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Abstract
In this paper, we introduce some new sequence spaces and sectional subspaces related to the Rhaly matrix and
BK spaces. Furthermore, we investigate their relations and identities among these subspaces and duals.
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1. Background, Preliminaries and Notations
Let w be the linear space of all complex or real valued sequences with the topology τw of coordinatwise convergence. A

linear subspace of w is called a sequence space. A sequence space λ with a locally convex topology τ is a K-space if the
inclusion map: (λ ,τ)→ (w,τw) is continuous. If τ is complete metrizable and locally convex, (λ ,τ) is called FK-space. An
FK-space whose topology is normable is called a BK-space. The basic properties of FK(BK-)-spaces may be found in [1, 2].

By `∞, c, c0 and `p, we denote the spaces of all bounded, convergent, null and absolutely p-summable complex sequences,
respectively, where 1≤ p < ∞. The spaces `∞, c and c0 are BK-space endowed with the sup norm ‖x‖∞ = supk∈N |xk|, and `p

(1≤ p < ∞) is a BK-space with the norm ‖x‖p =
(

∑
∞
k=0 |xk|p

)1/p, where N= {0,1,2,3, . . .}.
Let X and Y be two sequence spaces, and A = (ank) be an infinite matrix of complex numbers ank, where k,n ∈ N. Then,

we say that A defines a matrix transformation from X into Y and we denote it by writing A : X → Y, if for every sequence
x = (xk) ∈ X the A-transform Ax = {(Ax)n} of x is in Y , where

(Ax)n =
∞

∑
k=0

ankxk for each n ∈ N. (1.1)

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y ) if and only if the series on the right
side of (1.1) converges for each n ∈ N and every x ∈ X , and we have Ax ∈ Y for all x ∈ X . Also, we write An = (ank)k∈N for the
sequence in the nth row of A.

The domain XA of an infinite matrix A in a sequence space X is defined by

XA :=
{

x = (xk) ∈ w : Ax ∈ X
}

(1.2)
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which is a sequence space. Depending on the choice of the matrix A, XA may include or be included by the original space
X . Indeed if we choose A = ∆, the backward difference matrix, then c∆ ⊃ c (bv = (`1)∆ ⊃ `1) but in the case A = ∆−1 = S,
the summation matrix, cS = cs ⊂ c (bs = (`∞)S ⊂ `∞), where both of two inclusions are strict. However, if we define
X = c0⊕ span{z} with z = {(−1)k}, i.e., x ∈ X if and only if x = s+αz for some s ∈ c0 and some α ∈ C, and consider
the matrix A with the rows An defined by An = (−1)nen for all n ∈ N, we have Ae = z ∈ X but Az = e /∈ X which gives that
z ∈ X \XA and e ∈ XA \X where ek is a sequence whose only nonzero term is 1 in kth place for each k ∈ N. That is to say that
the sequence spaces XA and X are overlap but neither contains the other. In the literature, there are many studies on the matrix
domain, see for instance [3]-[19].

The continuous dual of a normed space X is defined as the space of all bounded linear functionals on X and denoted by X ′.
If A is triangle, that is ank = 0 if k > n and ann 6= 0 , and X is a sequence space, then f ∈ X ′A if and only if f = g◦A, g ∈ X ′.

Let (X ,P) be a locally convex space. A set S⊂ X is called fundamental if the span of S is dense in X . The useful results
concerning with the fundamental set which are applications of Hahn-Banach Theorem as follows:

Corollary 1.1. (i) S⊂ X is fundamental if and only if f (S) = 0 implies f = 0 for each f ∈ X ′.
(ii) Let S1 and S2 be non-empty subsets of X. The inclusion S1 ⊂ span{S2} holds if and only if f (S2) = 0 implies f (S1) = 0 for
each f ∈ X ′.

For the sequence spaces X ,Y and Z, the multiplier space XY (or M(X ,Y )) is defined by

XY = {a = (ak) ∈ w : ∀x ∈ X ,x ·a = (xkak) ∈ Y},

and XY Z = (XY )Z . The β -, γ- and f -duals Xβ ,X γ and X f of a sequence space X are defined by

Xβ := Xcs =

{
a = (ak) ∈ w :

(
n

∑
k=0

akxk

)
n∈N

∈ c for all x = (xk) ∈ X

}
,

X γ := Xbs =

{
a = (ak) ∈ w :

(
n

∑
k=0

akxk

)
n∈N

∈ `∞ for all x = (xk) ∈ X

}
,

and

X f :=
{

a = (ak) ∈ w : ∃ f ∈ X ′,a = ( f (ek))
}

respectively.

Lemma 1.2. [2] Let X be an FK space containing φ = span{ek}, and let Y and Z any sequence spaces. Then, the following
assertions hold.

(i) If φ ⊂ Y ⊂ Z then φ ⊂ XY ⊂ XZ ,
(ii) if X ⊂ Y then XZ ⊃ Y Z and X f ⊃ Y f

(iii) X ⊂ XYY

(iv) XY = XYYY

(v) Xβ ⊂ X γ ⊂ X f

(vi) X f = (φ) f

Zeller in [20] introduced the theory of FK-spaces and investigated the properties of sectional convergence in [21]. Sectional
boundedness in BK-spaces was studied by Sargent [22]. Given a BK-space X ⊃ φ , we denote the nth section of a sequence
x ∈ X by x[n] = ∑

n
k=0 xkek, and we say that x has

AK-property when limn→∞ ‖x− x[n]‖X = 0,
AB-property when supn∈N ‖x[n]‖X < ∞,

AD-property when x ∈ φ (closure of φ ⊂ X),
SAK-property when limn→∞ | f (x)− f (x[n])|= 0 for all f ∈ X ′,

FAK-property when ( f (x[n]) ∈ c for all f ∈ X ′.

If one of these properties holds for every x ∈ X , then we say that the space X has that property. It is trivial that AK implies AB
and AD. For example, the spaces c0, cs and `p are AK and c, bs and `∞ are AB but not AD-spaces, where 1≤ p < ∞.

The distinguished subsets of summability domains and arbitrary FK spaces have been studied by Wilansky [2], Bennett
[23], and several others [24]-[38].
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We denote by U the set of all real sequences u = (uk) such that uk 6= 0 for all k ∈N. For a sequence u = (uk) ∈ U, the Rhaly
(or Terraced) matrix Ru = (rnk(u)) is defined by

rnk(u) =
{

un , k ≤ n
0 , k > n

for all n,k ∈ N.
For the special case un =

1
n+1 for all n ∈ N, the Rhaly matrix Ru reduces to the Cesàro matrix of order 1. For more details

on this topic, see [39, 40].
In this paper, we introduce the new sequence spaces c0(Ru),c(Ru) and `∞(Ru), which are the domains of the Rhaly matrix

Ru in the spaces c0,c, and `∞, respectively, and study some of their properties. We also define sectional subspaces related to the
Rhaly matrix in an FK space and investigate their relationships, identities and duals.

2. The Sequence Spaces c0(Ru), c(Ru) and `∞(Ru)

In the present section, we introduce the sequence spaces c0(Ru), c(Ru)) and `∞(Ru) as the domain of the matrix Ru in the
classical sequence spaces c0, c and `∞, respectively and examine some properties of these spaces.

Throughout the study, y = (yn) will be the Ru-transform of a sequence x = (xk); that is,

yn = (Rux)n = un

n

∑
k=0

xk (2.1)

for all n ∈ N. Since the matrix Ru is a triangle, it has an inverse. Multiplying the equality (2.1) with 1/un, we have

1
un

yn =
n

∑
k=0

xk (2.2)

for all n ∈ N. Therefore, by using the relation (2.2) we see that

xn =
1
un

yn−
1

un−1
yn−1 (2.3)

holds for all n ∈ N, where y−1 = 0.
Now, by the equation (2.3) we have the following lemma:

Lemma 2.1. The matrix Ru is invertible and its inverse (Ru)
−1 = (r−1

nk (u)) defined for all k,n ∈ N by

r−1
nk (u) =

 (−1)n−k 1
un

, n−1≤ k ≤ n,

0 , 0≤ k < n−1 or k > n.

Let us introduce the sequence spaces c0(Ru), c(Ru) and `∞(Ru) as the set of all sequences whose Ru-transforms are in the
classical spaces c0, c and `∞, respectively; that is

c0(Ru) :=

{
x = (xk) ∈ w : lim

n→∞
un

n

∑
k=0

xk = 0

}
,

c(Ru) :=

{
x = (xk) ∈ w : ∃α ∈ C 3 lim

n→∞
un

n

∑
k=0

xk = α

}
,

`∞(Ru) :=

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣un

n

∑
k=0

xk

∣∣∣∣∣< ∞

}
.

With the notation of (1.2), the spaces c0(Ru), c(Ru) and `∞(Ru) can be redefined, as follows:

c0(Ru) = (c0)Ru , c(Ru) = (c)Ru and `∞(Ru) = (`∞)Ru .

It is known from [1]-[3] and [5, 16] that if T is a triangle, then the domain XT of T in a normed sequence space X is normed
with ‖x‖XT = ‖T x‖X , and is linearly norm isomorphic to X and XT has a basis if and only if X has a basis.

As a direct consequence of these facts, we have:
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Corollary 2.2. Let Z ∈ {c0,c, `∞}. Then, the following statements hold:

(a) The space Z(Ru) is a BK-space endowed with the norm

‖x‖Z(Ru) = sup
n∈N

∣∣∣∣∣un

n

∑
k=0

xk

∣∣∣∣∣ .
(b) The spaces Z(Ru) is linearly norm isomorphic to the space Z.

Corollary 2.3. Define the sequence b(k)(u) =
(
b(k)n (u)

)
n∈N by

b(k)n (u) :=

 (−1)n−k 1
un

, k ≤ n≤ k+1

0 , n < k or n > k+1

for all k,n ∈ N. Then, the following statements hold:

(a) The sequence b(k)(u) is a basis for the spaces c0(Ru) and every sequence x ∈ c0(Ru) has a unique representation of the
form x = ∑

∞
k=0(Rux)kb(k)(u).

(b) The set
{

ẽ,b(k)(u)
}

is a basis for the space c(Ru) and every sequence x ∈ c(Ru) has a unique representation of the form

x = lẽ+∑
∞
k=0
[
(Rux)k− l

]
b(k)(u), where ẽ =

( 1
uk
− 1

uk−1

)
for all k ∈ N and (Rux)k→ l, as k→ ∞.

(c) The space `∞(Ru) does not have a basis.

Since the inclusions c0 ⊂ c⊂ `∞ hold strictly, we have:

Theorem 2.4. The inclusions c0(Ru)⊂ c(Ru)⊂ `∞(Ru) hold strictly.

Lemma 2.5. Let X and Y be sequence spaces, and let A and B be triangle matrices. Then, the inclusion XA ⊂ YB holds if and
only if the matrix BA−1 belongs to (X ,Y ).

Proof. Suppose that XA ⊂ YB. Then, every t ∈ XA is in YB. By the definitions YB and XA, we have Bt ∈ Y and x = At ∈ X . Since
A is a triangle matrix, it is invertible. From the equality x = At, we can obtain t = A−1x. Hence, for each x ∈ X the sequence
BA−1x is in Y . This shows that BA−1 ∈ (X ,Y ).

Conversely,suppose that BA−1 ∈ (X ,Y ). Take any sequence t ∈ XA. By the definition of XA, we have At ∈ X . Since
BA−1 ∈ (X ,Y ), for At ∈ X , we have BA−1(At) ∈ Y , and thus Bt ∈ Y . Therefore, t ∈ YB. This shows that the inclusion XA ⊂ YB
holds.

By using matrix transformations and Lemma 2.5, we can easily prove that:

Theorem 2.6. The following assertions hold.
(a) If (kuk) ∈ `∞ then c0 ⊂ c0(Ru) and `∞ ⊂ `∞(Ru) strictly holds.
(b) If (kuk) ∈ c then c⊂ c(Ru) strictly holds.
(c) If (kuk) ∈ c0 then `∞ ⊂ c0(Ru) holds.
(d) If ( 1

uk
− 1

uk−1
) ∈ `∞ then the inclusion c0(Ru)⊂ c0 and `∞(Ru)⊂ `∞ hold.

(e) If ( 1
uk
− 1

uk−1
) ∈ c then the inclusion c(Ru)⊂ c holds.

We shall begin with quoting the lemma due to Stieglitz and Tietz [41] which is needed in proving Theorem 2.8.

Lemma 2.7. Let A = (ank) be an infinite matrix. Then the following statements hold:
(a) A ∈ (c0, `∞) = (c, `∞) = (`∞, `∞) if and only if

sup
n∈N

∑
k
|ank|< ∞. (2.4)

(b) A ∈ (c0 : c) if and only if (2.4) and

lim
n→∞

ank = αk(k ∈ N), (2.5)
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(c) A ∈ (c : c) if and only if (2.4), (2.5) and

lim
n→∞

∑
k

ank = α.

(d) A ∈ (`∞ : c) if and only if (2.4), and

lim
n→∞

∑
k
|ank|= ∑

k
| lim

n→∞
ank|

By [3, Theorem 3.1], we have:

Theorem 2.8. For a sequence u = (uk) ∈ U, let us define the sets A1(u), A2(u) and A3(u), as follows:

A1(u) :=
{

a = (ak) ∈ w :
(

ak−ak+1

uk

)
∈ `1

}
,

A2(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ `∞

}
,

A3(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ c
}
,

A4(u) :=
{

a = (ak) ∈ w :
(

ak

uk

)
∈ c0

}
.

Then, the following statements hold:

(i) [c0(Ru)]
β = A1∩A2, [c(Ru)]

β = A1∩A3, [`∞(Ru)]
β = A1∩A4.

(ii) [c0(Ru)]
γ = [c(Ru)]

γ = [`∞(Ru)]
γ = A1∩A2.

Proof. For a = (an) ∈ w and x = (xn) ∈ X(Ru), we obtain

n

∑
k=0

akxk =
n

∑
k=0

ak

[
k

∑
j=k−1

(−1)k− j

uk
y j

]

=
n−1

∑
k=0

(
ak−ak+1

uk

)
yk +

an

un
yn (2.6)

= (Duy)n

for all n ∈ N, where Du = (dnk(u)) is defined by

dnk(u) =


ak−ak+1

uk
, k < n,

an

un
, k = n,

0 , k > n

The equation (2.6) implies that ax = (anxn) ∈ cs whenever x ∈ X(Ru) if and only if Duy ∈ c whenever y ∈ X . Therefore, we
conclude that a ∈ [X(Ru)]

β if and only if Du ∈ (X : c).
(i) To show that [c0(Ru)]

β = A1∩A2, let us take X = c0. It follows that Du ∈ (c0 : c), which means the conditions (2.4) and
(2.5) of Lemma 2.7 (b) are satisfied by the matrix Du. Thus, a = (ak) ∈ A1∩A2. Therefore, we have:

[c0(Aru)]β = A1∩A2.

By using the conditions of Lemma 2.7(c) and (d), the equalities [c(Ru)]
β = A1∩A3, [`∞(Ru)]

β = A1∩A4 can be proved
similarly.

(ii) This is similar to the proof of Part (i) of the present theorem by using Lemma 2.7(a). To avoid the repetition of the
similar statements, we omit the details.
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3. Some Rhaly Subspaces of FK spaces
In this section, using sectional properties we define some new subspaces of a BK-space and give some relations between

these spaces and duals.
Given a BK-space X ⊃ φ , we define the nth Rhaly section of a sequence x ∈ X as r[n]x = un ∑

n
k=0 xkek.

Definition 3.1. Let X be a BK space contaning φ . Then, a sequence x = (xk) ∈ X has the following properties:

rK when limn→∞ ‖x− r[n]x ‖X = 0,
rB when supn∈N ‖r

[n]
x ‖X < ∞,

SrK when limn→∞ | f (x)− f (r[n]x )|= 0 for all f ∈ X ′,
FrK when ( f (r[n]x ) ∈ c for all f ∈ X ′.

In connection to Definition 3.1, we can define the following distinguished subset of X;

XRS = {x ∈ X : x has rK in X},

= {x ∈ X : x = lim
n

un

n

∑
k=1

k

∑
i=1

xiei}

XRW = {x ∈ X : x has SrK in X},

= {x ∈ X : ∀ f ∈ X ′, f (x) = lim
n

un

n

∑
k=1

k

∑
i=1

xi f (ei)}

XRF+ = {x ∈ w : x has FrK in X},

= {x ∈ w :

(
un

n

∑
k=1

x(k)
)

is weakly Cauchy in X}

= {x ∈ X : ∀ f ∈ X ′,(un f (en)) ∈ (c(Ru))S},
XRB+ = {x ∈ w : x has rB in X},

= {x ∈ w :

(
un

n

∑
k=1

x(k)
)

is bounded in X}

= {x ∈ X : ∀ f ∈ X ′,(un f (en)) ∈ (`∞(Ru))S},

and

XRF = XRF+ ∩X and XRB = XRB+ ∩X ,

where the matrix S = (snk) is defined as

snk =

{
1 , k ≤ n,
0 , k > n .

By definitions of XRS, XRW , XRF+ and XRB+ we have:

Theorem 3.2. Let X be an FK-space containing φ . Then the following inclusions hold.

φ ⊂ XRS ⊂ XRW ⊂ XRF ⊂ XRB ⊂ X

Theorem 3.3. Let X be an FK-space containing φ . Then XRW ⊂ φ .

Proof. Let f ∈ X ′ with φ ⊂ Kern f . Since for every x ∈ X and n ∈N, zn =
(

an ∑
n
k=1 x(k)

)
∈ φ , then f (zn) = 0. This shows that

XRW ⊂ Kern f . By Corollary 1.1 (ii), we obtain the inclusion XRW ⊂ φ .

By definition of XRF+ (XRB+), z ∈ XRF+(XRB+) if and only if z · y ∈ (c(Ru))S((`∞(Ru))S) for each y ∈ X f , we have the
following theorems.

Theorem 3.4. Let X be an FK-space containing φ . Then XRF = (X f )(c(Ru))S .

Theorem 3.5. Let X be an FK-space containing φ . Then XRB = (X f )(`∞(Ru))S
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In the study of FK-spaces, understanding the relationships between different sequence spaces and their properties is crucial.
In this context, we investigate the inclusions and equalities among subspaces defined by various properties of sequences. The
following results explore these relationships, focusing on the inclusion properties of different sequence spaces associated with
the properties rK, SrK, FrK and rB when the inclusion X ⊂ Y holds for FK-spaces X and Y . These results shed light on the
structure of these spaces and the behavior of the sequence spaces under certain conditions.

Theorem 3.6. If X ⊂ Y then Xλ ⊂ Yλ for λ ∈ {RS,RW,RB+,RF+,RB,RF}.

Proof. For λ = RS(RW ), the continuity(weak continuity) of inclusion map i : X → Y gives the desired result.
Let λ ∈ {RB+,RF+}. The results follows from Theorem 3.4, 3.5 and Lemma 1.2(ii).

Theorem 3.7. If φ ⊂ Y ⊂ X, then YRB+ = XRB+ and YRF+ = XRF+ .

Proof. By Theorem 3.6 we have
φ RB+ ⊂ YRB+ ⊂ XRB+ .

By Theorem 3.5 and Lemma 1.2(vi) the first and the last are equal.

Theorem 3.8. Let X be an FK-space containing φ and X ⊂ XRB. Then XRS = XRW = φ .

Proof. Since the sequence of functions ( fn) defined by fn : X → X , fn(x) = x− un ∑
n
k=1 x(k) is pointwise bounded, hence

equicontinuous by (7.0.2) of [2]. Since fn→ 0 on φ then also fn→ 0 on φ by (7.0.3) of [2]. This is the desired conclusion.
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[37] T. Bilgin, M. Karakuş, On some distinguished subspaces and relationship between duals, J. Adv. Math. Math. Edu., 1(1)

(2018), 5-15.
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