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ABSTRACT We investigate in this paper the dynamic performance of an opto-electromechanicals control
technics on a structure modelled by beam with degenerated ϕ6 potential. The mathematical model of the
structure under control has been derived. The dynamics response are explored using harmonic balance
methods. The ability to dissipate the undesired vibrations of a these structures to an acceptable level is
theoretically examined by derived the condition of escape from the potential well as well as the criteria for the
occurrence of horseshoes chaos on the physical system. The effects of the appropriate control parameter
leading to optimal control is explored. It appear globally that opto-electromechanical device is a good candidate
of horseshoes chaos suppression on mechanical structures.
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INTRODUCTION

In recent years, significant research has focused on controlling
vibrations in structures across various domains of fundamental
and applied sciences. The primary objectives in this field are to
minimize vibration amplitudes, suppress chaotic behavior, and
prevent escape from potential wells. These efforts have numerous
applications in structural mechanics (Aida et al. 1995; Okada et al.
1995; Hackl et al. 1993; Cheng et al. 1993). Under the influence of the
external excitations, the mechanical structures enter in resonance
and sometimes become very unstable. A strategy of controls of vi-
brations, quite elaborate makes it possible to ensure the protection
of the structures against these sources of instabilities (Sonfack 2011;
Nana Nbendjo 2004). During these last years, much of scientific
research tasks were realized, mainly on the active structural vibra-
tions controlled by traditional electromechanical transducers such
as the piezoelectric actuators, electrostrictives, and magnetostric-
tives (Metsebo et al. 2024; Wang et al. 2001; Tzou and Anderson
1992; Ngatcha et al. 2024; Shih 2000).

Manuscript received: 11 July 2024,
Revised: 30 September 2024,
Accepted: 19 October 2024.

1dlissan1er@gmail.com
2oumarabo5@yahoo.fr
3nananbendjo@yahoo.com (Corresponding author)

These traditional actuators which, formerly, were connected
to the cables for the transmission of the signals of control are re-
placed by the actuators opto-electromechanics without wire. Even
if the presence of an external electromagnetic field in the envi-
ronment creates many electromagnetic interferences, its impact
is minimized by the opto-electromechanical actuators without
wire. Recently, the researchers developed a strategy of control
which uses a photostrictif material to produce a constraint on the
surface of a structure (Fukuda et al. 1993; Uchino 1996). Liu et
al (Liu and Tzou 1998b) studied the couplings of the photo con-
striction, the photo deformation, pyroelectricity, thermoelasticity,
photostrictive opto-piezo-thermoelasticity and the release planar
opto-electromechanic two-dimensional. Recently Shih et al (Shih
and Tzou 2000) developed a framework of opto-electromechanicals
control for application on vibration reduction of mechanichal struc-
tures and presented a model of photostrictive actuators distributed
in one and two dimensions.

After the mathematical modelling of the structure under opto-
electromechanical control, we explore the dynamics of the system
using harmonic balance method and then derive the maximum
energy of the system and then the escape boundary condition.
This allows us to derive in the space parameters of the system the
escape condition. In other to predict the appearance of horseshoes
chaos, we use the Melnikov theory (Moon 1992; Nana Nbendjo et al.
2003; Pinto and Goncalves 2002; Nana Nbendjo and Woafo 2007),
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which permits to derive the analytical criteria for the occurrence
of transverse intersections on Homoclinic and Heteroclinic orbits
for the case of unbounded double well potential. For each case,
analysis has been done to derive a good parameter leading to
optimal control. We end by the conclusion.

MODELING AND GENERAL MATHEMATICAL FORMALISM

An opto-electromechanic actuator also known as photostrictive
actuator, can be defined as a building able to produce, with the
help of a suitable illumination, a considerable mechanical action
(deformation, force, moment) (Carlioz 2009). The operation of
the opto-electromechanic actuators rests basically on two physical
phenomena which are the photovoltaic effect and the piezoelectric
effect. However other phenomena such as the pyrolectric and
the thermoelastic effects can be taken into account (Liu and Tzou
1998a).

Modeling of an opto-electromechanic actuator
Consider a rectangular opto-electromechanic actuator of bimorph
type having a length a0, one width b0, and a thickness h0, as indi-
cated in Figure 1 . Various physical phenomena whose appear in
this actuator is described in (Shih et al. 2005).

Figure 1 Opto-electromechanic Actuator under luminous irradia-
tion (Carlioz 2009).

The deformation of an opto-electromechanic actuator comes
from the superposition of the principal following effects: The
combination of the photovoltaic and piezoelectric effects. This
allows to derive equation 1 (see ref Carlioz (2009))

[So−e(tj) = d33.Eph

(
tj

)
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 [
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(1)

whereS, d33, Eph, Es, I, α0 andβ0 are respectively:
S: Deformation,
d33: The piezoelectric constant,
Eph: The electric field induced by the photovoltaic effect,
Es: The photovoltaic saturating field,
I: Intensity of illumination,
α0: The constant of the actuator opto-electromechanics,
β0: The constant of pressure loss.

The servo-control (Tzou and Chou 1996) of an opto-electro
mechanical actuator uses two signals at the entry: the standard

signal which is reproduce by the actuator and the control signal
useful for the activation of this last. A sensor measures the tension
induced by the actuator or its deformation, the drifting signal of
this measurement is introduced then compared with the standard
signal into a controller (Ballarini and Euler 2003). in Figure 1 (Shih
et al. 2005). The servo-control can be modelled at every moment by

Figure 2 Diagram in block of an optical servo-control (Carlioz
2009).

the following equations:
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Is the standard signal introduced into the servo-control at

the momenttj ; G represents the profit in light intensity of the com-

parator of the servo, γ0 rate of θ
(

tj+1

)
transferred heat, θ

(
tj+1

)
the temperature of the actuator at the moment, tj+1, λ3 Thermal
dilation coefficient, Epyr the pyrolectric electric field, Ya Young
modulus and k = 1, 2 the total coordinates.

Mathematical modeling of the beam under control: Let us con-
sider a beam (see Figure 3) length subjected to the action of a axial
load P and transversal force q. We suppose that the transverse load
q(x) is constant along the element dx and positive if it is directed
in the direction of the x axis. The physical and geometrical charac-
teristics of beam are given by Young modulus E, S is the section, I
moment of inertia and ρ mass density.

Taking into account the formulation of Nayfeh and Mook (Tim-
oshenko 1966), the general dynamics of the system under control
is given by the following equation (7):

ρA
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∂2W
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+ P

∂2W
∂X2 = −Q

(7)
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Figure 3 Hinged hinged beam.

The boundary conditions are given by:W = 0 et EI ∂2W
∂X2 = 0 à

X = 0 et X = L
By introducing the following changes of variables:

t = T π2

L2

√
EI
ρA ; ω = W

2r ; ω0 = W0
2r ; x = X

L ;

P =
pL2

π2EI ; q = QL4

2πEIr ; λ = λ√
ρAEI

The non-dimensional equation in then given by (Moon 1992),
where F is the transversal loads.
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By applying the method of Galerkine, the vibration of the system
to several modes is written in the following form:
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(mπx

a
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The equation of the system becomes then
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The equation with the clean modes is then written:

η̈mn + Cη̇mn + f0(t)δx ∗ ωmnηmn − αω3
mnηmn + βpω4

mnηmn+

χω5
mnηmn − 2m = Ixx + Iyy = −M̃mnx − M̃mny

(10)
The differential equation governing the dynamics of the system
under control is then obtained.

DYNAMIC RESPONSE OF THE SYSTEM UNDER CONTROL

The force developed by the opto-electromechanical actuator due
to illumination and which is at the origin of the deformations S(t)
is given by [24] :
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Where the index k = 1, 2 indicates the two plane directions of
the total frame of reference. The transverse moment of inflection
induced by the plane force N0

(
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)
is:
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The moments induced according to the total directions (ox) and
(oy) are written respectively, considering the local nature of the
actuators:
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Maybe , the function of Heaviside defined by:

us (χ) =

 1 i f χ ≥ 0

0 i f χ ≺ 0
(15)

After some algebra, one leads to the following differential equa-
tions called modal equations:

η̈mn + ξmnωmnη̇mn + αω2
mnηmn+

βω4
mnηmn + χω6

mnηmn + M̃2
mnx + M̃2

mny = 0
(16)

While taking into account this equation due to the fact that the ac-
tuators are alternatively activated by a servo mechanism according
to a given law of control, we now have:

η̈mn + ξmnωmnη̇mn + αω2
mnηmn + βω4

mnηmn+
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where sign is the function definite by:

sign (x) =

 +1 . . . i f . . . x ≥ 0

−1 . . . i f . . . x ≺ 0
(18)

The equation of the nonlinear system in the presence of the phe-
nomena is thus written as follows:

η̈mn + Cη̇mn − αω3
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)
= Q

(19)
Where : Q = f0 cos Ωt
o f0 is the amplitude of the external excitation;
o tistime;
o Ω is the frequency of the additive excitation;

η̈mn + Cη̇mn + ω2
0ωmnηmn − αω3

mnηmn + γω4
mnηmn + χω5

mnηmn−

2m + sign (η̇mn) .
(
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)
= f0 cos Ωt

l

(20)
Let us pose: M̃mn = M̃mnx + M̃mny Where M̃mn is the mo-
ment, the parameter of control which it will be necessary to
exploit to optimize control. Thus, we have the equation of the
dynamics of a beam under opto-electromechanics control in

the form: d2ηmn
dτ2 + C dηmn

dτ + ω2
0ωmnηmn − αω3

mnηmn + γω4
mnηmn +

χω5
mnηmn − 2m + M̃mnsign (η̇mn) = f0 cos Ωt Let us pose:

η̇mn =
dηmn

dτ = q̇ ⇒ ηmn = 1
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with ωmn = q

η̈mn + Cη̇mn + ω2
0ωmnηmn − αω3

mnηmn + γω4
mnηmn + χω5

mnηmn
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(21)
q̈ + Cq̇ + ω2

0q − αq3 + γq4 + χq5 − 2m + M̃mnsign (q̇) = f0 cos Ωt
(22)

The dynamic behavior of the system is then described by an unlim-
ited ϕ6 potential whose form is presented below. Thus, beyond a
certain amplitude of variation, the limited movements can caused
the destruction of the system. The total energy nearest the equilib-
rium point is given by
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Using the harmonics balance method, one obtains the expression
of the force f0 which is((
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Thus we have the expression of maximum energy given by:
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Unstable potential energy nearest is as follows:
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Consequently, the system and the potential ϕ6 are stable at the
point q=0 and unstable at the point qc . Figure 4 below indicates
that the normal position of balance is stable at the point q=0 of the
structure and that the system can lead to catastrophic motion if
the amplitude of vibration become high. Figure 5 shows that the
normal position of balance is destabilized and that the dynamics
of the system is described by a bistable potential ϕ6 whose form
is presented. The system can either carry out asymmetrical oscil-
lations of low amplitude around one of the two stable positions,
or the oscillations of the great amplitude including the two wells.
It can also develop unlimited movements including the prema-
ture destruction of the structure. Compared to the position, the
following equality is checked:

Emax = Vc (27)

Let us consider the equation (26) with the equation (27), we have:

Ab =

(
2Vc −

(
ω2

0 − Ω2)Xm − 1
2 αX2

m − 1
3 χq3

m
Ω2

)1/2
(28)

Let us insert the equation (28) in the equation (24), we find the
amplitude of the excitation.

f 2
0 =
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ω2
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)

Ab −
3
4

αA3
b +

5
8

χA5
b

)2
+ (cΩAb)

2 (29)

Figure 4 Monostable ϕ6 potentials

Figure 5 Bistable ϕ6 potentials

We have also displayed, the variation of the critical force according
to the external frequency (Figure 6 ). We note that the value of
critical force fc = 0.005 increases with the external frequency. The
amplitude of the minimal critical force is for a frequency Ω = 1.5
which is associated to a primary resonance. Figure 7 displays the

Figure 6 Numerical and analytical amplitude according to the
frequency

variation of the critical force according to the parameter of control
gain parameter m, it appears that as control parameter decreases,
the amplitude of the critical force increases. Consequently, the
choice of the parameter of opto-electromechanics control leading
to the reduction of the speed and amplitude of vibration tend to
control strategy more efficiency.

Figure 8 shows the variation of the critical force according to
the moment of actuation, we note that the moment of actuation
increases when the variation of the critical force decreases; that
shows that control is efficient when the moment of actuation is
larger; and is more when the latter becomes increasingly high. A
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Figure 7 Variation of amplitude of the force criticizes according
to the parameter of control m

moment of smaller actuation increases the critical force, that for
rather an annoying purpose on the amplitude of vibration of the
structure. Figure 9 shows that in the case of variation of the critics

Figure 8 Variation of amplitude of the force criticizes according
to the moment of actuation

force leading to the amplification of amplitude, the intensification
of amplitude of additive excitation increases the amplitude of the
critical force. Otherwise, when the amplitude of additive excitation
increases, the variation of the critical force also increases, that tends
to delay the possibility of appearance of the chaotic movements.

EFFECT OF OPTO-ELECTROMECHANICAL ACTUATORS
ON THE MELNIKOV’S CRITERIA FOR CHAOS

From the Melnikov theory, we derive the analytical criteria for
the occurrence of transverse intersections between perturbed and
unpertubed separatrix. This brings us to a function which helps
to measure the distance between the borders of the regular oscilla-
tions and that of the chaotic movements. In this case we focus our
attention on the case of unbounded two well potential. Meaning
the existence of two Homoclinic and one Heteroclinic orbits. To
achieve these goals the first step is to characterise the potential in
a space parameter of the system. The potential energy associated
the system is given by the relation.

V(q) =
1
2

p2 +
1
2

ω2
0q2 − 1

4
αq4 +

1
6

χq6 (30)

Figure 9 Variation of amplitude of the force criticizes according
to amplitude of additive excitation

Equilibrium conditions dV(q)
dq = 0 ⇔ ω2

0q − αq3 + χq5 = 0 five
points including three unstable points and two stable points (see
Figure 10).

Figure 10 shows that the system can carry out symmetrical
oscillations of low amplitude around the point of balance (0,0),
asymmetrical oscillations of low amplitude around the degener-
ated positions of balance, oscillations of great amplitude wrapping
the three positions of steady balance. The dynamics of the sys-
tem is thus described by an unbounded bistable ϕ6 potential. We

Figure 10 Variations of the potential energy according to electric
polarization q

consider a system whose equations of dynamics can be put in the
following form:

U̇ = g0 (U) + εgp (U, t) (31)

U̇ = g0 (U) + εgp (U, t) Is the vector of state, g0 = (g1, g2) is the
field of vector defines by:

g1 =
∂H0
∂q̇

and g2 = − ∂H0
∂q

(32)

Or H0 is selected Hamiltonian (non dissipative) of energy and
g0 a periodic function of disturbance such as:

gp (U, t) =
(
0,−cp + 2m − M̃mnsign(p) + f0 cos (Ωτ)

)
(33)

When there is an intersection between perturbed and unperturbed
separatrix, the geometry of the basin of stability can become fractal,
indicating the high sensitivity to the initial conditions and carrying
chaos. The function of Melnikov is defined by [21-23]:

Me (t0) =
∫ +∞

−∞
g0 (ū (t)) ∧ gp (ū (t) , t + t0) with −∞ ≺ t ≺ +∞

(34)
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If Me (t0) has of the zero simple ones so thatt0 ̸= 0 , one has
Me (t0) = 0 with dH(t0)

dt0
̸= 0 has t = t0 (the condition for the

transverse intersection). To apply the theorem of Melnikov to our
model, one must determine the expressions of the homoclinic and
heteroclinic orbits of the system. For the case of the Heteroclinic
orbit. The Hamiltonian of the system is defined by:

H0 (q, q̇ = p) =
1
2

p2 +
1
2

ω2
0q2 − 1

4
αq4 +

1
5

γq5 +
1
6

χq6 (35)

We obtain the Heteroclinic orbit (connecting the unstable points
−qc and qc ) given by:
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√
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2
)

τ
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with β =
(5−3θ2)
(3θ2−1) , ς = q2

1

√
2χ (θ2 − 1), θ =

q2
q1

q1 is the unstable
point of balance and q2 the module of the root of complex equations
given by
ω2
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0
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√
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And we have the Homoclinic orbit given by the relation:

q =
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, p =
±
(√
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(38)

With the expressions of the equations (36) - (38), we can proceed
and calculate the Melnikov function for each case. In the case of
the potential with three wells, calculations lead to the following
conditions for the aspect of the borders fractals of basin. The
conditions of appearance of the chaos of Melnikov are thus: For
the case of Heteroclinic sepratrix:

f0 ≥ fc =
Cq1ς2

8Ωπ (β + 1)

 (2β + 1)(
1 − β2

)1/2

(
Arc sin β +

π

2

)
+ 2 + β

 sinh
2Ω
ς

(39)

While for the case of Homoclinic separatrix,

f0 ≥ fc =
Cq1ς2

32Ωπ (β + 1)

 (2β + 1)(
1 − β2

)1/2

(
Arc sin β − π

2

)
+ 2 + β

 ς

sin (2Ω)
(40)

In order to confirm and analyse the effect of controller we display
the evolution of critical force as a function of the frequency of
response curve. Figure 11 and 12 represent respectively the case
of Heteroclinic and Homoclinic separatrix. From these curves, it
comes out that the chaotic behavior occurs in the domain above the
curve. Considering orbits starting at the points sufficiently close to
the separatrix, the criterion of Melnikov is accomplished when the
perturbed orbits intersects with the separatrix. These figures also
show that the domain for the appearance of horseshoes are oppo-
site taking into account the case of heteroclinic or homoclinic chaos.
It appears that as the control gain parameter increases the domain
for regular motion alsoincreases. A particular characteristic of the
chaos of Melnikov is the fractality of the basin of attraction and
the resulting unpredictability due to the dependence with regard
to the initial conditions. We have plotted in Figure 13 the basin
of attraction in order to confirm or prediction. Setting f Ω = 0.5,
for various values of parameter of control m, the boundary of the
basins are regular thus there are no chaos of Melnikov. We plotted

Figure 11 Evolution of critical force as function of to the fre-
quency: case of an Heteroclinic orbit

Figure 12 Evolution of critical force as a function of frequency:
case of an Homoclinic orbit

Figure 13 Basin of attraction for Ω = 0.5 a) m =0; b) m =1; c) m
=3; d) m =4

in F 14 the basins for Ω = 1 , it appears that for various values of
control gain parameter m, the boundary of the basin can be regular
(see Figure 14 a and 14 b ) and become irregular as the control gain
parameter increases (see Figure 14 c and 14 d ), meaning that the
choice of the control gain parameters has a great influence on the
appearance of horseshoes chaos

Concerning the case of Ω = 3 and for certain values of the
parameter of control m, the fractality is more visible (see Figure
15). The same observation is done in Figure 16 . This means that
for the control strategy to be efficient the critical force leading to
the appearance of horseshoes is directly related to the value of
frequency and control gain parameter.

Consequently, in spite of the fact that the controller reduces
speed as well as the amplitude of vibration, it induces the chaos of
the horseshoe type in the dynamic behavior of the system. Thus

CHAOS Theory and Applications 47



Figure 14 Basin of attraction for Ω = 1 a) m =0; b) m =1; c) m =3;
d) m =4

Figure 15 Basin of attraction for Ω = 3 a) m =0; b) m =1; c) m =3;
d) m =4

the optimization of the strategy of control requires the taking into
account of the conditions of appearance of chaos.

CONCLUSION

This paper presented the possibility of reducing the vibration on
a structure modelled by Euler beam with phi-6 potential using
opto-electromechanic actuators. Taking into account the boundary
conditions of the physical system and using Galerkin method one
leads to the modal equation which is a nonlinear second order
ordinary differential equation. The analytical study gives us the
possibility to establish the conditions in the space parameters of
the system leading to the efficiency of the control. The criteria for
the appearance of horseshoe chaos were derived using Melnikov
theory. These findings were further supported by numerical sim-
ulations of the original nonlinear equation, and transformations
in the basin of attraction were observed. The domain in the pa-
rameters space of the system leading to homoclinic or heteroclinic
transverse intersection has been derived taking into account the
value of the control gain parameter of the opto-electromechanic ac-
tuators. Its appears that, a dissymmetrical distribution of actuators
is more effective than a symmetrical distribution for the simple
reason that the control region is much more bigger considering the
space parameter of the system.
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