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Abstract − Vortioxetine is a pharmacological agent that acts as a serotonin modulator and stimulant, with safety and tolerability 

being important health issues. This study aimed to use bioinformatic and machine learning methods to find differentially expressed 

genes (DEG) between rats exposed to vortioxetine and matched controls. The GSE236207 dataset (Rattus norvegicus) was obtained 

from the National Center for Biotechnology Information (NCBI) and analyzed with R, followed by genetic ontology (GO) and 

Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses, and String's protein-protein interaction network was 

established to identify important genes. The original datasets were preprocessed in the second step by detecting and correcting 

missing and noisy data and then merged. After feature selection for the cleaned dataset, machine learning algorithms such as the K-

nearest neighbors' algorithm, Naive Bayes, and Support Vector Machine (SVM) were used. In addition, an accuracy of 0.90 was 

observed with SVM. Leveraging these techniques, the study linked IGFBP7, KLRA22, PROB1, SHQ1, NTNG1, and 

LOC102546359 to vortioxetine exposure. The bioinformatic analysis revealed 18 upregulated genes and 27 downregulated genes, 

with all approaches identifying only one common locus, LOC102546359, responsible for noncoding ribonucleic acid (ncRNA) 

synthesis. The crucial point is that this locus bears no connection to any disease or trigger mechanism, thereby bolstering the safety 

of vortioxetine. 
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1. Introduction  

Vortioxetine has brought a new approach in terms of both treatment effectiveness and side effect profile. 

Vortioxetine, which has a unique mechanism of action, is a new-generation antidepressant approved for the 

treatment of major depressive disorder (MDD) in different countries. Unlike other therapeutic agents used in 

the treatment of MDD, vortioxetine works as a 5-HT1A receptor agonist, 5-HT3, 5-HT7, and 5-HT1D receptor 

antagonist, 5-HT1B receptor partial agonist, and inhibitor of the 5-HT transporter (SERT). With this feature, 

it is described in the literature as an antidepressant with multimodal activity. This multimodal activity is used 

in the first-line treatment of the disease or subsequent therapy of the failure of other antidepressants [1].  

Vortioxetine's unique pharmacodynamic profile makes the molecule safer and better to tolerate. Studies have 

shown that the risk of treatment discontinuation due to side effects is lower and that it is one of the most 

tolerable drugs in the antidepressant group. While nausea and vomiting are the most common side effects 

associated with vortioxetine, studies have shown that these effects are mild or moderate and typically 

temporary within 2 weeks. Reports indicate that the effects are permanent at a rate of only 2% and increase 

dose-dependently [2]. 
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Artificial intelligence (AI) methods in healthcare offer revolutionary advancements in areas such as medical 

diagnosis, treatment planning, disease prediction, and prevention. Deep learning algorithms enable rapid and 

accurate detection of abnormalities in medical imaging, facilitating early diagnosis. Machine learning analyzes 

patient data to propose personalized treatment strategies, while big data analytics predict disease risks, 

allowing for preventive measures. Additionally, AI-supported systems enhance hospital management and 

operational efficiency, making healthcare services more effective and accessible. Consequently, AI 

technologies significantly benefit healthcare professionals and patients, advancing healthcare services to new 

heights [3-6]. 

Applying data mining methods to analyze microarray gene data poses substantial difficulties. The considerable 

number of features in the data makes the categorization process more complex. Therefore, to address these 

problems successfully, performing the necessary feature selection in the microarray dataset for gene analysis 

is crucial. Artificial intelligence methods have proven useful in streamlining feature selection processes [6]. 

The study employed a bioinformatics and artificial intelligence queue, effectively identifying significant 

differentially expressed genes using vortioxetine. Detecting complex patterns in large datasets and identifying 

key genetic markers are both possible with the help of machine learning algorithms. Bioinformatics tools, on 

the other hand, make it easier to analyze and comprehend significant amounts of genomic data. These methods 

enhance comprehension of the molecular mechanism of vortioxetine, thereby promoting the progress of our 

knowledge regarding the safety and tolerability of the drug. The primary aim of this research is to assess the 

impact of vortioxetine on gene expression in the absence of depressive symptoms or cognitive impairment.  

This paper primarily contributes to the following areas: 

Bioinformatic and machine learning-based screening of vortioxetine response genes. Understand the 

mechanism of action of vortioxetine without a background in depression. Evaluate the safety and tolerability 

of drugs in non-depressive conditions under machine learning models – a novel idea based on machine learning 

to predict the vortioxetine response. A machine learning-based comparative study on how feature selection 

with AI and GEO2R can improve drug response from sequence data. 

2. Material and Methods 

2.1. Dataset 

The GSE236207 database was employed for conducting the studies, and the dataset was carefully curated by 

removing irrelevant and unrelated data. For this purpose, we generated a subset of data that consisted of six 

rats exposed to vortioxetine, and the six rats were fed a standard diet without any manipulation. A total of 4570 

features were extracted from a dataset containing 45738 features. The study used comparative bioinformatics 

and machine learning methodologies, including Naive Bayes (NB), k-nearest neighbor (kNN), and support 

vector machines (SVM) algorithms, to identify the genes associated with using vortioxetine. The study did not 

use data from humans or animals; all the data utilized can be freely accessed from the Gene Expression 

Omnibus database. The datasets used in this study are open files in the GEO databases and do not contain any 

material pertaining to humans or animals; thus, no ethics board approval is necessary. 

2.2. Determination of the Differently Expressed Genes (DEG) 

The R software-limma package [7] analyzed GSE236207 transcript counts to identify differentially expressed 

genes. To compare gene expression in vortioxetine-exposed and non-exposed samples, we used a moderated 

t-test with the eBayes method in the lymphatic package in R [8]. This step improves analysis reliability by 

using empirical Bayes moderation. The error detection rate (FDR) approach [9] was used to adjust the 

computed p values, with the Benjamini-Hochberg (BH) procedure [9] used to control errors. The selection 
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thresholds for DEGs were p-values ≤ 0.05, Log2FC ≤ -1, and Log2FC ≥ 1. The visual representation of the 

differential expression analysis's outcomes was provided by the R package's "umap" function. 

2.3. Functional Analysis of DEGs 

Webgestalt [10] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [11] are web-based platforms that 

have been used to conduct gene enrichment analysis. These platforms use the Genetic Ontology (GO) and 

KEGG databases. Genes were visually represented using the Venn diagram available at [12]. The Venn 

diagram depicted differentially expressed genes' up and down-regulation outcomes (DEGs). 

2.4. Protein-Protein Interaction (PPI) 

A network diagram representing differentially expressed genes was constructed to examine the interactions 

between genes via protein-protein interactions via the STRING website [13] with a confidence threshold 

exceeding 0.4. 

3. Artificial Intelligence and Predictive Model of Vortioxetine Action 

3.1. Artificial Intelligence Experimental Design 

Firstly, it is crucial to thoroughly analyze the dataset to identify and remove any missing or conflicting data. 

As a consequence of this analysis, it was determined that there were no instances of missing or incompatible 

data in the dataset. After this step, we selected the properties using the nsFilter function from the gene filter 

library, setting a threshold of 0.90. Three different machine learning algorithms (kNN, NB, and SVM) 

evaluated the collected dataset.  

kNN is an algorithm used for regression and classification problems in controlled machine learning models 

where predictions based on the similarity of observations are made.  

A statistical learning system that applies structural risk minimization concepts, Vapnik's SVM is utilized for 

classification and curve modification tasks [14]. SVM utilizes structural risk minimization, a principle in 

statistical learning theory, as opposed to the experimental risk minimization approach, where the classification 

function is created by reducing the mean square error in the dataset [15]. 

Based on Bayes' theory, the NB classifier is a simple but powerful algorithm for categorization and prediction, 

especially in microarray data and image processing. This algorithm assumes that certain properties are 

independent of other properties. Vapnik's SVM is a statistical learning method used for classification and curve 

adjustment problems based on the principles of structural risk minimization [16].  

We utilized the varImp feature of the Caret software to determine the top 20 genes most strongly associated 

with the consumption of vortioxetine. This work used the svmRadial approach to train the SVM model, while 

the caret R package was employed to train the kNN model and NB model using their default values. The 

varImp function in the R package supported all models. The flow chart showing the operation of the study is 

presented in Figure 1. 
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Figure 1. Flowchart of the proposed method 

 

4. Results 

4.1. Bioinformatics-Based Evaluation 

The GSE236207 datasets were partitioned, and any unrelated data was eliminated from the dataset. We 

exclusively analyzed the data from the dorsal hippocampus (dHipp) tissue of sham controls and control-diet-

fed animals exposed to vortioxetine to assess the entire genome microarray. Our objective was to investigate 

the potential overlap and shared regulation of biological networks in response to vortioxetine. We analyzed 

the data using a bioinformatic approach and three distinct artificial intelligence algorithms to achieve this.  

Table 1 presents a list of genes resulting from the bioinformatic-based evaluations. The results showed an 

upregulation of 18 genes and a downregulation of 26.  
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Table 1. Representation of up and down-regulated genes according to DEGs results 

Gene Regulation-Direction UP 

Gene Symbol 

Gene Regulation- Direction DOWN 

Gene Symbol 
RN45S GNMT 

RN5-8S KRT24 

RN45S CDKN1C 

RN18S MDFIC 

LOC103692073 OLR1482 

LOC100361143 SPSB2 

LIAS SFRP1 

KIF12 SLFN14 

LFI47 TAL2 

TPH1 MX1 

GNGT1 OGN 

CCL22 GLYCAM1 

SNX22 VGLL3 

OLR852 CBLL1 

METTL21C LGF2 

OLR1407 PRLR 

TTYH3 C1QTNF3 

CSAP TNNT2 

 SLC22A6 

 FMOD 

 LGFBP2 

 CPEB1 

 STEAP1 

 KCNJ13 

 AQP1 

 KL 

Our study identified crucial pathways enriched in vortioxetine treatment, including cellular responses to 

endogenous stimuli such as hormones or hypoxia in biological processes. The statistical significance of the 

results is indicated by the GO enrichment analysis (false discovery rate (FDR) equals 1) for the DEGs in 

biological processes and cellular components, but they are susceptible to type 1 error. 

Table 2. Enrichment analysis of GO terms and pathways for DEGs. according to biological processes and 

cellular components, respectively 

Gene Set Description Gene Symbol P Value 

GO:0032870 cellular response to hormone stimulus METTL21C;PRLR;IGFBP2;CPEB1;AQP1;KL 0.0014 

GO:0071495 cellular response to endogenous stimulus METTL21C;CDKN1C;PRLR;IGFBP2CPEB1;AQP1;KL;SOSTDC1 0.0014 

GO:0046189 phenol-containing compound biosynthetic process TPH1;KL 0.0016 

GO:0071456 cellular response to hypoxia GNGT1;CPEB1;AQP1 0.0019 

GO:0097327 response to antineoplastic agent METTL21C; SLC22A6; AQP1 0.0026 

GO:0009719 response to endogenous stimulus METTL21C;CDKN1C;IGF2;PRLR;IGFBP2;CPEB1;AQP1;KL;SOSTDC1 0.0030 

GO:0036294 cellular response to decreased oxygen level GNGT1;CPEB1;AQP1 0.0030 

GO:0005576 extracellular region CCL22;IGF2;C1QTNF3;CPZ;FMOD;IGFBP2;AQP1;KL;SOSTDC1 0.0037 

GO:0044421 extracellular region part CCL22;IGF2;CPZ;FMOD;IGFBP2;AQP1;KL;SOSTDC1 0.0024 
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Figure 2. Bubble chart of commonly upregulated genes enriched biological processes  

Figure 2 shows the significantly enriched GO:BP terms shared by all the upregulated genes for the vortioxetine 

response. The size of the dots is the normalized enrichment score (NES) and the color is the statistical 

significance as -log10 (p-adjust). 

 

Figure 3. Bubble chart of commonly upregulated genes enriched cellular component 

Figure 3 shows the significantly enriched GO:CC terms shared by all the upregulated genes for the vortioxetine 

response. The size of the dots is the NES and the color is the statistical significance as -log10 (p-adjust). 

 

Figure 4. Bubble chart of commonly down-regulated genes enriched biological processes 
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Figure 4 shows the significantly enriched GO:BP terms shared by all the down-regulated genes for the 

vortioxetine response. The size of the dots is the NES and the color is the statistical significance as -log10 (p-

adjust). 

 

Figure 5. Bubble chart of commonly down-regulated genes enriched cellular component 

Figure 5 shows the significantly enriched GO:CC terms shared by all the down-regulated genes for the 

vortioxetine response. The size of the dots is the NES, and the color is the statistical significance as -log10(p-

adjust) 

We used the STRING database to look at the PPI network. We selected the organism Rattus norvegicus by 

navigating to the multiple protein tab and inputting the names of all associated genes. After that, we analyzed 

the gene-gene interaction network. The connections' shape and color indicate the relationship's type and 

intensity. The STRING results have 43 nodes and five edges, with an average grade of 0.233 and a UFE 

enrichment p-value of 0.271. Figure 6 shows that CDKN1C, LGF2, PRLR, and LGFBP2 are key factors related 

to vortioxetine treatment. 

 
Figure 6. KEGG pathway related to DEG 

The KEGG pathway analysis showed that the DEGs were significantly linked to pathways involved in the 

serotonergic synapse with key components of upregulated tryptophan hydroxylase 1 (TPH1) gene (Figure 6). 
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 4.2. Machine Learning-Based Evaluation 

Experimental evaluations have been conducted to determine the most influential genes that react to 

vortioxetine treatment utilizing machine learning techniques. SVM with Radial Basis (svmRadial), NB, and 

kNN have been used as machine learning algorithms in experimental assessments. The findings from the 

experiments have allowed us to identify the top 20 genes for each model. Table 3 displays the most significant 

genes associated with vortioxetine response using machine learning approaches. 

Table 3. Five common genes and one chromosomal location that identified in 3 different machine-learning approaches 

Gene Symbol Gene Name 

IGFBP7 insulin-like growth factor binding protein 7 

KLRA22 killer cell lectin-like receptor subfamily A, member 22 

PROB1 proline-rich basic protein 1 

SHQ1 SHQ1, H/ACA ribonucleoprotein assembly factor 

NTNG1 netrin G1 

LOC103691895 protamine-like 

LOC103691173 60S ribosomal protein L39-like 

LOC102546359 - 

By employing three machine learning algorithms (SVMRadial, NB, and kNN), we successfully identified five 

genes, and one chromosomal location consistently identified by all three methods. The genes IGFBP7, 

KLRA22, PROB1, SHQ1, and NTNG1 exhibit various biological functions.  

IGFBP7 modulates growth factors response to retinoic acid and cortisol [17], while KLRA22 appears to be a 

major component affecting immune responses [18-19]. PROB1 encodes proline-rich basic protein 1, although 

its function is still unidentified [20]. NTNG1 is associated with nervous system development and synaptic 

plasticity and is active in glutamatergic synapses [21]. Additional notable chromosomal sites include 

LOC103691895, which encodes a protamine-like protein, and LOC103691173, which encodes a ribosomal 

protein. The gene LOC102546359 is currently uncharacterized. The genes and their corresponding 

chromosomal positions are frequently linked to significant biological processes within the specific 

environment under investigation. This association may offer novel opportunities for comprehending disease 

mechanisms or developmental biology. 

Furthermore, IGFBP7, KLRA22, PROB1, SHQ1, and NTNG1 are the most noteworthy genes consistently 

identified by three distinct artificial intelligence techniques. These genes have the potential to respond to 

vortioxetine. 

5. Discussion 

Upon bioinformatic analysis of the upregulated genes, we observed that the process of ribosome biogenesis 

(Rn45s, Rn18s, and Rn5-8s) was activated by a given dose of vortioxetine. Liu et al. [22] have shown that 

aripiprazole, clozapine, and lithium down-regulate ribosomal biogenesis, decreasing protein synthesis. Fusco 

et al. demonstrated the significance of ribosome localization in neurons and the specialized translation 

machinery [23]. In that scheme, regulating neuronal ribosomal biogenesis and its subsequent location is a 

crucial concern for health. Powell et al. provided evidence of escitalopram's ability to stimulate the growth of 

new neurons in the hippocampus, a brain region. This was accompanied by changes in gene expression 

involved in the formation of axons and microtubules and the production of ribosomes [24]. Our informatics 

analysis has demonstrated that vortioxetine promotes the generation of new ribosomes and improves protein 

synthesis, which may result in the restructuring of neurons, which is crucial for neuropsychiatric disorders. 

Another notable discovery is that vortioxetine enhances the activity of the mitochondrial lipoic acid synthetase 

enzyme, which has been extensively researched in the literature due to its connection with neurodegeneration 

and its potential antidepressant effects [25-29]. The literature shows that the number and turnover rate of 
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olfactory receptors are reduced in depression [30,31]. Our analysis also indicates that vortioxetine increases 

olfactory receptor (Olr1407, Olr852) expression during treatment. This aligns with the existing literature in a 

similar manner. Vortioxetine enhances the expression of tryptophan hydroxylase, a crucial enzyme involved 

in the production of serotonin, a monoamine neurotransmitter. 

Upon analysis of the DEG-based enriched biological processes, it was shown that the synthesis of aromatic 

amino acids and pathways associated with serotonin and tryptophan metabolic processes were upregulated. 

Conversely, the synthesis of aspartate and serine amino acids and purine nucleotide synthesis pathways were 

downregulated. In line with previous research, our data demonstrate that vortioxetine stimulates tryptophan 

synthesis and its conversion to serotonin [32].  

The artificial intelligence methods were able to detect 18 common elements. However, only five genes and 

one chromosomal site were ultimately identified, with four undefined and seven uncharacterized. In artificial 

intelligence analyses, three algorithms demonstrated common DEG: IGFBP7, KLRA22, PROB1, SHQ1, and 

NTNG1. These genes were uncommon with bioinformatic analyses; only the one chromosomal location 

responsible for ncRNA synthesis, LOC102546359 was commonly found in all approaches. 

6. Conclusion 

The main goal has been to determine gene expression variations in non-depressed rats exposed to vortioxetine. 

We conducted differential gene expression analysis focusing on gene sets and pathway analysis to investigate 

genes and molecular-signature pathways that may be specific to vortioxetine response. IGFBP7, KLRA22, 

PROB1, SHQ1, and NTNG1 are the top upregulated genes upon machine learning analysis. These genes were 

uncommon with bioinformatic analyses; only the one chromosomal location responsible for ncRNA synthesis, 

LOC102546359 was commonly found in all approaches. None of these investigations identified any pathways 

that are unrelated to the use of vortioxetine and could potentially induce other diseases, particularly cancer. 

This is done to assess safety and gain insight into the response mechanism while avoiding the influence of 

disease heterogeneity associated with vortioxetine usage. Future research endeavors should focus on 

developing precise and reliable clinical assays that distinguish between individuals who exhibit a positive 

therapeutic response to vortioxetine and those who may have an adverse or sensitized reaction to the drug. 

This differentiation is critical to minimizing the potential risks of misdiagnosis and inappropriate treatment. 
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