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ABSTRACT. In the present paper, we obtain identities for Narayana numbers, like the sum of terms with
even and odd subscripts, the sum of products of consecutive terms and the sum of squares of terms.
Then, we find images DN and D?N of n-tuple N = (N1, N2, N3, ..., Ny,) of Narayana numbers under
amap D : C — C defined as D(z1, 22, ..., zn) = (|22 — 21|, |23 — 22|, oo, |2n — 2n=1], |2n — 21]).
We are then determined the circulant, skew-circulant, and semi-circulant matrices of these images. We
have been discovered Frobenius norms of these circulant matrices and relations among these norms. In
addition, we find DG and D2G by taking the n-tuple G = (GN1, GNa, ..., GNy) of Gaussian Narayana
numbers. After that, we create circulant, semi-circulant, and skew-circulant matrices of G, DG, D?G,
determine their Frobenius norms, and derive relationships between them. Then, we obtain relations
between norms of matrices of Narayana numbers and Gaussian Narayana numbers. Finally, coding
and decoding methods with the use of circulant matrices of Narayana numbers and Gaussian Narayana
numbers have been introduced.
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Keywords. Narayana sequence, Gaussian Narayana sequence, Ducci map, semi-circulant matrix, Skew-
circulant matrix.

1. INTRODUCTION

If we consider the n-tuple A = (a1, a2, ..., ap), where a}s s are integers, then the Ducci map
Dy : Z" — 7" is defined as

D1(a17 az, as, ..., @n) = (|a2—a1|, |a3—a2\, |a4—a3|, sy |an_an—1|a |an_@1|)7

and the sequence (A, D1A, D?A, D3A, ..) is known as the Ducci sequence. Ducci sequence [7] was
introduced in 1937 but E. Ducci made some observations on this map in the 1800’s. Therefore, the name
of this sequence was attributed to E. Ducci.

Circulant matrices have many connections to problems in physics, image processing, probability, sta-
tistics, numerical analysis, number theory and geometry. In literature, there are many papers in which
authors use different kinds of number sequences in circulant matrices. In a circulant matrix [8], one basic
row of numbers is repeated again and again with a shift in position. The inverse, conjugate transpose,
sum and product of circulant matrices are also circulant. In [20}21], Solak et al. used Fibonacci sequence
to define the Ducci map and construct circulant matrices. They found the Frobenius norm, [, norm and
spectral norm of these sequences. The authors of [14}[15,|19] discovered bound estimation of spectral
norms of circulant matrices composed of Padovan, Perrin, Fibonacci, and Lucas numbers. In [17], upper
and lower bounds were found for the spectral norms of r-circulant matrices made up of Fibonacci and
Lucas numbers. In [5]/6], the authors considered r-circulant matrices made up of generalized Fibonacci
numbers and found determinants, bounds for the Euclidean and spectral norms of these circulant matri-
ces. In [16], Shen et al. have studied spectral norms of r-circulant matrices made up of k-Fibonacci and
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k-lucas numbers. Then, found lower and upper bounds of those circulant matrices. In [11}/12], Euclidean
and spectral norms of circulant matrices of k-Fermat and k-Mersenne Numbers and generalized Fermat
numbers have been obtained. Bala et al. [1] studied norms of circulant matrices of Gaussian Fibonacci
numbers.

In [22], Stakhov gave an application of Fibonacci p-matrix defined in coding theory. Fibonacci p-
numbers were defined in 1977 by the relation

Fy(n)=F,(n—1)+F,(n—p—1), p=0,1,2,3,... withn>p+1

and initial terms

F,(1)=F,(2)=F,3)=..=Fy(p)=Fp+1) =1
He used Fibonacci p-matrix denoted as @, where
110 ... 00
0 0 1 0 0
Qp=1: ¢ . i
000 ... 01
1o 0/ r+1yx 1)

He represented the message as a square matrix M of order (p+1) x (p+1), p=0,1,2,... and used Q) as
the coding matrix, i.e., M x @ = E for Fibonacci coding and E x @y = M for Fibonacci decoding, here
E is the coded matrix. Basu et al. [4] gave a coding theory based on Fibonacci p-numbers and their m
extension. Tas et al. [23] gave a Fibonacci coding-decoding algorithm based on Fibonacci ¢ matrix and
they divided the message matrix into block matrices of size 2 x 2 by adding zeroes between words and
at the end for making the matrix even sized. Tas et al. and Ucar et al. gave similar algorithms. Ucar et

al. [24] used Fibonacci @ matrix and R = <1

9 _21> matrix in their coding-decoding algorithm. These

matrices are related by Lucas numbers as

_pon— (Y 2 (/e fn\ _ (ln ln
Rn B RQ N <2 _1> ( f:l fn—l) N < l:1 ln—l) '

Shtayat et al. |[18] introduced a cryptography model based on the Padovan @-matrix and Perrin R-matrix.
This method uses different encryption and decryption keys of the message matrix, which will increase
the security of the methods.

Here, we define a map for complex numbers. For an n-tuple X = (21, 22, ..., 2zp), here z.s are complex
numbers, define a map D : C — C as

D(Zlv 22y ey Zn) = (|Z2 - Zl|7 |Z3 - 22|7 sy |Zn - Zn—1|a |Zn - Zl|)
or D:C—Ras
D(Zla 22y« s Bn—1, Zn) - (|22 - 21‘, |ZS - 22‘, cee |Zn _anl‘a |Zn - Zl‘)

In the paper, we will consider map of the first kind.

The present paper is organized as follows. In section 2, basic definitions are given. In section 3, some
lemmas that will be used in further sections are proved. In section 4, n-tuple of Narayana numbers are
taken and its images under the Ducci map are obtained. Further, Frobenius norms of these matrices and
relations of these norms are calculated. In section 5, results related to Gaussian Narayana numbers are
given. In section 6, relations between norms of Narayana and Gaussian Narayana numbers are obtained.
In section 7, coding/decoding algorithms are given using Narayana and Gaussian Narayana numbers.

2. PRELIMINARIES

The Narayana sequence is defined by second order recurrence relation
Npt1 =N, + N,_o for alln > 2
where Ng =0, Ny =1 and Ny = 1. (1)
Ozkan et al. [13] defined Gaussian Narayana sequence as

GN,+1 =GN, + GN,_s for all n > 2
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where GNg =i, GN; =1 and GNy, = 1.
We note that GN,, = N,, + ilN,,_o for all n > 2 where N,, is n-th Narayana number.

TABLE 1. Some values of Gaussian Narayana numbers

n (012 3 4 3 6 7 8 9 10
GNp |t |1 |1 |1+¢|244%|34+4|4+2i|6+3i|9+4i|134+6¢ |19+ 9%

Definition 1. [10] The Frobenius (Euclidean) norm of an n x n matriz A = (a;;) is defined as

[AllE = (DD layl?

j=1i=1

Definition 2. [§] An n x n circulant matriz has the form

Co C1 C2 oo Cp—1
Cn—1 Co CiT ... Cp—2
A= Ch—2 Cp—1 Co ... Cp-3
C1 Co Cy ... Co
and is denoted by A = circ (co, c1, €2, ..y Cpn—1)-
Definition 3. [§/ For an n-tuple (co, c1, ¢2, ... , Cn—1), @ skew-circulant matriz M is defined as
Co (&1 Co N . |
—Cp—1 Co C1 ce Cp—2
M = —Cp—2 —Cp-1 €o ce. Cp—3
—C1 —C2 —C3 . Co
and is denoted by M = scirc (co, ¢1, €2y ooy Cp—1)-
Definition 4. [§] For an n-tuple (co, c¢1, 2, ..., Cn—1), a semi-circulant matriz is defined as
Ch C1 Co oo Cp—1
0 Ch C1 ... Cp_2
N = 0 0 cCp ... Cp_—3
0 0 0 ... ¢
and is denoted by N = circs (co, €1, Cay ooy Cp—1).

3. SOME IDENTITIES OF NARAYANA NUMBERS

In the current section, we obtained some identities for Narayana numbers. Then, we find the sum of
n terms with even and odd subscripts, the sum of products of consecutive terms and the sum of squares
of terms. These identities will be used in the next section.

We will need the following lemmas to prove our results

Lemma 1. Sum of first n terms with odd subscripts
2N2p +2Nop_1 + Nop_o — 1
3 .

N1 +N3+N5+...+N2n_1 =

Proof. From equation , we have
Nont1 = Napt2 — Nop—1.

Ifweputn=0,1, 2, ..., n—1, we get
N1 = Ny — N_; = No,
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aSN2:N1+N_1,i.e., N_1:1—1:0
N3:N4_N17
N5 = Ng — N3,

Nop—3 = Nop—2 — Nap—s,
Nop—1 = Nay — Nop 3,

respectively. Adding all of the above equalities,

Ny + N3+ N5+ ...+ Nop—1 = (Na+ Ny + Ng + ... + Nop) — (N1 + N3+ N5 + ... + Noy,—3)
2(N1 + N3+ N5+ ... + Nap—1) — Non—1 = No + Ny + Ng + ... + Noy,..
It is well known from [3] that

N1+ No+ N3+ ...+ Nop = Nopyg — 1

(Nt + N3+ N5+ ...+ Noy—1) + (Na+ Ny + N+ ... + Noyy) = Napyg — 1
(N1 +Ns+Ns+ ...+ Nop—1) +2(N1 + N3+ N5+ ... + Nopu_1) — Nojy—1 = Nopyg — 1
2Nop +2Noy 1 + Nop_o — 1

Ny —|—N3+N5 +...—|—N2n_1 =

3
a
Corollary 1. Sum of first n terms with even subscripts
4Ny, + Napy1 + 2Ny 5 — 2
Ny+ Ny+ ..+ Nogy = —22 T2 13 Zi A
Proof.
Ni+ Ny~ ...+ Noy = Nopyg — 1
(N1 4+ N3+ ...+ Noy_1)+ (Ny+ Ny + ... + Nop) = Nopiz — 1
2N: 2Ng,, Nop_o—1
2n + 200n 31 + Nan—2 + No+ Ny+...4 Ny, = Najys — 1 (By using Lemmal [T])
2No, +2Ngy 1+ Nop_o — 1
No+ Ny+ ..+ Noy = Nopyg — 1 — 222 2 31 2n—2
By using the equality Noy, 3 = 2N, + Nop—o + Noj—1, we get
4Noy, + Nojy_1 +2Noy o0 — 2
No+ Ny+ ...+ Nop, = 2 2 13 2n—2 .
([l

Lemma 2. Sum of product of consecutive terms

- 1
> NpNijr = 3 (4N2 4+ N2_, + N2_, +4N,,_oN,, + 2N, 1N, + Ny—oNyog — 1)
k=1

Proof. From [2] Narayana matrix sequence

anan+r :NZ — ananJrl :Ns

and
Nn—i—l Nn—l Nn
Nn: Nn Nn—2 Nn—l
anl Nn73 Nn72
Nn Nn—2 Nn—l Nn+2 Nn Nn+1 Nn—i—l Nn—l Nn Nn—i—l Nn—l Nn
Nn—l Nn—B Nn—2 Nn+1 Nn—l Nn = Nn Nn—2 Nn—l Nn Nn—2 Nn—l
Nn—2 Nn—4 Nn—3 Nn Nn—2 Nn—l Nn—l Nn—S Nn—2 Nn—l Nn—3 Nn—2

By using the equality of two matrices,

NnNnJrZ + Nn72Nn+1 + NyNp_1 = N2+1 +2N,_1N,

n
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NoNpio+ Ny—oNpi1 — Ny 1N, = N2,
Np(Npg1 + Np1) + Ny _oNyi1 — Ny 1N, = N?
NuNpi1+ Ny—oNpy1 = N2y
NpNpy1+ Ny o(Ny + Noo) = N2y
NpNpty1+ Np—oN, + N,QL_Q = N72L+1
NpNpii+ Np—o(Nn—1 + Np_g) = N2, — N2,
NoNpi1+ Ny—oNp_1+ N3N, o= N2, — N2_,

n+3 n+3 n+3 n+3 n+3
Y NilNipi+ Y NeoNei + ) NieaNiea =) Nigy = Ny
k=3 k=3 k=3 k=3 k=3
n+3 n+1 n n+3 n
Z NpNgg1 + Z NipNgy1 + ZNka+1 = Z NZ - ZN;fH
k=3 k=1 k=0 k=3 k=0

3 NiNiyr = N7 o+ N2 s+ N2y — 2N 1Nnj2 — NojoNogs — NogsNogg — 1

k=1

Z 1
> NiNipr = 2 (Nipo + Niyg + Niys = 2Nng1Nno = NogoNogs = NogsNoga — 1)
k=1

- 1
> NpNiy1 = 3 (AN2+ N2 |+ N2_ + 4N, _oN, +2N,_ 1N, + Ny 2N, — 1).
k=1

Lemma 3. Sum of squares of n terms
NZ+ N+ ..+N2

1
=3 <2N,?L+1 SN2 42N2 |~ N2, N2, —2N2_, +2N,N,_; — 4Ny_1Np_o — 2Np_sNp_5 + 1).

Proof. Bala and Mishra introduced Narayana matrix sequence 2] with he help of Narayana sequence.
Using the identity from [2]

Nﬁ = NQn.
From here,
N3+1+2Nn—1Nn Nn+1Nn—1+Nn—2Nn—l+NnNn—3 NnNn+1+N371+NnNn—2
NnNn+1 +Nn72Nn+N3L—1 anan+Ng—2+anan73 N72l+2Nn72Nn71
Nu—1Nng1 + NoNa—s + Ny—oNpoy N1 +2Nn_2Nn_s Nu—1Nn + Noo1Np—s + N7 o

N2n+1 N2n71 N2n
=1 Nan Nop—2 Nopo
Nop—1 Noy—3 Noy_o
By using the equality of two matrices, we obtain
N72L+1 + 2Nn—1Nn = N2n+1a

that is,
N7%+1 = N2n+1 —2Np_1Np.
For n =0,1,2,3,...,n — 1, we have

N? = N; —2N_ Ny,
N2 = N3 — 2Ny Ny,
NI = N5 — 2N Ny,

N2 = Nay_1 — 2N, _oN,_1.
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By using Lemma [2] and adding all above equalities, we obtain

N2+ N4 ..+ N2=(Ny+ N3+ ...+ Nayp_1) —2(NgN1 + NyNy + ... + N, _oN,,_1)
2N2p +2Nop_1 +Nopo—1 2

- 5 -3 (AN2 + N2_| + N2_5 +4N,_oN, + 2N,,_1N,, + N;,_oN,,_1 — 1)

1
=3 (2Nay, + 2Ny 1 + Noyo —8N2_y —2N7 3 —2N?_ 4, — 8N, _4N,,_5 — 4N, _3N,,_o — 2N,,_4N,,_3 + 1).

It is well known from [9] that

Nner - anle+2 + Nn72Nm + Nn73Nm+1
and
Noy = N2+ N2 — N2,

n
Using these equalities, we obtain

N2n71 - ananJrl + Nn72Nn71 + Nn73Nn
Nap_9= N2+ N2 ,— N2

n—3*

Therefore,
Z N2==Z (21\[2+1 + N242N2 | —9N2 , —3N2 , —2N? , + 2N, 1Nui1+ 2N, oN, 1 +2N, 3N,

- 8Nn74Nn72 - 4Nn73Nn72 - 2Nn74Nn73 - 3)

1
=3 (2N2+1 FN242N2_, N2, N2, —2N2_, +2NuNyu_y — 4Nn_1Np_s — 2Ny_sNp_s + 1).
0

Lemma 4. Sum of squares of n Narayana numbers multiplying by subscripts, i.e.,

Zka_—(2N2+1+N2+2N2 L = N2 ,— N2 ,—2N2 ,+2N,N,_1 —4N,_1N,_5 — 2N, 5N, _3

1
+1) 9(2N§+1 12N2 — 4N?_| + TN?_, + 8N2_; + 4N2_, + 6NyNy_1 + 10Ny_oNp_1 +4N,_oNp_s

16Ny _o Ny, + 12N, Nyt + 30 — 13).

Proof. Let

A, = ZN,f = 7(2N2+1+N2+2N§_1—N,2L o—N2_o 2N5_4+2NHNH_1—4Nn_1Nn_2—2Nn_2Nn_3+1)

n
Zkle = N{ +2N; +3NJ+ ..+ (n—1)N2_, +nN?

k=1
n—1
=nd, — Y A
i=1
n—1

1
:nAn_gz<2N3+1+N§+2NE_1—N3_2—N§_3 2N2 , +2N;N;_; —4N;_1N;_5 — 2N; 5 N; 3—3)
=1

=nA, <ZN2 4ZNNM+N2+2N2 L +4N2 , +3N2 , +2N? , 42N, 3N, o
i=1

£ 6N,_oN,_1 +4Ny_1 Ny + AN, N1 + 11— 6)
=2 (2N2+1 Y N2 42N2 |~ N2, N%_,—2N2_, +2N,N,_; —4N,_1Np_o — 2Np_sNp_5 + 1)

1
-3 (2]\73+1 12N2 —4N?_ | +TN?_ 5 +8N2 5 +4N2_ , +6N,N,,_1 + 10N, _oN,, 1 +4N, 2N, 3
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—16Nyy_o Ny, + 12N, Npy 1 + 30 — 13).

4. CIRCULANT MATRICES MADE UP OF NARAYANA NUMBERS

In this section, images DN and D?N of an n-tuple N = (N1, Na, N3, ..., N,) of Narayana numbers
have been found under the Ducci map. Then, we establish circulant, skew-circulant and semi-circulant
matrices of these images. Further, we find Frobenius norms of these circulant matrices and relations
among these norms.

Let us consider N = (N1, Na, N3, ..., N,_1, N,), we get
DN = (N3 — Ny, Ns— Ny, ..., Ny — N,_1, N, — Ny)
=(0, 0, Ny, ..., Np_3, N, —1),
D?N = (0, N;, Ny — Ny, Ns— Ny, ..., Ny_3—Np_4, N, —1—N,_3, N, — 1)
=(0,1,0,0, Ny, ..., Ny_g, Ny_1 —1, N, —1).

Circulant(circ), skew-circulant(scire) and semi-circulant(cire,) matrices are defined in section 2 (Prelim-
inaries)

circ N = circ (N1, Na, N3, ..., Ny_1, Ny), (2)
circ DN = circ (0, 0, Ny, ..., Np_3, N, — 1), (3)
circ DN = circ (0, 1, 0, 0, N1, ..., Ny_g, Np_1 — 1, N, — 1), (4)
scirc N = scirc (N1, Na, N3, ..., Np_1, Np), (5)
scirc DN = scire (0, 0, Ny, ..., Np_3, N, —1), (6)
scirc D®*N = scire (0, 1, 0, 0, Ny, ..., Ny_g, Npo1 —1, N, — 1), (7)
circs N = circs (N1, Na, N3, ..., No_1, Ny,), (8)
circs DN = circs (0, 0, Ny, ..., Np_3, N, —1), (9)
circs D*N = circ, (0, 1, 0, 0, Ny, ..., Ny, Ny_1 —1, N, —1). (10)

From equations and ,
||lcire NH%: |Iscire N||?;:nZN,§. (11)

k=1
From equations and @,
n—3
||cire DN||3 = ||scire DN||% =n (Z N2+ (N, — 1)2> . (12)
k=1
From equations and @,
9 9 n—=6
||cire D*N||,, = ||scirc D*N||,. =n <1 + Z NZ 4+ (Npo1 — )2+ (N, — 1)2) . (13)
k=1

Theorem 1. Relation between norms of circ N and circ DN
|[cire N||3 — |lcire DN |3 =n (N2_; + N2_, + 2N, — 1)
Proof. From equations and ,

|lcire NH?, — ||eire DNH; =n

N
-

n n—3
zwz—zzv,z—uvn—w)
= k=1
N2+ N2 4+ N}y — (N, — 1))
N2+ N2 ,+2N,—1).
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Theorem 2. Relation between norms of circ DN and circ D>N
leire DN|[3 — ||cire D2N||5 = n (N2_5+ N2_y + N2_y = N2_| —2+2N,_1).
Proof. From equations and ,

n—3 n—6
lcire DN|[% — ||cire D*N|[% = n <Z NE+(Np =12 =1=Y N2 = (Npo1 = 1) = (N, — 1)2>
k=1 k=1

=n(Np_3+Np_y+Ni_5—Ni_y —2+2N,_1).

|
Theorem 3. Relation between norms of circ N and circ D?>N
leire N|% — ||cire D*N|[3 = n (N2_y + N2_y + N2_; + N2_5 + 2N, +2N,_; — 3) .
Proof. From theorems [1| and [2| we get the required result. O
From equation ,
cires N3 =nN2 4 (n —1)NZ + ... +2N2_, + N2 (14

= (n+1)(NZ + N2+ ...+ N2) — (N} + 2N2? + 3N? + ... + nN?)

1
_nt (2N§+1 +N2+2N? |, -~ N2 ,— N2 ,—2N2_, +2N,N, 1 —4N,, 1N, 5 — 2N, oN, 3

3
+ 1) - g <2N5+1 +N2+92N2_ | — N2, — N2, —2N2_, +2N,Ny_q — 4N, 1 Nps
— 2N, _oN,_3+ 1) + % (2]\/’3+1 —12N2 —AN?_ | +7TN2_, +8N2_5 +4N2_, + 6N, N, 1
+10N,,_oN,_1 +4N,,_sN,,_3 — 16N,,_oN,, + 12N, N,, 41 + 3n — 13)
= é <8N§+1 —ON2+2N2_| +4N3 5 +5N2_3 —2N?2_, + 12N, N,,_1 + 2N, 1N, 2
—2N,, 9N, 3 — 16N,,_oN,, + 12N, N,, 41 + 3n — 10) :

From equation @[),

|circs DN||3 = (n — 2)NZ + (n — 3)NZ + ... +2N2_, + (N, — 1)

(15)
=m—1)(NF +NZ+ ..+ N2_3) — (Nf +2N5 + ...+ (n —3)N2_3) + (N, — 1)?
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~1
=0 ; <2Ng + N2 4 4+2N2 ,— N2  —N? —2N? . +2N, _3N,_4 —4N,_4N,_5

n—3
3

—2Nn5Nn6+1> - <2N5 + N2 ,+2N2 , — N> ,— N2 o —2N2 . 4+2N, 3N, 4

1
— 4N, _4Np_5 — 2N, _5N,_¢ + 1) +3 <2N5 o — 12N2?_, +4N2 , + TN2 o +8N>? s+ 4N?2_,

4+ 6N,_3N,_4 + 10N,,_4Np_5 +4N,_5Np—6 — 16N,_5 N5 + 12N, _3N,i_o + 30 — 22) + (N, — 1)?

1
= 9(14]\7,3 5 —6N2_ 4 +8N2 , + N2 . +2N2 s —8N?_ . + 18N, 3N, 4 — 14N, 4N, 5

— 8Nn—5Nn—6 — 16Nn_5Nn_3 + 12Nn—3Nn—2 + 3n — 16) + (Nn — 1)2

From equation ,
[cires D2N|[% =n =14 (n — 4)N? + (n = 5)NF + . +3N2_g+2(Npoy — 1)% + (N, — 1)?
=n—14+n—=3)(NZ+ N+ ..+ N2 )= (N} +2NZ+ .4+ (n—6)N2_¢) +2(Ny_q — 1)2 + (N, — 1)2

n—3

n

<2N2 + N2 (+2N2 .~ N? o — N2 g —2N2 |, +2N,, 6N, 7 —4N,_ 7N, _s

n—=6

— 2N, _gN,_9 + 1) — <2N,3 + N2  +2N? .- N? ¢— N2 g —2N2 |, +2N, _¢N, 7

1
— 4N, 7N, _g — 2N, _gN,_¢ + 1) +35 <2N55 —12N2_ —4N2_, +TN2_ +8N2_g +4N2_,,

+6N,_6Np_7 + 10N, _sNp_7 + 4N;_sNn—g — 16 Nyy_sNn—g + 12N, _¢Nn_5 + 3n — 31) +2(Np_q —1)?
+ (Nn - 1)2

1
=n—l+g <20N3 —3N2 o+ 14N2_; —2N2 o — N2_g —14N?_,, + 24N, _¢N, 7 — 26N, _sN, 7

— 14N, _gN,,_g — 16N,,_gN,,_¢ + 12N,,_¢N,,_5 + 3n — 22> +2(Npyq — 12+ (N, — 1)2
We will use equations , and in the following theorems.
Theorem 4. Relation between norms of circs N and circs DN
cires N2 — ||cire, DNJ|J% = §(2N2 4+ N2 +2N2 ,— N%_,—N2_,—2N%_, +2N,_No_»
— 4N, 5N, _5— 2N, 3N, 4+ 1) F3N2_, 4+ (N, — 1)%
Proof. From equations and (15)),
[lcires N||2F — ||eires DN||?F
=nN{ +(n—1)N3 + ... +2N2_+ N — ((n—2)N{+ (n—3)Nj + ... +2N._5+ (N, — 1))
=2(Nf+ N5+ ... + N2 3+ N2 4+ N2 |)+3N2_,— (N, —1)°

P
=3 (21\72 F N2 42N, N2, N2, 2N2_ .+ 2N, Ny s —4Ny_sNp_3 — 2Np_3Np_s + 1)

n
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+3N2_5 + (N, — 1)2

Theorem 5. Relation between norms of circy, DN and circs D?N

. . 2
[circs DN||3 — ||circs D2N||2F =-n+l+z (N2n+3 + Nop—1 —2N2 5 —2N2 5 — 2N2 , + 4N, 1 Npjo

+2Np13Nnts5 + 1) +2N] 5+ N2y +2(Ney — 1)2

Proof. From equations and ,
|lcires DN||§, — ||cires D2NH2
= —2)N}+(n—3)NZ+ ... +2N? ;+ (N, — 1)
—(n=14(n—4)N; +(n—=5)N3 + ... +3N]_c+2(Np_1 — 1)+ (N, — 1)%)
=-n+14+2(Nf+Nj+ .. + N2 s+ N2+ N2 ) +2N2 o+ N2, +2(Nyoq — 1)

2
=414z (QN,%_2 P N2, +2N2 , +2N2 .~ N2 —2N?_ .+ 2N, 3N,_4 — AN, 4N, _s

N, 5Ny + 1) F N2, 4 2(Npoy —1)2

From above two theorems, we will get relations between ||circs N ||fw and Hcircs D?N Hi, .

5. CIRCULANT MATRICES OF GAUSSIAN NARAYANA NUMBERS

In the current section, we find images DG and D?G of an n-tuple G = (GNy, GN3, ..., GN,,) of
Gaussian Narayana numbers under the Ducci map. Then, we establish circulant, semi-circulant and
skew-circulant matrices of G, DG, D?G and find Frobenius norms of these matrices and obtain relations
among these norms.

Let us consider the n-tuple G = (GNy, GNs, ..., GN,,_1, GN,,), we get
DG = (|GNy — GNy|, |GN3 — GNs|, ..., |GN,, — GN,,_1], |GN,, — GNy|)
= (0, |i|, |GMN1|, ..., |GNp_s|, |GN, —1]),
|GNy —i|, |GNy — GNy|, ..., |GNy—3 — GNp_4|, |GN, —1 =GN, 3], |GN,, — 1)

D*G = ([i
=

Circulant(circ), skew-circulant(scirc) and semi-circulant(cire,) matrices are defined in section 2 (Prelim-
inaries)

B
il, [t =i, 0, [i], |GN1|, .., |GNngl, |GNpo1 — 1, |GN,, — 1]).

circ G = circ (GN1,GNa,...,GNp_1,GN,,), (17)

circ DG = circ (0, |i], |GN4|, ..., |GNp_s|, |GN, — 1)), (18)

cire DQG = circ (|'L|a |1 - i‘,ov |Z‘, ‘GNl‘a LR |GNn76|a |GNn71 - 1|v |GNn - 1|)7 (19)
scire G = scirc (GN1,GNsy,...,GN,_1,GN,), (20)

scire DG = scire (0, |i],|GN1|,...,|GNp—3|,|GN, — 1|), (21)

scirc D*G = scire (i, |1 —1i,0,]i],|GNi|,...,|GN,_¢|, |GNn_1 — 1|, |GN,, — 1), (22)
circs G = circs (GN1,GNa,...,GN,,_1,GN,,), (23)

circs DG = cires (0,]i],|GNy|,...,|GNy—3|, |GN,, — 1]), (24)

circ, D*G = circ, (|i],|1 —1i|,0, i, |GNy|,...,|GNp_g|, |GN,—1 — 1],|GN,, — 1|). (25)

Further, we will find norms of these circulant, skew-circulant, semi-circulant matrices.
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From equations (|17)) and .

|[cire G| = nz |GN,|?

k=1

n > Ny + iNg_o|?

2
. n(3 (21\12+1 SN2 42N2 N2, N2, 2N, +2N,Np_1 — 4Ny_1Np_s
~ 2Ny 2Nag +1) = N2, = N2).

From equations (|18)) and .

n—3
(Z INw + iNg_o|> + 1+ [N, + iNp_o — 1I>
n—3
—n<ZN§+ZN;§_2+1+(Nn1)2+N3_2>
k= k=1
:n<22N,§—N§_4 N2 414 (N, —1)?2+ N2 2)

2
= ;(2]\73 2+ N3 g +2N3 = N3 5= Ni_

6 —2N2_. +2N, 3N, 4 — 4N, 4N, 5

9N, 5N, ¢+ 1) n(=N2, = N2 1+ (N, —1)> + N2_,) .

(27)
From equations ([19) and .
||cire D2G||i =n (Z |GNL> + 2)i| + |GNp_1 — 1| + |GN,, — 1] + |1 — z>
k=1
n—=6
=n | Y Nk +iNg—o|* + 24 |Naoy + iNp—s — 1 + [Ny + iNp_p — 1| + 2)
k=1 (28)

n—6
2 NP N2 ;= N2 g+4+(Nuoy — 1)+ N2 g+ (N — 1) + N7 2>

n(
n—o6 n—=6
=n (Z NE+Y N2 o+4+ (N1 =1+ N7 5+ (N, —1)° + N3_2>
k=1 k=1
n(

2
3” (QN,% s+ N2 g4+2N2 . — N2 o — N2 g —2N?_ |, +2N, ¢N,_7—4N, 7N, g — 2N, sN, ¢

F1) 0 (=NZg = N2+ 4+ (N = D2 4 N2+ (N = 1)2 + N2,).
Theorem 6. Relation between norms of circ G and circ DG

[cire G||3 — |lcire DG||3 =n (N2_; + N2_, + N2_; + N2_, +2N,, — 2).
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Proof. From equations (26) and .

n—3 n—3
eire G5 — |cire DG||F—n<ZNk+ZNk 2) —n(ZNk—i-ZNk 2+1+(Nn—1)2+N22>

k=1 k=1 k=1 k=1
=n(N) 43+ N:  +N+N:_,+ N, _3+N_,—1—(N,—1)>—N;._,)
=n(N2_+ N2 o+ N2 3+ N2_,+2N, —2).

|
Theorem 7. Relation between norms of circ DG and circ D*G
|cire DG||% — ||Ci7’c D*G||% =n (N2, +2N?_; + N2+ N2, =3~ (Nooy — 1)?).
Proof. From equations (27) and .,
n—3 n—3
lcire DG||3 — ||cire D2G||i =n (Z NZ + Z NZ_,+1+ (N, —1)*+ N5_2>
k=1 k=1
SR S e
=n(N2_ s+ N2, + N2 s+ N2 .+ N2 o+N2 . —3—(N,_1—12—-N2_,)
=n(Np_y +2N;_5+ Np_g+Ni_7 =3 — (N1 —1)%).
O

From above two theorems we will get the relations between ||cire G||3 and ||cire DG|)% .

From equation ,
|eires G5 =n|GNL > + (n — 1) |GNo|* + ... +2|GN, 1> +|GN,|?
=n|Ny+iN_ 1>+ (n— 1) [Na+iNo|* + ... +2|Nnu_1+iN,_s]> + [Ny + iN,_o|?
=nNZ+(n—1)N3+(n—2)Nj+(n—2)Nf+ ... +3N2_,+3N2_, +2N>_ | +2N2_,+ N2+ N2,

=2n(N? + N+ ...+ N2_ ) —2(Nf +2N3 + ... + (n = 1)N2_;) + N?
(29)

2
=3 <8N5 —15N2_| +2N? , +4N2_, +5N?_, + N2_  + 12N, 1N, o — 2N, 3N, 5 — 2N, 3N, 4

—16N,,_3N,,_1 + 12N,,_1 N,, + 3n — 13) + N2,

From equation ,
cires DG||% = (n—1)[i]> + (n = 2) |GN1|* + ... +3|GNp_a|*+2|GN, s +|GN,, — 1|7
=n—1+(n—2)|Ny+iN_1>+ (n—3)[Na+iNo|> + ... +2|Nny_3+4iNn_s5]>+|Np+iNy_o— 1
=n—1+n—-2)Ni+(n—3)Nj+(n—4)N;+ (n—4)N{+ ... +5N2_¢+5N: g +4N2_;+4N?_;
+3N2_,+3N2_g+2N2_ 5 +2N2_; + (N, — 1)+ N2_,
=n—1+02n—4)(Nf+ N5+ ...+ N2_3) —2(Nf +2N5 + ...+ (n = 3)N2_3) + (N, — 1)> = N2_,

+ N2,
(30)

2
=n—14+(N,-1)>=N2 ,+ N>, + 5 <8N52 —ON2_ ,+2N2_, +4N2_ +5N2 o+ N2_,

+ 12Nn,3Nn,4 - 2Nn,4Nn,5 - 2Nn75Nn76 - 16Nn,5Nn,3 + 12Nn,3Nn,2 + 3n — 19> .
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From equation ,
[cires D2G|% = nlil* + (n = 1)1 —i]> + (n = 3) |i* + ... +3|GNn_gl’ +2|GNny — 1> +|GN, — 1]
=n+2n—1)+n—3+n—4)|Ny +iN_1|> + (n —5) |Na + iNo|* + ... +5|Np_s + iNp_10|*
+ 4| Ny 7+ iNy_o|* +3|Nu6 + Ny s> +2|Np 1 +iNp_3 — 1> + [N, +iN,_o — 1]
—dn—5+(2n—8)(N2+ N2+ ...+ N2+ N2_) = 2(N2 + 2N2 + ...+ (n — T)N2_. + (n — 6)N2_)
—2N2_ . — N2 4+2(Np_y —1)2 +2N2_5 + (N, — 1)2 + N2_,

(31)

2
=dn—5+3 (141\7,3_5 —6N2 o +8N2_ .+ N2 g+2N2 g —2N2_ 1o+ 18N, _¢N,_7

—14N,,_gN,,_7 — 8N,,_gNp_g — 16 N,,_gNp,_¢ + 12N,,_¢N,,_5 + 3n — 25) —2N2 . — N2,
+2(Npoq — 12 +2N2_ 4+ (N, — 1) + N2_,.
Now, with the help of these norms we will prove the following theorems.
Theorem 8. Relation between norms of circs G and circs DG
4
leire, GIf = lleire, DG = 3 (2N3,1 Y N2, 1 2N2 N2, — N2, —2N2_,+2N,_oNn_3
— ANy sNps = 2Ny aNo 5+ 1) + N2+ 2N2_, =0+ 2N, — N2_,.
Proof. From equations (29) and ,
lcires G5 — |cires DG
=(2n—2)Ni + (2n —4)Nj + ... +6N2_3+4N2_ 5 +2N2_; + N2 —n+1—(2n—6)N7{
—(2n —8)N3 — (2n — 10)N§ — ... —8N2_4—6N2_, —3N2_, —2N2?_,— (N, —1)*> = N2_,
=-n+1+4 (N + N3+ .. + N2, +NZ_3)+N2_,+3N2 5 +2N._ |+ N2 — (N, —1)°
=4(NP+ NI+ ..+ N2 3+ N2 )+ N2_,+2N2_; —n+2N, - N2,
4
=3 (2N5,1 +N2_,+2N2_ s — N2, — N2 5 —2N?_s+2N, oN, 3 —4N,_3N,_4 — 2N, 4N, _5
+ 1) +N2_, +2N2_, —n+2N, — N2_,.

O
Theorem 9. Relation between norms of circs DG and circs D*G

4
lcires DG|% — |[cire, D*G|% = 3 (2N273 + N2, 42N2  — N2 — N2 . —2N2  +2N, 4N, s
AN, N, — 2N, N, _7 + 1) _3n 44+ 2N~ N2, +2N2 .+ N2 —2(Nn_; — )2
Proof. From equations (30) and (31)),
|lcires DG||§; — ||cires D2G||i,
=n—1+4(2n—6)N7 + (2n —8)Nj + (2n — 10)NJ + ... +8N2_s+6N2_+3N?_,
+2N2 3+ (N, —1)2+ N2, —dn+4— (2n— 10)N? — (2n — 12)N3 — ... —10N?2_,
—8N2 ¢ —4N2 . —3N? s —2(N,,_1 — 1) =2N?2_, — (N, —1)> = N2_,
=-3n+44+4(Nf + N3+ ... +N2_,)+2N: 5 — N2, +2N? 4+ N2 4 —2(N,q —1)°

3 (2N§_3 + N2 +2N2 .~ N2 o — N2, —2N2 ¢ +2N, 4N, 5 — 4N, 5N, 6 — 2N, _¢N,_7

+ 1) —3n+4+2N2  — N2, +2N2 .+ N2 4 — 2(No_y — 1)2
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From the above two theorems, we will get relation between ||circs G ||§7 and Hcircs DG H? .

6. RELATIONS BETWEEN FROBENIUS NORMS OF NARAYANA AND GAUSS NARAYANA SEQUENCES

In this section, relations among norms of matrices of Narayana numbers and Gaussian Narayana num-
bers have been established.

From equation (26]),

=n <22Nk N2_, — N2+ N2, +N§>
= 2||cire N||3 — n(N2 + N2_,).

From equation ,
n—3

|eire DG||3 = n (Z + ZNk o+ (N —1)2+ N2, + 1)
n—3 n—>5
:n< NE+ > NP+ (N — )+N22+1>

n—3
=n (22Nk N2 ,— N? 3+(Nn—1)2+N3_2+1>
= 2||cire DN||% + n(2N,, + N2_, — N?_, — N2_, — N?).
From equation ,

n—6 n—6
|cire DQGHi =n ( NE+Y N2 o+44+ (Nar =12+ N7 5+ (N, —1)° + N§_2>
k=1

1
n—6 n—_8
:n< NE+ > NP+ 4+ (Naor =12+ N7 5+ (N — 1)+ N2,
k=1 k=—1

n—=6
:n<2 N —N2 .- N2 o+4+ (Ny_1 —1)* +N2_ 3+(N,L—1)2+N5_2>

= 2||eire DN 4+ n (~N2_; = N2_g = (Nyoy = 1)? = (N = 12 + N2_5 + N2_, +2).
Theorem 10. Relation between norms of circ G and circ N

—4N2_, 4+ TN2_,4+8N2_, +4N?_ s+ 6N, 1N, o

n—1

leire, GIIF = [leire, N|E = 5 (2N2 —12N?
+ 10N, _5N,_5 + 4N, _sN,_4 — 16N, _sN,,_1 + 12N, N, + 31 — 16).
Proof. From equations and ,
ciresGl% = 2n(N? + N2 + ..+ N2_,) — 2(N? + 2N2 + .. + (n — 1)N2_,) + N2.
and
|circs N||F = (n+1)(Nf + N3 + ... + N2_; + N2) — (Nf + 2N3 + ... + nN?)
=M+ 1)(NF+NZ+..+N2_))— (NF+2N3+ ..+ (n—1)N2_,) + N2
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From here,
[eires GI|3 — [leires N||% = (n—1)(Nf + N3 + ... + N2_;) — (Nf +2N5 + ...+ (n — )N _,).
By using LEMMA [3] and [4]

—4N?2 _, +TN2_,+8N2_, +4N?_ 5+ 6N, 1N, o

|cires G||% — ||circs N||% = §(2N2 —12N2_,
+ 10N, _3N,_5 +4N,,_sN,_4 — 16N,,_sN,,_1 + 12N,,_N,, + 3n — 16).
(]

Theorem 11. Relation between norms of circ DG and circ DN
1
llcires DG|% — ||cires DN|% =n—1— N?_, + - (QN,%_2 —12N2 , —AN2 , +7N2 , +8N2 4
+4N2_, + 6N, 3N, 4+ 10N, 5N, 4+ 4N, 5N, ¢ — 16N,,_5N,,_3 + 12N,,_3N,,_o + 3n — 22)

Proof. From equations (30) and .
|circs DG||% =n—1+4 (2n —4)(N7 + N3 + ...+ N2_3) —2(N} + 2N3 + ...+ (n — 3)N2_3)
+ (N, —1)> = N2_,.
and
|circs DN||% = (n —1)(N? + N2 4+ ...+ N2 ;) = (N2 4 2N2 4+ ... 4+ (n — 3)N2_3) + (N, — 1)%
From here,
|circs DG||% — ||circs DN||% =n—1+ (n—3)(N7 + N3 + ... + N2_3) — (N} + 2N3 + ... + (n — 3)N?_3)
S\
By using Lemma [3] and

—12N?2_ 4, —4N?_, +TN?_5 +8N?2_

1
|cires DG||% — ||circs DN||% =n—1— N2_, 9(2N§ 5
FAN2_ 4 6Ny 3Np_g + 10N, 5Np_s + 4Np_5Ny_g — 16Ny_5Np_3 + 12N, Np_o + 30 — 22).

0

Theorem 12. Relation between norms of circ D?>G and circ D?>N

||lcires D2G||% — |leires DQNH%

1
=3n—4—-2N2_,— N2 o+2N2_,+N2_,+ 5 <8N5 —ON?2 o +2N2_, +4N? ¢ +5N2 o+ N2_,,

112N, _6Ny—7 + 2Ny N7 — 2Ny _sNy—o — 16Ny _sNo_6 + 12N, _6Npy—5 + 3 — 28) .

Proof. From equations (31) and .
|circs D*G||3 = 4n — 5+ (2n — 8) (N7 + N3 + ... + N2 ) — 2(N7 +2N3 + ... + (n — 6)N;?_¢)
—2N2_ ;= N2 g+2(Ny1 — 1) +2N2_5 + (N, — 1)* + N2_,,.
and
|cires D°N||% =n—14 (n —3)(NF 4+ Nj + ...+ N2_¢) — (N +2NZ + ... + (n — 6)N2_g)
+2(Np1 — 12+ (N, — 1)2
From here,
|circs D*G||% — ||circs D*N||% =3n — 4+ (n —5)(N? + Nj + ... + N2_¢) — (N + 2N3 +
+(n—6)N;_g) = 2N;_7 — Ni_g +2N;_5+ Np_,.
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By using Lemmal3] and[4]

|cires D*G||% — |lcircs D*N||% =3n —4 —2N2_, — N2_o+2N2 _, + N2

1
2Ty <8N3—5 R\

+2N2 .+ 4N? ¢+ 5N? g+ N2 |, +12N, ¢N,_7 + 2N, sN, 7

—2N,_sNn_g — 16N,_sNn_g + 12N, _6Np_5 + 3n — 28) .

7. APPLICATIONS IN CODING/DECODING

In this section, we define a coding and decoding algorithm using matrices of Narayana and Gaussian
Narayana numbers. We represent the message in the square matrix M of order n and use the circulant
matrix G of order n as the coding matrix, its inverse as the decoding matrix. The following transforma-

tions are well known.
e Coding transformation: £ =M x G

e Decoding transformation: M = E x G~!, here E is coded matrix.

7.1. Example for Coding/Decoding of Circulant Matrices of Narayana Numbers.

Example 1. Let us represent the initial message into a square matriz of order 4 as

1

— =N

— DD =

— N =

DO = =

— = =N

2 1 3 4
3 4 5 1
1 2 4 3
31 2 6
Coding: Consider circulant matriz of order 4 as coding matriz, i.e.,
N1 Ny N3 Ny
G Ny Ni No Ni|
" |N3 Ny N No|
N, N3 N, N
Coded matriz will be
E=MxG
2 1 3 4 1
13 4 5 1 2
1 2 4 3 1
3 1 2 6 1
11 13 14 12
|17 18 14 16
12 14 13 11
13 14 18 15

N = = =

— == N

Decoding: G is the circulant matriz of order 4 with Narayana numbers.

obtained as

Hence the decoded matriz, i.e., original message is as follows;

M=ExG™!
11 13
1718
12 14

13 14

14
14
13
18

12
16
11
15

Then, its inverse matriz s
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11 13 14 12\ /1 -4 1 1
B 17 18 14 16| 1 1 -4 1
T 5 12 14 13 |1 o1 1 -4
13 14 18 15/ \-4 1 1 1
2 1 3 4
(3 4 51
12 4 3
31 2 6

7.2. Example for Coding/Decoding of Circulant Matrices of Gaussian Narayana Numbers.

Example 2. Let us consider the initial message into a matriz of order 3 as

2 1 3
3 4 5
1 2 4
Conding: Take circulant matriz of order 3 as coding matriz, i.e.,
GN; GN; GNj 1 1 1+
G'=|GNy GN;, GNy | =|14+i 1 1
GN; GN; GN; 1 144 1
So, coded matrix is
E=MxG
2 1 3 1 1 1474
=3 4 5 1+ 1 1
1 2 4 1 141 1

6+7 6+3t 6+2
=|12+44i 1245i 124 3i |, this is coded matriz.
T+20 T+4i T4
Decoding: G’ is the circulant matriz of order 3 with Gaussian Narayana numbers. Then, its inverse
matrix is obtained as

1 —1i —14+2 —1i
Gl = - —i - =142
T\ L2 —i
Hence, the decoded matrixz, i.e., original message is as follows;
M=ExG™!
6+71 6+3t 642 1 —1i —1+2 —1i
=|124+4i 12+5i 12+ 3i : —1i —1i —1+2¢
T+2 T+4i T+ TP\l +2i i —
1 6+7 6+3t 6+2 —1i —1+2 —1i
=3 12+4i 12457 12+ 3¢ —1i —1i —1+2¢
TOTENTH2% T4 T ~1+4+2i - —i
1 —-6—-2i —-3-—1 —9—3i
=3 —-9-3i —-12—-4i —-15-—"5¢
TP\ 30 —6-2 —12—4
2 1 3
=13 4 5
1 2 4

8. CONCLUSIONS

Various identities for Narayana numbers have been discovered. Norms of circulant matrices made
up of Narayana and Gaussian Narayana numbers are found and have perceived relations among these
norms. We conclude that in message encryption and decryption various algorithms can be developed
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using Narayana and Gaussian Narayana numbers.
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