to 1.34 of MAE. It was evident from the 
modeling findings that catalysts based on calcium 
oxide and nickel would be more appropriate. 
 
According to our knowledge, this is the first study 
in the literature on the effect of catalyst use. 
Additionally acquiring experimental data is a costly 
and prolonged process. Therefore, the dataset used 
in this study is limited. This limitation has a 
negative impact on the training and generalization 
abilities of the models. In further research, better 
results may be obtained by collecting a dataset that 
has more samples and a balanced distribution. In 
addition, the models have some limitations. The 
SVR model has limitations such as the 
determination of the kernel function, 
hyperparameter adjustment and data scaling. The 
SVR model’s performance is dependent on its 
kernel function and hyperparameters. Determining 
the right type of kernel function and finding the best 
hyperparameters are crucial while using that model. 
The SVR model is also affected by the data scaling. 
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Improper scaling data may affect the performance 
negatively. The RF model has limitations such as 

the high cost of computation and the long 
processing time. 

 

 
Figure 8. Correlation between parameters 
 

 
Figure 9. Feature importance (%) of input variables on hydrogen output of RF model for Biomass process 
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