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Abstract 

Metaheuristic algorithms have been extensively applied in a variety of complex 

engineering design optimization problems (EDOPs) due to their capability of 

yielding near-optimal solutions without excessive computational times. The aim of 

this study is to investigate the performance comparison among seven novel 

metaheuristic optimization algorithms: Artificial Hummingbird Algorithm (AHA), 

Artificial Protozoa Optimizer (APO), African Vultures Optimization Algorithm 

(AVOA), Electric Eel Foraging Optimization (EEFO), Mountain Gazelle Optimizer 

(MGO), Pied Kingfisher Optimizer (PKO), and Quadratic Interpolation Optimization 

(QIO). This comparison is performed with twelve engineering design optimization 

problems evaluating the best, worst, mean, and standard deviation of their results. 

We also use non-parametric statistical tests such as the Friedman rank test and 

Wilcoxon signed rank test to finally compare the performance of algorithms. The 

results show the merits and demerits of each algorithm, which give us clues on their 

suitability for different engineering design problems. According to Friedman rank 

test, EEFO surpasses the other algorithms in these EDOPs. In addition, it performs 

statistically better than AVOA and QIO according to Wilcoxon signed rank test. 
 

 
1. Introduction 

 

Optimization is a process carried out to find the values 

of the variables that maximize or minimize the value 

of a function within problem-specific restrictions. In 

optimization problems, the variables are called 

decision variables, this function is called the objective 

function, and the restrictions are referred to as 

constraints. Once the problem is defined, an 

optimization method is selected based on the 

problem's characteristics to solve it. 

 Many researchers have utilized the 

metaheuristic algorithms for solving optimization 

problems. As metaheuristic algorithms are stochastic 

by nature, they cannot guarantee the achievement of 

the optimal solution. Although the structures of 

metaheuristic algorithms do not guarantee finding the 
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global optimum, they are used to find the global 

optimum value or a close value in a timely manner. 

New metaheuristic algorithms are continually 

introduced into the literature by researchers. These 

metaheuristic algorithms, which are quite numerous, 

show different performances in different optimization 

problems. Problem sets have been created in the 

literature to compare the performances of the 

algorithms. One of problem sets is engineering design 

optimization problems (EDOPs). Most EDOPs are 

highly complex, with many variables, constraints, and 

objectives. These problems are so expensive from the 

computational point of view that they are not easy to 

solve in any classical way. 

 There are several studies showing the 

effectiveness of metaheuristics in this field. For 

instance, the hierarchical surrogate-assisted memetic 
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algorithm (HSAMA) has been proven effective in 

reducing computational costs and efficient on 

Competitions on Evolutionary Computation (CEC) 

benchmark problems as well as a series of real-world 

engineering design tasks by Zhou [1]. The Artificial 

Bee Colony (ABC) algorithm improved handling 

large-scale and constrained optimization problems, 

which was successful in the solution of CEC 

benchmark functions and EDOPs [2]. Besides, rank-

iMDDE, as an enhanced constrained differential 

evolution method, has demonstrated competitive 

results in enhancing solution quality and convergence 

rates [3]. Additionally, the IEEE CEC'2013 

benchmark suite is constructed with characteristics 

representative of real-world problems, and hence, it 

aids in benchmarking most evolutionary techniques 

[4]. Cooperative co-evolution frameworks have 

effectively dealt with complex design problems that 

exist in concurrent engineering by decomposing them 

into smaller subproblems [5]. Furthermore, a Novel 

Differential Evolution Algorithm (NDE) using 

triangular mutation rules has also outperformed the 

list of CEC benchmark functions and EDOPs [6]. The 

improved Butterfly Optimization Algorithm (BOA) 

with the use of the cross-entropy method enhances 

global search abilities to become capable of 

successfully solving classical EDOPs and the CEC 

benchmark functions [7]. The Search and Rescue 

optimization algorithm (SAR) has been successfully 

applied to solve constrained EDOPs and CEC [8]. 

Besides, Atomic Orbital Search (AOS) algorithm has 

also proved effective on constrained EDOPs, 

including those benchmarked by CEC 2020, using 

principles from quantum mechanics [9]. Lastly, the 

convergence rates and performance of the 

Accelerated Arithmetic Optimization Algorithm by 

Cuckoo Search (AOACS) algorithm are better when 

tested using both CEC 2019 functions and EDOPs 

[10]. These are all studies collectively demonstrating 

the fact that metaheuristic algorithms offer robust and 

practical solutions to a large set of benchmarks as well 

as real-world problems, like CEC competitions. 

 The aim of this study is to compare the 

performance of recent metaheuristic optimization 

algorithms on selected twelve EDOPs. For this 

purpose, seven metaheuristic optimization algorithms 

developed in the literature in recent years namely 

Artificial Hummingbird Algorithm (AHA), Artificial 

Protozoa Optimizer (APO), African Vultures 

Optimization Algorithm (AVOA), Electric eel 

foraging optimization (EEFO), Mountain Gazelle 

Optimizer (MGO), Pied Kingfisher Optimizer (PKO) 

and Quadratic Interpolation Optimization (QIO), are 

used in this study. Despite these algorithms are 

utilized to solve some EDOPs, it is aimed to compare 

these algorithms’ performance under the same 

conditions (the same number of function evaluations 

(FEs) and the same population size) in this study. 

These algorithms’ performance is compared through 

the best, the worst, standard deviation and mean 

values. Also, non-parametric statistical tests 

(Friedman rank test and Wilcoxon signed rank test) 

are organized to compare the performance further. 

 

2. Material and Method 

 

2.1. Optimization Algorithms 

 

Seven metaheuristic optimization algorithms were used 

in the study. Brief information about algorithms is 

given in this section. Detailed information about the 

algorithms and the source codes can be reached from 

the references and code columns given in Table 1. 

 
 

Table 1. Information about optimization algorithms 

Algorithm Inspiration Reference Code 

Artificial Hummingbird Algorithm (AHA) 
Flight skills and foraging strategies of 

hummingbirds 
[11] [12] 

Artificial Protozoa Optimizer (APO) 
Foraging, dormancy, and reproductive 

behaviors of protozoa 
[13] [14] 

African Vultures Optimization Algorithm 

(AVOA) 

Foraging and navigation behavior of African 

vultures 
[15] [16] 

Electric Eel Foraging Optimization (EEFO) 
Intelligent group foraging behavior of electric 

eels 
[17] [18] 

Mountain Gazelle Optimizer (MGO) 
Social life and hierarchy of wild mountain 

gazelles 
[19] [20] 

Pied Kingfisher Optimizer (PKO) 
Hunting behavior and symbiotic relationships 

of pied kingfishers 
[21] [22] 

Quadratic Interpolation Optimization (QIO) 
Derived from generalized quadratic 

interpolation method 
[23] [24] 
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2.2. Engineering Optimization Problems 

 

Twelve EDOPs were used in this study. Detailed 

information about the EDOPs is given in this section. 

 The first of the EDOPs is the Cantilever 

Beam, which focuses on the objective of minimizing 

the weight of a cantilever beam with a square cross-

section. It is shown in Figure 1 that one end of the 

beam is fixed rigidly, and at the other end, a vertical 

force is applied. The beam has five hollow square 

blocks with uniform thickness, whereas the heights 

(or widths) of these blocks are taken as the decision 

variables, each having a fixed thickness of 2/3. A 

general mathematical formulation of the problem may 

be stated analytically as follows [25]: 

Minimize: 

 
𝑓(𝑋) = 0.0624(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)  (1) 

 

Subject to: 

𝑔(𝑋) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0  (2) 

 

Variable Range: 

 

0.01 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 1, … ,5  (3) 

 

 
Figure 1. Schematic representation of cantilever beam 

design problem 
 

 Another fascinating problem in EDOPs is the 

I-beam design problem. It is a crucial benchmark 

problem; the formulation to be solved is finding the 

minimum vertical deflection of a beam as shown in 

Figure 2 considered loads, with constraints on the 

cross-sectional area and stress. The design variables 

are the flange width b (𝑥1), section height h (𝑥2), web 

thickness tw (𝑥3), and flange thickness tf (𝑥4). The 

maximum deflection y of the beam is given by y = 

PL³ / 48EI, where L= 5200 cm is the length of the 

beam and E = 523.104 kN/cm² is the modulus of 

elasticity. This problem is stated as [26]: 

Minimize: 

 

𝑓(𝑋) =
5000

𝑥3(𝑥2−2𝑥4)3

12
+(𝑥1𝑥4

3/6)+2𝑏𝑥4(𝑥2−𝑥4/2)2
  (4) 

 

Subject to: 

𝑔1(𝑋) = 2𝑥1𝑥3 + 𝑥3(𝑥2 − 2𝑥4) ≤ 300  (5) 

𝑔2(𝑋) =
18𝑥2×104

𝑥3(𝑥2−2𝑥4)3+2𝑥1𝑥3(4𝑥4
2+3𝑥2(𝑥2−2𝑥4))

+

15𝑥1×103

(𝑥2−2𝑥4)𝑥3
2+2𝑥3𝑥1

3 ≤ 56  

(6) 

 

Variable Range: 

 

10 ≤ 𝑥1 ≤ 50  (7) 

10 ≤ 𝑥2 ≤ 80  (8) 

0.9 ≤ 𝑥3 ≤ 5  (9) 

0.9 ≤ 𝑥4 ≤ 5  (10) 

 

 The third EDOPs aims to minimize the 

volume of a statically loaded three-bar truss design 

with stress (σ) constraints on its members as shown in 

Figure 3. The optimization is done to determine the 

cross-sectional areas A1 (𝑥1) and A2 (𝑥2). The 

constants in the formulas are l=100 cm, = 2 𝑘𝑁/
𝑐𝑚2, 𝜎 = 2 𝑘𝑁/𝑐𝑚3. Mathematically, the 

formulation for this problem can be represented as 

[27]: 

Minimize: 

 

𝑓(𝑋) = (2√2𝑥1 + 𝑥2) × 𝑙  (11) 

 

 Subject to: 

 

𝑔1(𝑋) =
√2𝑥1+𝑥2

√2𝑥1
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0  (12) 

𝑔2(𝑋) =
𝑥2

√2𝑥1
2+2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0  (13) 

𝑔3(𝑋) =
1

𝑥1+√2𝑥2
𝑃 − 𝜎 ≤ 0  (14) 

 

 Variable Range: 

 

0 ≤ 𝑥1, 𝑥2 ≤ 1  (15) 
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Figure 2. Schematic representation of I shaped beam design problem 

 

 
Figure 3. Schematic representation of three-bar truss 

design problem 
 

 Tubular column design problem aims to 

design a uniform column in the tubular section 

subjected to a compressive load with minimum cost. 

The two design variables considered for this problem 

are the mean diameter of the column, d (𝑥1), and the 

thickness of the tube, t (𝑥2). The cross-sectional 

geometry and the critical dimensions of the column 

are shown in Figure 4. The material used to fabricate 

the column has a yield stress of σy = 500 kgf/cm² and 

a modulus of elasticity of E = 0.85×10⁶ kgf/cm². The 

optimization model for this problem is formulated as 

follows [28]: 

Minimize: 

 

𝑓(𝑋) = 9.82𝑥1𝑥2 + 2𝑥1  (16) 

 

 Subject to: 

 

𝑔1(𝑋) =
2500

𝜋𝑥1𝑥2
− 𝜎𝑦 ≤ 0  (17) 

𝑔2(𝑋) =
2500

𝜋𝑥1𝑥2
−

𝜋2𝐸(𝑥1
2+𝑥2

2)

8(250)2 ≤ 0  (18) 

𝑔3(𝑋) = 2 − 𝑥1 ≤ 0  (19) 

𝑔4(𝑋) = 𝑥1 − 14 ≤ 0  (20) 

𝑔5(𝑋) = −𝑥2 + 0.2 ≤ 0  (21) 

𝑔6(𝑋) = 𝑥2 − 0.8 ≤ 0  (22) 

 

 Variable Range: 

 

2 ≤ 𝑥1 ≤ 14  (23) 

0.2 ≤ 𝑥2 ≤ 0.8  (24) 

 

The constraints 𝑔1 and 𝑔2 ensure that the 

column-induced stress is less than the buckling and 

yield stresses, respectively. Furthermore, other 

constraints namely, 𝑔3, 𝑔4, 𝑔5, and 𝑔6, confine the 

design variables to their allowable ranges. 

 

Figure 4. Schematic representation of tubular column 

design problem 
 

 The Welded Beam design problem is one of 

the EDOPs introduced by Coello [29]. A vertical 

force loads the beam, as shown in Figure 5. The task 

is to find the best possible design for the welded beam 
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concerning minimizing manufacturing cost under 

seven constraints regarding stress, deflection, 

welding, and geometry. The design variables are h 

(𝑥1), l (𝑥2), t (𝑥3), and b (𝑥4). The constants are 𝑃 =
6000 𝑙𝑏, 𝐿 = 14 𝑖𝑛 𝑙𝑏, 𝛿𝑚𝑎𝑥 = 0.25 𝑖𝑛, 𝐸 = 30 ×
106 𝑝𝑠𝑖, 𝐺 = 12 × 106 𝑝, 𝜏𝑚𝑎𝑥 = 13,600 𝑝𝑠𝑖, 
𝜎𝑚𝑎𝑥 = 30,000 𝑝𝑠𝑖. This objective function can 

mathematically be given as [29]: 

Minimize: 

 

𝑓(𝑋) = 1.10471𝑥1
2𝑥2 +

0.04811𝑥3𝑥4(14.0 + 𝑥2)  
(25) 

 

 Subject to: 

 

𝑔1(𝑋) = 𝜏(𝑋) − 𝜏𝑚𝑎𝑥 ≤ 0  (26) 

𝑔2(𝑋) = 𝜎(𝑋) − 𝜎𝑚𝑎𝑥 ≤ 0  (27) 

𝑔3(𝑋) = 𝛿(𝑋) − 𝛿𝑚𝑎𝑥 ≤ 0  (28) 

𝑔4(𝑋) = 𝑥1 − 𝑥4 ≤ 0  (29) 

𝑔5(𝑋) = 𝑃 − 𝑃𝑐(𝑋) ≤ 0  (30) 

𝑔6(𝑋) = 0.125 − 𝑥1 ≤ 0  (31) 

𝑔7(𝑋) = 0.10471𝑥1
2 +

0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0  
(32) 

𝜏(𝑋) = √(𝜏′)2 + 2𝜏′𝜏′′ 𝑥2

2𝑅
+ (𝜏′′)2  (33) 

𝜏′ =
𝑃

√2𝑥1𝑥2
  (34) 

𝜏′′ =
𝑀𝑅

𝐽
  (35) 

𝑀 = 𝑃 (𝐿 +
𝑥2

2
)  (36) 

𝑅 = √𝑥2
2

4
+ (

𝑥1+𝑥3

2
)

2
  (37) 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

12
+ (

𝑥1+𝑥3

2
)

2
]}  (38) 

𝜎(𝑋) =
6𝑃𝐿

𝑥4𝑥3
2  (39) 

𝛿(𝑋) =
4𝑃𝐿3

𝐸𝑥3
3𝑥4

  (40) 

𝑃𝑐(𝑋) =
4.013𝐸√𝑥3

2𝑥4
6/36

𝐿2 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)  (41) 

 

 Variable Range: 

 

0.1 ≤ 𝑥1 ≤ 2  (42) 

0.1 ≤ 𝑥2 ≤ 10  (43) 

0.1 ≤ 𝑥3 ≤ 10  (44) 

0.1 ≤ 𝑥4 ≤ 2  (45) 

 

Amir and Hasegawa [30] formulated an 

EDOP for designing a reinforced concrete beam, 

presented in Figure 6. The beam is simply supported 

with a span equal to 30 feet and subjected to a live 

loading of 2000 lbs and a dead loading of 1000 lbs, 

which includes the weight of the beam. The strength 

of the concrete is σc = 5 ksi and the strength of the 

reinforcing steel is equal to σy = 50 ksi. The cost for 

concrete is $0.02/in²/ft, while the price for steel is 

$1.0/in²/ft. The subject of EDOP is determined to 

satisfy the structural requirements of the ACI building 

code 318-77, in which the area of reinforcement As 

(𝑥1), the width of the beam b (𝑥2), and the depth of 

the beam h (𝑥3) are the design variables such that the 

total cost of the structure can be minimized. 

Minimize: 

 

𝑓(𝑋) = 2.9𝑥1 + 0.6𝑥2𝑥3  (46) 

 

 

 

 
Figure 5. Schematic representation of welded beam design problem 
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Figure 6. Schematic representation of reinforced concrete beam design problem 

 
Subject to: 

 

𝑔1(𝑋) =
𝑥2

𝑥3
− 4 ≤ 0  (47) 

𝑔2(𝑋) = 180 + 7.375
𝑥1

2

𝑥3
− 𝑥1𝑥2 ≤ 0  (48) 

 

Variable Range: 

 

𝑥1 ∈
{6,6.16,6.32,6.6,7,7.11,7.2,7.8,7.9,8,8.4}  

(49) 

𝑥2 ∈ {28,29,30, … ,40}  (50) 

5 ≤ 𝑥3 ≤ 105  (51) 

 

The corrugated bulkhead EDOP shown in 

Figure 7, concerns the minimization of a bulkhead 

weight in a chemical tanker with a corrugated 

bulkhead, where its design variables are the width 

(𝑥1), depth (𝑥2), length (𝑥3), and plate thickness (𝑥4) 

of the bulkhead. The mathematical model for this 

optimization problem is described as follows [31]: 

Minimize: 

 

𝑓(𝑋) =
5.885𝑥4(𝑥1+𝑥3)

𝑥1+√|𝑥3
2−𝑥2

2|

  
(52) 

 

 Subject to: 

 

𝑔1(𝑋) = −𝑥4𝑥2 (0.4𝑥1 +
𝑥3

6
) +

8.94 (𝑥1 + √|𝑥3
2 − 𝑥2

2|) ≤ 0   
(53) 

𝑔2(𝑋) = −𝑥4𝑥2
2 (0.2𝑥1 +

𝑥3

12
) +

2.2 (8.94 (𝑥1 + √|𝑥3
2 − 𝑥2

2|))
4/3

≤ 0  
(54) 

𝑔3(𝑋) = −𝑥4 + 0.0156𝑥1 + 0.15 ≤ 0  (55) 

𝑔4(𝑋) = −𝑥4 + 0.0156𝑥3 + 0.15 ≤ 0  (56) 

𝑔5(𝑋) = −𝑥4 + 1.05 ≤ 0   (57) 

𝑔6(𝑋) = −𝑥3 + 𝑥2 ≤ 0  (58) 

 

 Variable Range: 

 

0 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 100   (59) 

0 ≤ 𝑥4 ≤ 5  (60) 

 

 

Figure 7. Schematic representation of corrugated 

bulkhead design problem 

 

The tension/compression spring design 

problem introduced in [32] is aimed at weight 

minimization of a tension/compression spring, as 

shown in Figure 8. The design problem consists of 

constraints on minimum deflection, shear stress, 

surge frequency, outside diameter limits, and design 

variables, which are the wire diameter d (𝑥1), the 

mean coil diameter D (𝑥2), and the number of active 

coils N (𝑥3). The mathematical formulation is written 

as follows: 

Minimize: 

 

𝑓(𝑋) = (𝑥3 + 2)𝑥2𝑥1
2  (61) 

 

 Subject to: 

 

𝑔1(𝑋) = 1 −
𝑥2

3𝑥3

71785𝑥1
4 ≤ 0    (62) 

𝑔2(𝑋) =
4𝑥2

2−𝑥1𝑥2

12566(𝑥2𝑥1
3−𝑥1

4)
+

1

5108𝑥1
2 ≤ 0  (63) 

𝑔3(𝑋) = 1 −
140.45𝑥1

71785𝑥1
4 ≤ 0  (64) 

𝑔4(𝑋) =
𝑥1+𝑥2

1.5
− 1 ≤ 0  (65) 
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Figure 8. Schematic representation of spring design problem 

 

Variable Range: 

 

0.05 ≤ 𝑥1 ≤ 2    (66) 

0.25 ≤ 𝑥2 ≤ 1.3  (67) 

2 ≤ 𝑥3 ≤ 15   (68) 

 

The optimization of the design of a 

cylindrical pressure vessel contained between two 

hemispherical heads is concerning minimum total 

cost that is comprising material, forming, and welding 

costs plotted in Figure 9. The problem consists of four 

design variables the thickness of the shell Ts (𝑥1), the 

thickness of the head Th (𝑥2), the inner radius R (𝑥3), 

and the length of the cylindrical section of the vessel, 

excluding the head L (𝑥4). Additionally, 𝑥1 and 𝑥2 are 

integer multiples of 0.0625 inches, and other variables 

are continuous. The resulting optimization problem 

can be cast as follows [33]: 

 

Minimize: 

 

𝑓(𝑋) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 +

3.1661𝑥1
2𝑥4 + 19.84𝑥1

2𝑥3  
(69) 

 

 Subject to: 

 

𝑔1(𝑋) = −𝑥1 + 0.0193𝑥3 ≤ 0    (70) 

𝑔2(𝑋) = −𝑥2 + 0.00954𝑥3 ≤ 0  (71) 

𝑔3(𝑋) = −𝜋𝑥3
2𝑥4 +

4

3
𝜋𝑥3

3 + 1,296,000 ≤

0  
(72) 

𝑔4(𝑋) = 𝑥4 − 240 ≤ 0  (73) 

 

 Variable Range: 

 

𝑥1, 𝑥2 ∈ {1 × 0.0625,2 × 0.0625,3 ×
0.0625, … ,99 × 0.0625}    

(74) 

0≤ 𝑥3, 𝑥4 ≤ 200  (75) 

 

In mechanical systems, the speed reducer is a 

crucial component of the gearbox and is utilized in 

various applications [33]. This optimization problem 

which is illustrated in Figure 10 aims to minimize the 

weight of the speed reducer, subject to eleven 

constraints. The problem involves seven design 

variables: face width b (𝑥1), module of teeth m (𝑥2), 

number of teeth in the pinion z (𝑥3) length of the first 

shaft between bearings l1 (𝑥4), length of the second 

shaft between bearings l2 (𝑥5), diameter of the first 

shaft d1 (𝑥6), and diameter of the second shaft d2 (𝑥7). 

The mathematical formulation of this problem is as 

follows: 

Minimize: 

 

𝑓(𝑋) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 +
14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6

2 +
𝑥7

2) + 7.4777(𝑥6
3 + 𝑥7

3) + 0.7854(𝑥4𝑥6
2 +

𝑥5𝑥7
2)  

(76) 

 

 
Figure 9. Schematic representation of pressure vessel design problem 
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Subject to: 

 

𝑔1(𝑋) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0    (77) 

𝑔2(𝑋) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0  (78) 

𝑔3(𝑋) =
1.93𝑥4

3

𝑥2𝑥6
4𝑥3

− 1 ≤ 0  (79) 

𝑔4(𝑋) =
1.93𝑥5

2

𝑥2𝑥7
4𝑥3

− 1 ≤ 0  (80) 

𝑔5(𝑋) =
√(745𝑥4/𝑥2𝑥3)2+16.9×106

110𝑥6
3 − 1 ≤ 0  (81) 

𝑔6(𝑋) =
√(745𝑥5/𝑥2𝑥3)2+157.5×106

85𝑥7
3 − 1 ≤ 0  (82) 

𝑔7(𝑋) =
𝑥2𝑥3

40
− 1 ≤ 0  (83) 

𝑔8(𝑋) =
5𝑥2

𝑥1
− 1 ≤ 0  (84) 

𝑔9(𝑋) =
𝑥1

12𝑥2
− 1 ≤ 0  (85) 

𝑔10(𝑋) =
1.5𝑥6+1.9

𝑥4
− 1 ≤ 0  (86) 

𝑔11(𝑋) =
1.1𝑥7+1.9

𝑥5
− 1 ≤ 0  (87) 

 

 Variable Range: 

 

2.6 ≤ 𝑥1 ≤ 3.6    (88) 

0.7 ≤ 𝑥2 ≤ 0.8  (89) 

17 ≤ 𝑥3 ≤ 28    (90) 

7.3 ≤ 𝑥4 , 𝑥5 ≤ 8.3  (91) 

2.9 ≤ 𝑥6 ≤ 3.9    (92) 

5 ≤ 𝑥7 ≤ 5.5  (93) 

 

 
Figure 10. Schematic representation of speed reducer 

design problem 

The gear train design problem, introduced by 

Sandgren [34], is an unconstrained discrete EDOP in 

mechanical engineering. The objective of this 

problem is to minimize the gear ratio, defined as the 

ratio of the angular velocity of the output shaft to the 

angular velocity of the input shaft. The design 

variables are the number of teeth of gears nA (𝑥1), nB 

(𝑥2), nC (𝑥3), and nD (𝑥4). Figure 11 illustrates the 

model of this problem. The mathematical formulation 

is as follows: 

Minimize: 

 

𝑓(𝑋) = (
1

6.931
−

𝑥3𝑥2

𝑥1𝑥4
)

2
  (94) 

 

  

 Variable Range: 

 

12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60  (95) 

 

 

Figure 11. Schematic representation of gear train design 

problem 
 

In the European Enhanced Vehicle-Safety 

Committee testing procedure, this EDOP relates to 

subjecting a car to a side impact to minimize the 

door's weight. The problem considers eleven decision 

variables which are the thicknesses of the B-pillar 

inner (𝑥1), B-pillar reinforcement (𝑥2), floor side 

inner (𝑥3), cross members (𝑥4), door beam (𝑥5), door 

beltline reinforcement (𝑥6), roof rail (𝑥7), materials of 

the B-pillar inner (𝑥8), floor side inner (𝑥9), barrier 

height (𝑥10), and hitting position (𝑥11). In this EDOP, 

the formulation that Youn et al. [35] proposed is used 

as follows: 

 

 

 

Minimize: 

 

𝑓(𝑋) = 1.98 + 4.90𝑥1 + 6.67𝑥2 + 6.98𝑥3 + 4.01𝑥4 + 1.78𝑥5 + 2.73𝑥7  (96) 

 

 Subject to: 

 

𝑔1(𝑋) = 1.16 − 0.3717𝑥2𝑥4 − 0.00931𝑥2𝑥10 − 0.484𝑥3𝑥9 + 0.01343𝑥6𝑥10 − 1 ≤ 0    (97) 
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𝑔2(𝑋) = 46.36 − 9.9𝑥2 − 12.9𝑥1𝑥8 − 0.1107𝑥3𝑥10 − 32 ≤ 0  (98) 

𝑔3(𝑋) = 33.86 + 2.95𝑥3 + 0.1792𝑥10 − 5.057𝑥1𝑥2 − 11.0𝑥2𝑥8 − 0.0215𝑥5𝑥10 − 9.98𝑥7𝑥8 +
22.0𝑥8𝑥9 − 32 ≤ 0  

(99) 

𝑔4(𝑋) = 28.98 + 3.818𝑥3 − 4.2𝑥1𝑥2 − 0.0207𝑥5𝑥10 + 6.63𝑥6𝑥9 − 7.7𝑥7𝑥8 + 0.32𝑥9𝑥10 − 32 ≤ 0  (100) 

𝑔5(𝑋) = 0.261 − 0.0159𝑥1𝑥2 − 0.188𝑥1𝑥8 − 0.019𝑥2𝑥7 + 0.0144𝑥3𝑥5 + 0.0008757𝑥5𝑥10 +
0.08045𝑥6𝑥9 + 0.00139𝑥8𝑥11 + 0.00001575𝑥10𝑥11 − 0.32 ≤ 0  

(101) 

𝑔6(𝑋) = 0.214 + 0.00817𝑥5 − 0.131𝑥1𝑥8 − 0.0704𝑥1𝑥9 + 0.03099𝑥2𝑥6 + 0.018𝑥2𝑥7 +
0.0208𝑥3𝑥8 + 0.121𝑥3𝑥9 − 0.00364𝑥5𝑥6 + 0.0007715𝑥5𝑥10 − 0.0005354𝑥6𝑥10 +
0.00121𝑥8𝑥11 + 0.00184𝑥9𝑥10 − 0.02𝑥2

2 − 0.32 ≤ 0  
(102) 

𝑔7(𝑋) = 0.74 − 0.61𝑥2 − 0.163𝑥3𝑥8 + 0.001232𝑥3𝑥10 − 0.166𝑥7𝑥9 + 0.227𝑥2
2 − 0.32 ≤ 0  (103) 

 

 

2.3. Constraint Handling Mechanism 

 

A parameter free constraint handling approach known 

as the Inverse-Tangent-Constraint-Handling (ITCH) 

method is used to address EDOPs in this study. The 

ITCH technique which is initially developed by Kim 

et al. [36] assesses each solution vector using 

Equation (104): 

 

𝑓(�⃗�) =

{ 
𝑔(�⃗�) = 𝑔𝑚𝑎𝑥(�⃗�)             𝑖𝑓 𝑔𝑚𝑎𝑥(�⃗�) > 0

𝑓(�⃗�) = 𝑎𝑡𝑎𝑛[𝑓(�⃗�)] − 𝜋/2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
  
(104) 

 

 Here 𝑔𝑚𝑎𝑥(�⃗�) is defined as max 𝑔𝑖(�⃗�) are the 

constraint functions. The inverse tangent function is 

represented by 𝑎𝑡𝑎𝑛[. ]. It is important to note that 

𝑔(�⃗�) < 0 for any �⃗�, which ensures 𝑓(�⃗�) < 𝑔(�⃗�). 

 

3. Results and Discussion 

 

Seven recent metaheuristic algorithms performance is 

evaluated through twelve EDOPs in this study. The 

algorithms are implemented in MATLAB 2024a, and 

all experiments are performed on a PC with 2.3 GHz 

CPU and 16 GB RAM running under a Windows 11 

operating system. To make a fair comparison, the 

number of function evaluation is determined as 50000 

for all algorithms. The parameters for all compared 

algorithms from the literature are summarized below 

in Table 2. 
 

Table 2. Algorithm parameters 

Algorithm Parameter settings 

AHA Migration coefficient M 

APO Number of neighbor pairs np=1, pfmax 

=0.1, maximum proportion fraction 

AVOA L1=0.8, L2=0.2, w=2.5, P1=0.6, P2=0.4, 

P3=0.6 

EEFO Parameter Free 

MGO  Parameter Free 

PKO Beating factor (BF) =0.8, PEmax=0.5, 

PEmin=0 

QIO Exploration weight (W1), Exploitation 

weight (W2) 

 

 The best, the worst, mean and standard 

deviation of the results are reported for each problem 

in the Table 3-Table 14 respectively. Also, two non-

parametric statistical tests (Friedman rank test and 

Wilcoxon signed rank test) are organized to evaluate 

algorithms performance further in Table 15. 

The results of the cantilever beam problem 

are given in Table 3. It is determined that the 

performance of AHA, APO, EEFO, PKO, and QIO 

algorithms is indifferent since there is a negligible 

difference between the best values. There exist some 

variations between the worst values, especially with 

AVOA and MGO present a little bit higher value. The 

mean values are very close with AHA and APO in the 

lowest means. The standard deviations are low, 

showing that they are very precise and have a very 

little variability in their performance for this problem. 

 

 
Table 3. Computational results of cantilever beam problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 1.339912 1.339912 1.339924 1.339912 1.339921 1.339912 1.339912 

Worst 1.339913 1.339913 1.340140 1.339932 1.34027 1.339936 1.339924 

Mean 1.339912 1.339912 1.339966 1.339917 1.340016 1.339923 1.339914 

Std. Dev 3.06E-07 3.01E-07 4.7E-05 5.58E-06 8.07E-05 6.95E-06 2.38E-06 
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 The best, worst, and mean values for the 

results of the I-shaped beam problem given in Table 

4, are amazingly identical for all algorithms and value 

of 0.013074. This shows that every one of the 

algorithms performs under the best and the uniform 

conditions in this problem. The extremely low 

standard deviations confirm the high precision and 

reliability of these algorithms when applied to the I-

Shaped Beam Problem. 

 
 

Table 4. Computational results of I-shaped beam problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 

Worst 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 

Mean 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074 

Std. Dev 1.47E-11 3.68E-13 1.68E-09 2.75E-09 8.06E-09 2.73E-17 3.44E-08 

 

 In the three bar truss problem given in Table 

5, there are slight differences in the best and mean 

values among the algorithms; in fact, they are all very 

close to each other. The best and means of AHA, 

APO, and EEFO are almost the same, which reflects 

their best performance and consistency. Only the 

worst values are slightly more in AVOA and MGO, 

denoting variability. The AHA, APO, EEFO, and 

QIO standard deviations are very low, meaning very 

great precision; the AVOA and MGO standards are 

relatively a bit higher. 

 
 

Table 5. Computational results of three bar truss problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 263.8826 263.8826 263.8827 263.8826 263.8827 263.8826 263.8827 

Worst 263.8826 263.8826 263.8995 263.8826 264.0332 263.8828 263.8827 

Mean 263.8826 263.8826 263.8858 263.8826 263.8963 263.8827 263.8827 

Std. Dev 5.84E-12 5.41E-12 0.004709 5.09E-12 0.028167 3.18E-05 1.49E-05 

 

 

 The results of the tubular column design 

problem given in Table 6, indicate that all algorithms 

are behaving in quite the same manner, having the 

best and mean values around 26.53132. The worst 

values show minimal differences, with QIO showing 

a slightly higher worst value. The very low standard 

deviations for all algorithms suggest that the 

performance of these algorithms is exact and 

consistent for this design problem. 

 
 

Table 6. Computational results of tubular column design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 26.53132 26.53132 26.53132 26.53132 26.53132 26.53132 26.53133 

Worst 26.53132 26.53132 26.53133 26.53132 26.53132 26.53132 26.53135 

Mean 26.53132 26.53132 26.53132 26.53132 26.53132 26.53132 26.53134 

Std. Dev 6.58E-14 6.09E-14 6.7E-07 5.95E-14 9.91E-12 4.78E-14 7.18E-06 

 

 

 For the welded beam design problem given in 

Table 7, the best values are quite the same amongst 

the algorithms, although the AVOA attains a slightly 

higher best value. The worst values present a more 

significant variation because both are higher for the 

AVOA and MGO. The mean values are very close, 

with the lowest means being for the AHA, APO, and 

EEFO. The standard deviations are low for the AHA, 

APO, and EEFO, which show high precision, but the 

AVOA and MGO show more variability in their 

results. 
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Table 7. Computational results of welded beam design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 1.724717 1.724717 1.724895 1.724717 1.724728 1.724717 1.72472 

Worst 1.724717 1.724717 1.799024 1.724717 2.050502 1.724724 1.72474 

Mean 1.724717 1.724717 1.744075 1.724717 1.746229 1.724718 1.724725 

Std. Dev 1.19E-12 1.79E-09 0.021077 4.3E-11 0.059604 1.7E-06 4.18E-06 

 

 The results of the concrete beam design 

problem given in Table 8, show that the best and mean 

values are all clustered around 359.2037. The means 

only differ at the second decimal for some of the 

algorithms. The AVOA and MGO have worse values 

than the rest, which means that their results are more 

inconsistent. The AHA, APO, EEFO, PKO, and QIO 

have very low standard deviations, which tell about 

very high levels of precision. At the same time, the 

AVOA and MGO are much more variable in their 

results. 

 

Table 8. Computational results of concrete beam design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 359.2037 359.2037 359.2037 359.2037 359.2037 359.2037 359.2037 

Worst 359.2037 362.2494 362.6302 359.2037 362.2494 359.2037 359.2038 

Mean 359.2037 359.3052 360.5108 359.2037 359.3052 359.2037 359.2037 

Std. Dev 1.26E-12 0.556069 1.632746 1.14E-12 0.556069 1.01E-12 2.05E-05 

 

 

 For the problem of corrugated bulkhead 

design given in Table 9, all the algorithms have the 

best and mean value that is very close and has 

negligible variations. The worst values are near to 

each other with slight differences, with the AVOA 

and QIO being slightly higher. Standard deviations 

are extremely low in the AHA, APO, EEFO, and 

PKO, which means high precision and reliability, 

whereas the AVOA and QIO have higher variability 

in their results. 
 

Table 9. Computational results of corrugated bulkhead design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 6.842374 6.842374 6.842375 6.842374 6.842374 6.842374 6.842382 

Worst 6.842374 6.842374 6.848544 6.842374 6.842374 6.842374 6.842457 

Mean 6.842374 6.842374 6.843027 6.842374 6.842374 6.842374 6.842412 

Std. Dev 4.24E-15 1.34E-12 0.001603 5.5E-15 2.84E-11 5.78E-12 1.8E-05 

 

 

 In the spring design problem given Table 10, 

the best and mean values of all algorithms are close to 

0.012662, with a slight difference in means for the 

AVOA and MGO. The worst values are very 

different, indicating higher values for the AVOA and 

MGO. Standard deviations are low for the AHA, 

APO, EEFO, PKO, and QIO, which presents them as 

high precisions compared to the other methods; the 

AVOA and MGO have high variability in their 

performance. 
 

Table 10. Computational results of spring design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 0.012662 0.012662 0.012662 0.012662 0.012662 0.012662 0.012662 

Worst 0.012662 0.012669 0.014593 0.012663 0.016077 0.012715 0.012663 

Mean 0.012662 0.012662 0.013009 0.012662 0.013075 0.012677 0.012662 

Std. Dev 1.17E-07 1.79E-06 0.000466 3.4E-07 0.000849 1.95E-05 3.07E-07 
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 The results of the pressure vessel design 

problem given in Table 11, indicates that the best 

values slightly differ among algorithms, while a slight 

difference is seen; the worst values differ significantly 

with higher values on the AVOA. The mean varies for 

all; the AHA and EEFO present the lowest values for 

it. For the standard deviation, the AHA and EEFO 

have the lowest values, meaning more precision than 

the other algorithms. The other algorithms have 

shown more variability in their results. 
 

Table 11. Computational results of pressure vessel design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 6059.083 6059.083 6059.083 6059.083 6059.084 6059.083 6059.09 

Worst 6820.026 7332.543 7544.493 6370.352 7333.142 6820.027 6820.08 

Mean 6202.341 6389.97 6366.711 6083.951 6600.921 6085.477 6107.482 

Std. Dev 256.6121 378.3935 434.1332 78.56102 501.2787 138.8485 148.8167 

 

 In the speed reducer design problem given in 

Table 12, the best and mean values are found to be 

around 2996.274 for most algorithms, with a little 

difference in the means for the AVOA. Its high worst 

values reveal a poorer behavior of the AVOA, 

showing less consistency. The minor standard 

deviations of the AHA, APO, EEFO, PKO, and QIO 

reveal good precision and reliability. On the other 

hand, the AVOA is much more variable in its 

performance. 
 

Table 12. Computational results of speed reducer design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 2996.274 2996.274 2996.275 2996.274 2996.274 2996.274 2996.668 

Worst 2996.274 2996.274 3014.038 2996.274 2996.274 2996.274 2997.32 

Mean 2996.274 2996.274 2998.756 2996.274 2996.274 2996.274 2996.954 

Std. Dev 5.18E-08 3.06E-10 3.726336 3.44E-08 3.66E-10 2.04E-10 0.163654 

 

 The mean and best values present 

approximately 2.7E-12 for most of the algorithms in 

the Gear Train Problem given in Table 13, the means 

are not being wildly divergent for the AVOA. The 

worst values are considerably higher for the AHA and 

AVOA, which means that these two methods have a 

lower level of consistency. The corresponding 

standard deviations are low for the AHA, APO, 

EEFO, PKO, and QIO, proving that they have high 

precision and reliability in their performance. 
 

Table 13. Computational results of gear train problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 2.7E-12 2.7E-12 2.7E-12 2.7E-12 2.7E-12 2.7E-12 2.7E-12 

Worst 2.36E-09 9.94E-11 2.36E-09 1.18E-09 9.92E-10 9.92E-10 9.92E-10 

Mean 3.22E-10 1.2E-11 8.15E-10 1.68E-10 1.35E-10 3.62E-10 6.4E-11 

Std. Dev 6E-10 1.9E-11 8.16E-10 3.78E-10 2.92E-10 4.33E-10 1.86E-10 
 

 The results for the car side impact design 

problem given in Table 14, show the best and mean 

values to be around 22.841, with very slight variations 

for most of the algorithms. The worst values show 

colossal difference, with higher values in the AVOA. 

The low values for standard deviations are revealed 

for the AHA, APO, EEFO, PKO, and QIO, rendering 

them of the high precision and reliability. In contrast, 

for the AVOA, the standard deviations are not 

relatively so low. 
 

Table 14. Computational results of car side impact design problem 

Performance 

Metric 

AHA APO AVOA EEFO  MGO PKO QIO 

Best 22.84151 22.84138 22.8432 22.84148 22.84144 22.84139 22.84163 

Worst 23.47903 22.84143 24.0513 23.33362 23.30264 22.8463 23.26352 

Mean 23.04541 22.84138 23.16012 22.90698 23.00187 22.8424 22.89669 

Std. Dev 0.18936 8.74E-06 0.29405 0.124723 0.156148 0.001181 0.122991 
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 The statistical comparison given in Table 15, 

based on the Friedman test ranks the EEFO first, 

thereby showing its overall the best performance with 

problems of different types. The Wilcoxon signed-

rank test indicates the p-values showing statistical 

differences between the EEFO and other algorithms. 

The EEFO statistically performs better than the 

AVOA and QIO as p <0.1. 

 
Table 15. Statistical test results 

Friedman test average 

rankings 

Wilcoxon signed-

rank test between 

EEFO and the other 

algorithms 

Algorithms 
Sum of 

Ranks 

EEFO 

vs. 
p-value 

AHA 2.91667 (2) AHA 0.70020 

APO 3.00000 (3) APO 0.85010 

AVOA 6.16667 (7) AVOA 0.00146 

EEFO 2.66667 (1) MGO 0.01221 

MGO 5.41667 (6) PKO 0.27832 

PKO 3.33333 (4) QIO 0.06396 

QIO 4.50000 (5)   

 

4. Conclusion 

 

In this study, it is presented that a comparative 

analysis of the performance assessment of seven latest 

metaheuristic algorithms over twelve EDOPs. The 

results prove that all algorithms can find close to 

optimal solutions, but the algorithms significantly 

vary in terms of consistency and accuracy. The 

Friedmans test showed that the Electric Eel Foraging 

Optimization (EEFO) algorithm outperforms all other 

tested optimization algorithms overall. Furthermore, 

the Wilcoxon signed-rank test confirms EEFO is 

significantly better than AVOA and QIO. Although 

performances vary with the type of problem, this 

study has concluded that these metaheuristic 

algorithms have good potential to deal with a wide 

range of complex engineering optimization problems. 

Future work will further develop the ability of these 

algorithms to adapt and solve a larger class of 

optimization problems and investigate hybrid 

approaches, which attempt to leverage multiple 

strengths from various algorithms. 
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