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1. Introduction 
 

Due to the fact that aircrafts fly in a wide range of mission 
areas for cargo, passenger, tactical and military purposes, 
manufacturers conduct a number of test flights to determine 
the aerodynamic characteristics, design requirements and 
flight performance limits of the aircraft (Baklacıoğlu, 2010). 
During the test flights, all the forced physical and 
environmental conditions of the aircraft are tested and finally 
performance charts are obtained. The manufacturer has 
developed many different versions of the aircrafts, which have 
different mission versatility and airspaces. Each version is 
designed to fly in different environmental conditions (Oktay et 
al., 2022). 

Because of changing environmental conditions of the flight 
missions, it is extremely important to analyze the performance 
characteristics of the aircraft in order to ensure both fuel 
economy and flight safety. For this purpose, manufacturers 
determine the flight envelope by testing different flight 
scenarios in all flight phases. In other words, flight 
performance parameters are investigations that reveal the 
aerodynamic characteristics of the aircraft and determine the 
limits of use. (Filippone, 2008).  

In order to determine aircraft limits, aircraft performance 
calculations involve the calculation of numerous parameters; 
including take-off, cruise, climb and landing speeds, torque, 
cruising altitudes, and maximum aircraft weight. These 
parameters are obtained by manual use of a variety of charts 

(Erdmański et al., 2010). The use of these charts presents 
several challenges, including time-consuming calculations, 
low accuracy of the results obtained from the calculations, and 
the necessity of performing these calculations separately for 
each phase of the flight. This is due to the fact that many charts 
must be used simultaneously to reach the correct result. 
Additionally, the lack of chart-specific equations and the fact 
that the curves do not exhibit the same characteristics at every 
point depending on the changing parameters also contribute to 
an excessive workload and time loss (Güleç, 2002). 

When the studies on aircraft performance parameters in the 
literature are examined, it is observed that artificial neural 
networks are intensively preferred due to obtaining the closest 
results to the real values and being more easily adaptable in 
practice. Among these studies, (Altuntaş, 2007) created a fuel 
consumption model for Boeing 737-800 aircraft. (Türkmen et 
al. 2017) developed an alternative airspeed calculation method 
for Boeing 737-400 aircraft. (Yildirim et al. 2017) created a 
prediction model for low-pressure turbine vibration in Boeing 
737-500 aircraft. (Türkmen et al. 2022) used neural networks 
to predict angle of attack and Mach number for Boeing 757 
aircraft. (Fenar et al. 2014) developed a model to predict 
aircraft icing risk. (Yildirim Dalkiran et al. 2021) created a 
prediction model for engine thrust calculation in Airbus A319 
aircraft. (Baklacıoğlu, 2010) created an aircraft performance 
model using genetic algorithms for trajectory prediction. (İlbaş 
et al. 2012) developed an exhaust gas temperature prediction 
model for CFM56-7B turbofan engines. 
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Flight performance parameters can be examined in many 
flight phases such as taxi, take-off, climb, level flight, descent 
and landing. When we consider the climb phase in order to 
examine the performance parameters, the climb speed during 
the flight period required for an aircraft to climb to the desired 
altitude after take-off is of great importance (Konar et al. 2020; 
Altuntaş, 2007). The climb speed, which directly affects fuel 
consumption, varies depending on variables such as gross 
weight of the aircraft, altitude change, temperature deviations, 
engine efficiency, drag coefficient. By analyzing the climb 
speed, fuel optimization can be achieved and flight 
performance can be improved (Türkmen et al., 2022; PHAC, 
2023). 

In this study, the climb performance of middle-class 
transportation C-130H aircraft with high drag coefficient, 
turboprop Allison T56-A-15 four-engine is investigated. 
When examining the performance limits of the C-130H 
aircraft, since the service ceiling is 30,000 feet and the 
maximum gross weight is 175,000 pounds, the data sets were 
limited to these values when developing the climb speed 
prediction model. As a result of this study, it is aimed to create 
a prediction model by using artificial neural networks and 
machine learning methods instead of the classical method. In 
the classical method, climb speeds are obtained manually from 
the climb performance charts in the flight manual for the 
prediction of the climb speed on the Take-Off and Landing 
card called TOLD card, which must be prepared by the ground 
crew before take-off. The study yielded faster and more 
reliable forecasting results through the application of machine 
learning and artificial neural networks. As a practical benefit, 
it is aimed to reduce workload and time loss and to ensure 
flight safety at a high level. 

 

2. Methods  
 

In this study, data sets were obtained by utilizing the charts 

in the high drag C-130H aircraft flight manual climb 

performance section (USAF, 2002).  Gross weight, pressure 

altitude, drag index, temperature deviation, engine efficiency, 

uncorrected indicated air speed was used as inputs from the 

obtained data sets and an alternative prediction model to the 

classical calculation method was created by estimating the 

climb speed as output. Figure 1 shows the block diagram of 

the proposed models. 

 

 
Figure 1.  Block Representation of Trained ANN&ML 

Model 

 
Each variable used in the input set has different effects on 

the climbing speed and hence climbing performance obtained 
in the model output. In order to determine the verified climbing 
speed, it is necessary to use each effect as a correction factor.  

Gross Weight: It is expressed as the sum of the aircraft's 
payloads such as oil, fuel, cargo and the weight of the basic 
configuration elements, which we call basic aircraft weight. 
With the increase in the weight of the aircraft, the aircraft will 
need to fly with a higher angle of attack in order to maintain 
the altitude and speed at which it flies. This will lead to 
increase the parasitic drag on the aircraft and the induced drag 
on the wings. In order to overcome the drag effect, thrust must 
be increased (Erdmański et al., 2010). Therefore, aircraft 
manufacturers prefer to low weight aircraft designs in order to 
increase aircraft performance due to drag effects (Boztepe et 
al., 2001). 

Pressure Altitude: 29.92 inches or 1013.2 millibars is the 
altitude indicated by an altimeter set to standard sea level 
atmospheric pressure. Increasing the altitude at which aircraft 
fly means that an aircraft flying at level flight climbs to a 
higher altitude.  This will lead to increase the required power 
while decreasing the available power in the engines. Thus, the 
climb performance of the aircraft will decrease as the engine 
performance is affected by the increase in altitude (Pooley 
Dorothy et al., 2010). 

Temperature Deviation: In international standard 
atmospheric conditions, air temperature is accepted as 15 ⁰C. 
When the aircraft is in the climb phase, the outside temperature 
decreases by 2 ⁰C for every 1000 feet (Batchelor, 1967).  In 
this case, the climb performance is affected by the decrease in 
the temperature of the air entering the engines (AFH, 2011). 

Engine Efficiency: Even though engine efficiency is 
theoretically accepted as 100%, in practice, engines are usually 
operated at 95% efficiency for longer engine life. Again, this 
has a direct impact on climb performance (USAF, 2002).   

Drag Index: As a result of the increase in drag coefficients 
in aircraft, it is necessary to increase the required power by 
setting the engines to a thrust value higher than the set thrust 
value in order to realize the climb process. Again, as a result 
of this situation, the increase in the drag coefficient of the 
aircraft has a negative effect on the climb performance 
(Boztepe et al., 2001; Eken, 2009). 

Data were collected from the high drag C-130H aircraft 
flight manual (USAF 2002). Preprocessing steps included 
normalizing continuous variables and encoding categorical 
variables to ensure the data were suitable for machine learning 
algorithms. Any missing or inconsistent data were handled 
appropriately. Specifically, outliers were removed using the Z-
score method, and the data were split into training (70%), 
validation (15%), and test (15%) sets. Feature engineering and 
robust normalization were applied to enhance model 
performance. Two data sets were used: 

 
• Primary Data Set: This data set was used for training, 

validation, and testing the models. It includes features 
such as gross weight, pressure altitude, drag index, 
temperature deviation, engine efficiency, and 
uncorrected indicated airspeed. The data were 
preprocessed to remove outliers, normalize features, 
and split into training (70%), validation (15%), and 
test (15%) sets. 

• Comparison Data Set: This data set was used to 
compare the model predictions with the actual climb 
speed and the Young Method. It includes similar 
features as the primary data set but is used solely for 
evaluating the final model performance. 

 
Two rows of examples from each data set are given in 

Tables 1 and 2. 
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Table 1. Two-row transposed sample of the primary data set 
(1312 rows in all) 

 Row 1 Row 2 Row … 

1. Input  -1000 -1000 … 

2. Input 130000 131000 … 

3. Input 173.7519 174.0019 … 

4. Input 179.2465 179.4942 … 

5. Input 177.3369 177.5845 … 

6. Input 176.78 177.03 … 

Real Climb        
Speed 

157.8431 157.1172 … 

 
Table 2. Two-row transposed example of the comparison 
dataset (634 rows in all) 

 Row 1 Row 2 Row … 

1. Input  -1000 -1000 … 

2. Input 80000 85000 … 

3. Input 160 160.9996 … 

4. Input 164.9996 165.9492 … 

5. Input 160.4671 161.4941 … 

6. Input 154.4904 155.5688 … 

Young Method 
Prediction 

145.5159 146.7486 … 

Real Climb Speed 154.4904 155.5688 … 

 

In this study, four different models were used: Random 
Forest, Neural Network, Ensemble, and Young Method. The 
performance of these models was evaluated using mean 
squared error (MSE), root mean square error (RMSE), and the 
R² coefficient of determination. 

 

2.1.  Random Forest Model  
The Random Forest model employs multiple decision trees 

to make predictions, which are then averaged to improve 
accuracy and robustness against overfitting. Each decision tree 
is trained on a random subset of the dataset and branches by 
selecting a certain number of attributes. This approach 
increases the generalizability of the model and reduces 
overfitting (Cutler et al. 2012). Figure 2 shows the block 
diagram of the Random Forest Model. 

 

Parameters used: 

 

• Number of trees: 200 

• Minimum leaf size: 5 

• Number of predictors to sample: All 

 
The Random Forest model can be described as follows: 

�̂�(𝑥) =
1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1             (1) 

 
where 𝐵 is the number of trees, and 𝑇𝑏(𝑥) is the prediction 

from the 𝑏-th tree. 

 

 
Figure 2.  Random Forest Machine Learning Model 

 

2.2.  Neural Network Model 
The Neural Network model used in this study was trained 

using the Levenberg-Marquardt algorithm, an optimization 
technique that combines the speed of the Gauss-Newton 
method with the robustness of the gradient descent method. 
The Levenberg-Marquardt method is a least squares 
computation method based on the idea of maximum 
neighborhood. This algorithm combines the best features of 
the Gauss-Newton and Steepest-Descent algorithms. The LM 
algorithm avoids the limitations of the two aforementioned 
methods and is not affected by slow convergence problems 
(Sağıroğlu et al., 2003). Figure 3 shows the block diagram of 
the Levenberg-Marquardt ANN Learning Model. 

The architecture of the neural network included: 

• Input layer with normalized features 
• Multiple hidden layers with poslin activation functions 

(a variant of ReLU that allows small positive values to 
pass through unchanged) 

• Output layer with a linear activation function 
 

Poslin (Positive Linear) is closely related to ReLU 
(Rectified Linear Unit). While ReLU sets all negative values 
to zero, poslin allows small positive values to pass through 
unchanged, providing a slight smoothing effect. This choice 
maintains the benefits of ReLU in addressing the vanishing 
gradient problem while potentially offering improved model 
stability. 

Optimization was performed using Bayesian optimization 
to determine the best hyperparameters: 

• Hidden layer size: 5 to 30 
• Learning rate: 10-4 to 10-2 
• Regularization parameter: 10-4 to 10-1 

 

 
Figure 3.  Levenberg-Marquardt ANN Learning Model  
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In equation 𝐸(𝑤) is an objective error function. 𝑒𝑖
2(𝑤)  for m 

error terms is given in equation 2. The explicit form of 𝑒𝑖
2(𝑤) 

in this equation is shown in equation 3. 

 

𝐸(𝑤) = ∑ 𝑒𝑖
2𝑚

𝑖=1 (𝑤) = ‖𝑓(𝑤)‖2                     (2) 
 

 
     𝑒𝑖

2(𝑤) = (𝑦𝑑𝑖 − 𝑦𝑖)2                     (3) 

 

In this context, the objective function 𝑓(. ) and its Jacobian 𝐽 
are assumed to be known at some point in time. The LM 
method is employed to identify the parameter vector 𝑤 when 
𝐸(𝑤) is at a minimum. Using the LM, one tries to calculate 
𝑤𝑘+1 from 𝑤𝑘 shown in equation 4. 
 

𝑤𝑘+1 = 𝑤𝑘 + 𝛿𝑤𝑘                     (4) 
 
Here 𝛿𝑥𝑘 is given by the following. 
 

(𝐽𝑘
𝑇𝐽𝑘 + 𝜆𝐼)𝛿𝑤𝑘 = −𝐽𝑘

𝑇𝑓(𝑤𝑘)                     (5) 
 
where 𝐽𝑘 is Jacobian substituted for 𝑤𝑘 in 𝑓, 𝜆 is Marquardt 
parameter, 𝐼 is Unit matrix. 

                                                                                          
2.3. Ensemble Model 

The ensemble learning model aims to achieve more reliable 
and accurate predictions by combining the strengths of 
different machine learning models. This model is effective in 
reducing high variance and improving performance. In 
traditional classification methods, different classification 
algorithms are used to build a model on a pre-labeled dataset. 
Since each algorithm has certain weaknesses, the ensemble 
learning model aims to provide better classification by 
combining the strengths of different algorithms (Dong et al., 
2020; Matloob et al., 2021; Güzel et al., 2019). The ensemble 
model in this study is an approach that combines predictions 
from two different machine learning techniques - Artificial 
Neural Networks (ANN) and Random Forest. Ensemble 
learning aims to obtain more reliable and accurate predictions 
by combining the strengths of different models. In this model, 
ANN contributes with its ability to learn complex non-linear 
relationships. Random Forest contributes with its strength in 
reducing overfitting and determining feature importance. The 
predictions of these two models are combined using optimal 
weights. The weights are determined to minimize the ensemble 
error. The ensemble model is: 
 

�̂�𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑥) = 𝑤1�̂�1(𝑥) + 𝑤2�̂�2(𝑥)    (6) 
 

where �̂�1(𝑥) and �̂�2(𝑥) are the predictions from the Neural 
Network and Random Forest models, respectively, and 𝑤1and 
𝑤2 are the weights optimized to minimize the ensemble error 
using a constrained optimization approach. 

 

2.4. Young Method 
The Young Method is a traditional interpolation method 

applied to performance charts to estimate climb speeds 

(Young, 2019). This method serves as a benchmark for 

demonstrating the enhancement provided by machine learning 

techniques. Especially when it is difficult to obtain some 

performance parameters from charts, this method is used to 

obtain unknown values by curve fitting based on known 

values. However, in this method, deviations from the actual 

values should be carefully monitored and it should be ensured 

that the performance data obtained are within the safe range 

(within the tolerance given in the technical order). 

This method uses interpolation to determine unknown 
values based on known data points from performance charts. 
It is used to calculate climb speed by taking into account 
factors such as gross weight, pressure altitude, and temperature 
deviation. Using the pressure altitude and gross weight, 
determine the base climb speed from the charts: 

 

𝑉𝑢𝑐𝑠 = [((52 ∗ 10−10) ∗ ∑(𝑤))

− ((1329558 ∗ 10−9) ∗ 𝛥𝑃))

+ ((25 ∗ 10−5) ∗ ∑(𝑤)) + 140] 

(7) 

 

In the formula here, Gross Weight is symbolized by ∑(w) and 

Pressure Altitude is symbolized by ΔP. Also 𝛥𝑇 denotes 

temperature deviation. 

      By interpolating the charts for all factors such as gross 

weight, altitude change, temperature deviation, drag index and 

engine efficiency affecting the climb speed, a validated climb 

speed formula was obtained (Young, 2019). 

 

𝑉𝑐𝑐𝑠 = [1.0071 ∗ ((9995 ∗ 10−4)
∗ ((9 ∗ 10−10) ∗ 𝛥𝑇4 + (85
∗ 10−9) ∗ 𝛥𝑇3 − (151444
∗ 10−10) ∗ 𝛥𝑇2 + (4865344
∗ 10−10) ∗ 𝛥𝑇 + 1.0023015873)

∗ ((52 ∗ 10−10) ∗ ∑(𝑤)

− (1329558 ∗ 10−9) ∗ 𝛥𝑃 + 25
∗ 10−5 ∗ ∑(𝑤) + 140.42169

− 0.5) + (−(58858 ∗ 10−10)

∗ 𝛥𝑇3 + (10638236 ∗ 10−10)
∗ 𝛥𝑇2 − (2924101117 ∗ 10−10)
∗ 𝛥𝑇 − (1798236332 ∗ 10−10)
− 1.82) − 19.429] 

(8) 

 

2.5. Performance Evaluation 
In this study, mean square error (MSE), root mean square 

error (RMSE) and the R² value, which is called the 
determination coefficient were chosen as the performance 
functions. MSE represents a general error value for all neurons 
in the output layer and is defined as: 

 

𝑀𝑆𝐸 = 𝐸(𝑤) =
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1 (𝑤)                     (9) 

 
The root mean square error (RMSE) determines the error 

ratio between the actual value and the estimated value. The 
increase in the predictive ability of the ANN model is 
understood to be the approach of the RMSE value to zero. The 
number of data sets used, the estimated value obtained from 
the neural network, the real value of RMSE is calculated by 
the following equation: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑑𝑖

 )2𝑛
𝑖=1                      (10) 

 

The R² value, which is called the determination coefficient, 

indicates the degree of conformity for the ANN model. The 

fact that the value of R² is close to 1 indicates that the predicted 

values are very close to the real values and that the predicted 

values are very far from the true values. The R² value is 

expressed as follows: 

 

R² = 1 −
∑ (𝑦𝑖−𝑦𝑑𝑖

 )2𝑛
𝑖=1

∑ (𝑦𝑑𝑖
−𝑦𝑚 )2𝑛

𝑖=1
                     (11) 
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3. Result and Discussion   
 

The application of machine learning and artificial neural 
network models to predict the climb speed of the C-130H 
military transport aircraft yielded significant findings.  

Our analysis encompassed Random Forest, Neural 
Network, and Ensemble models, each providing unique 
insights into the factors affecting climb speed prediction. 
Figure 4 illustrates the feature importance in the Random 
Forest model, offering a clear visualization of the most 
influential factors in our prediction task. 

 

 
Figure 4.  Feature Importance in Random Forest Model 
 

The feature importance analysis of the Random Forest model 
revealed that pressure altitude (Feature 1) is the most critical 
factor in predicting climb speed, which can be attributed to its 
direct impact on air density and aircraft performance. Gross 
weight (Feature 2) and engine efficiency (Feature 5) also 
emerged as significant factors, albeit with considerably less 
influence compared to pressure altitude. Three derived 
features (Features 7, 8, and 9) were created to capture complex 
relationships between the original inputs. While these derived 
features show low importance individually, they may 
contribute to the model's overall performance. The relatively 
low importance of other original inputs (drag index, 
temperature deviation, and uncorrected indicated air speed) 
suggests they may have less direct impact on the C-130H 
aircraft's climb speed. However, removing these factors from 
the model is not recommended as they may still be significant 
under specific flight conditions. 

The Neural Network model's performance was evaluated 
using various activation functions and hyperparameter 
configurations. Table 3 presents the performance comparison 
of different activation functions. 

Table 3. Performance Comparison of Activation Functions 

Activation 

Function 
MSE RMSE R2 

poslin 0.00001 0.0060 0.9946 

tansig 0.00003 0.0024 0.9991 

logsig 0.0001 0.0116 0.9798 

purelin 0.00003 0.0019 0.9995 

 

As seen in Table 3, the logsig function clearly demonstrated 
the lowest performance among all tested activation functions, 
with notably higher MSE and RMSE values and a lower R² 
score. The other three functions (poslin, tansig, and purelin) 
showed very close performance, with purelin slightly 
outperforming the others in terms of RMSE and R². However, 
considering the overall stability, generalization ability of the 

model, and the need to capture potential non-linear 
relationships in the data, the 'poslin' (positive linear) activation 
function was chosen for our final model. This choice aims to 
strike a balance between the model's ability to represent 
complex patterns and its resistance to overfitting, especially 
given the close performance of poslin to the best-performing 
purelin function. 

The architecture of the neural network included multiple 
hidden layers, with the number of neurons in these layers being 
a crucial hyperparameter. The optimization process explored 
various configurations, ranging from 5 to 30 neurons in the 
hidden layers. This exploration aimed to find the right balance 
between model complexity and generalization ability. 

The hyperparameter optimization process and its results are 
illustrated in Figure 5. This figure shows the minimum 
objective value versus the number of function evaluations 
during the optimization process. 

 

 
 

Figure 5.  Minimum Objective vs. Number of Function 

Evaluations 
 
  As seen in Figure 5, there is a rapid convergence of both 

observed and estimated minimum objective values after 

approximately 10 evaluations. This indicates the efficiency of 

the Bayesian optimization approach in exploring the 

hyperparameter space. The best configuration achieved an 

objective function value of 0.0017079, with 30 neurons in the 

hidden layer, a learning rate of 0.00090854, and a 

regularization parameter of 0.00040608. 

 This optimal configuration suggests that the model benefits 

from a relatively complex architecture with 30 neurons in the 

hidden layer to capture the intricacies of the C-130H climb 

speed prediction task. The low learning rate (0.00090854) 

indicates a careful, gradual approach to updating the model's 

weights during training, which can help in finding a more 

precise minimum and avoiding overshooting. The small 

regularization parameter (0.00040608) suggests that the model 

did not require strong regularization to prevent overfitting, 

indicating a good balance between fitting the training data and 

maintaining generalization ability. 
The Ensemble Model's performance, which combines the 
strengths of both Random Forest and Neural Network 
approaches, is illustrated in Figures 6 and 7. 
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Figure 6.  Ensemble Model Performance (Scatter Plot) 
 

 
Figure 7.  Residual Analysis Graph 
 

Figure 6 demonstrates the Ensemble Model's predictive 
accuracy through a scatter plot of predicted versus true values. 
The clustering of points around the ideal line (red dashed line) 
indicates high overall predictive accuracy. The model shows 
particularly strong performance in the mid-range of climb 
speeds, with a slight tendency to underestimate at higher 
speeds. 

The residual analysis in Figure 7 provides further insights 
into the model's performance. The distribution of residuals 
shows a generally consistent pattern, with a slight widening at 
higher true values. This suggests that the model maintains 
good predictive power across most of the range, with a minor 
decrease in precision for very high climb speeds. 
Overall, these figures demonstrate the Ensemble Model's 
robust performance in predicting the C-130H aircraft's climb 
speed. The model effectively captures the complex 
relationships between input variables and climb speed, 
showcasing the advantages of combining multiple machine 
learning techniques. While there's always room for refinement, 
especially in extreme value predictions, the Ensemble Model 
proves to be a reliable tool for climb speed estimation in 
various flight conditions. 

The overall performance of our models is illustrated in 
Figures 8 and 9, providing a comprehensive comparison of the 
different approaches used in this study. 
 

 
Figure 8.  Model Performance Comparision (Bar Plot) 
 

 
Figure 9.  Models Prediction Comparison 
 

Figure 8 presents a bar plot comparing the performance 
metrics (MSE, RMSE, and R²) for each model. The Ensemble 
model demonstrates the best overall performance, with the 
highest R² value (approximately 0.45) and the lowest MSE and 
RMSE. The Random Forest model follows closely, while the 
Neural Network shows slightly lower performance. Notably, 
the Young Method exhibits significantly poorer performance, 
with a negative R² value. 

The negative R² value for the Young Method indicates that 
this traditional approach performs worse than a horizontal line 
(the mean of the observed data) in predicting climb speeds. 
This underscores the limitations of conventional methods and 
highlights the advantages of machine learning approaches in 
capturing complex relationships within the data. 

Figure 9 provides a visual comparison of the predictions 
made by the Ensemble model and the Young Method against 
the real climb speed values. The graph clearly shows that the 
Ensemble model's predictions (red line) closely follow the 
pattern of real climb speeds (blue line), while the Young 
Method's predictions (green line) deviate significantly, often 
underestimating the climb speed. 

These results demonstrate the superior performance of the 
Ensemble model in predicting C-130H aircraft climb speeds. 
By combining the strengths of Random Forest and Neural 
Network approaches, the Ensemble model achieves more 
accurate and reliable predictions compared to both individual 
machine learning models and traditional methods. The 
significant improvement over the Young Method, as 
evidenced by the negative R² value, underscores the potential 
of machine learning techniques in enhancing aircraft 
performance predictions and flight planning processes. 
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4. Conclusion   
 

In this study, a comprehensive analysis of machine learning 
and artificial neural network models for predicting the climb 
speed of the C-130H military transport aircraft has been 
presented. The research was aimed at overcoming the 
limitations of traditional graph reading and interpolation 
methods through the development and comparison of Random 
Forest, Neural Network, and Ensemble models. 

It has been demonstrated that the Ensemble model exhibited 
superior performance (R² ≈ 0.4532) compared to the individual 
Random Forest (R² ≈ 0.4303) and Neural Network (R² ≈ 
0.3765) models, and significantly outperformed the traditional 
Young Method (R² = -1.2673). This superiority can be 
attributed to the Ensemble model's ability to capture complex, 
non-linear relationships in the data and its robustness against 
overfitting. The Ensemble approach, which combines the 
strengths of both Random Forest and Neural Network models, 
has proven to be particularly effective, providing more reliable 
and accurate results while mitigating the risks associated with 
relying on a single model. 

The feature importance analysis revealed that pressure 
altitude, gross weight, and engine efficiency are the most 
critical factors in predicting the climb speed of the C-130H 
aircraft. This insight provides valuable guidance for future 
model development and optimization efforts. 

In the Neural Network model, we tested various activation 
functions and found that while purelin showed slightly better 
performance, the poslin function was chosen for its balance 
between performance and ability to capture non-linear 
relationships. The hyperparameter optimization process led to 
a model with 30 neurons in the hidden layer, demonstrating the 
complexity required to accurately predict climb speeds. 

The practical implications of this research for the aviation 
industry are significant. It is anticipated that the improved pre-
flight preparation can be achieved through these models, 
potentially reducing the time and effort required for 
calculating climb speeds and allowing for more efficient pre-
flight planning. Enhanced flight safety can be expected as 
more accurate climb speed predictions contribute to safer 
flight operations, especially in challenging conditions or when 
operating near performance limits. Furthermore, better climb 
speed predictions can lead to more efficient flight profiles, 
potentially reducing fuel consumption and environmental 
impact. The automation of climb speed calculations can 
significantly reduce the workload on ground crews and pilots, 
allowing them to focus on other critical tasks. 

While the potential of machine learning in aircraft 
performance prediction has been demonstrated in this study, 
some limitations have been identified. The models were 
trained and tested on data specific to the C-130H aircraft, and 
their generalizability to other aircraft types needs further 
investigation. Additionally, the unexpectedly low performance 
of the Neural Network model suggests that further 
optimization of its architecture and hyperparameters might be 
beneficial. 

Several directions for future research have been identified. 
The approach could be extended to other aircraft types and 
performance parameters. The incorporation of real-time flight 
data could be explored to improve model accuracy and 
adaptability. The integration of these models into existing 
flight management systems could be investigated. 
Furthermore, the use of deep learning techniques for even 
more accurate predictions could be explored. 

In conclusion, the significant potential of machine learning 
techniques in aircraft performance prediction has been 
highlighted by this research. By providing more accurate and 
reliable climb speed predictions, these models offer 
possibilities for improving pre-flight preparation processes, 
reducing workload, enhancing flight safety, and optimizing 
fuel consumption. As the aviation industry continues to 
evolve, it is anticipated that the integration of such advanced 
predictive models could play a crucial role in shaping the 

future of flight operations and aircraft performance 
management. 
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