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Article Info               Abstract 
  
Article History: Scheduling can be defined as the assignment of jobs to machines that will be 

processed under certain constraints and measurements. Different scheduling 
problems arise when creating schedules and assigning jobs to machines. The 
problem of interest in this study is the Unrelated Parallel Machine 
Scheduling Problem with Sequence-Dependent Setup Times (UPMSPST), 
which is classified as NP-hard. The objective of the problem is to minimize 
the makespan (Cmax). In UPMSPST, machines have different processing 
times for jobs and there are machine-dependent setup times between jobs. 
Exact solution methods are not sufficient for solving the UPMSPST and 
many metaheuristics have been proposed by researchers to find approximate 
solutions. 
The aim of this paper is to propose two new parameters for solving the 
UPMSPST with the Variable Neighborhood Descent (VND) algorithm, 
which is a single-solution metaheuristic algorithm, in order to find better 
solutions. The proposed parameters are tested in four different scenarios and 
the results of the best parameter configuration are given. The results show 
that the proposed new parameters are effective in improving the existing 
solution. 

 

1. Introduction 
 
Scheduling is a highly significant process that affects the efficiency of the production process in many 
manufacturing problems and must be well-planned by businesses. This process varies from one business to another. 
These differences lead to variations in machines and tasks and result in different scheduling problems. Changes in 
workshops, machines, and tasks have led to the emergence of many scheduling problems. The goal of scheduling 
is to optimize one or more objectives when assigning a resource to a task. If the resources are the machines in a 
workshop, the tasks can be described as the jobs in a production process. Scheduling problems can be classified 
based on the arrival of jobs and the number of machines processing the jobs. Deterministic problems in the 
classification based on the arrival of jobs are delay-free situations where no machine stops. There is no change in 
the number of jobs or machines throughout the scheduling process (Pinedo, 2008). When classified by the number 
of machines, scheduling problems can be divided into single-machine models and multiple-machine models. In 
environments with multiple machines, there are three fundamental models: parallel systems, serial systems, and 
job shop systems (Baker and Trietsch, 2018). Unrelated machines in the parallel machine scheduling category 
refer to machines that perform the same function but have different capabilities and capacities. The use of an 
appropriate number of machines with different capabilities and capacities increases flexibility in businesses, 
making it widely used in many sectors such as textiles, chemicals, and electronics manufacturing (Lin et al., 2011). 
Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent Setup Time (UPMSPSDST), the 
completion times of each job on each machine differ. In this problem, machines operate with different capacities 
according to the jobs. Each job also requires a setup time on the machine before processing. The setup times for 
jobs vary depending on the last job processed on the machine or the first job processed on that machine. The 
problem addressed in this study involves unrelated multiple machines in the UPMSPSDST. The processing times 
of machines for jobs are different. Additionally, each job has different setup times depending on the machines and 
the jobs assigned previously. The simpler version of this problem, the identical parallel machine scheduling 
problem without setup times, is an NP-hard problem when the number of machines is 2 (Arnaout, 2020). Therefore, 
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this problem is also NP-hard. The goal of this problem is to minimize the maximum completion time (Cmax) 
resulting from the scheduling. Exact solution methods are insufficient for solving NP-hard problems. Metaheuristic 
methods are employed to solve problems in this class. Metaheuristic methods aim to improve a candidate solution 
iteratively based on given criteria. Although they do not guarantee an exact solution, metaheuristic algorithms can 
solve optimization problems that other optimization techniques cannot effectively solve (Al-Salem, 2004). The 
aim of this study is to enhance the Variable Neighborhood Descent (VND) algorithm, a single-solution 
metaheuristic algorithm, and test two newly proposed parameters under four different scenarios to find higher 
quality solutions for the UPMSPSDST. The results of the proposed new parameters have been provided according 
to the scenarios, and it was found that the proposed new parameters are effective in improving the solution. 
 
2. Mathematical Model 
The scheduling problem is a combinatorial problem and it can be modeled as an integer programming problem 
(Toragay ve Pouya, 2023). In addition to the heuristic solutions developed for the solution of the UPMSPSDST 
problem, an integer programming model is also presented (Anagnostopoulos & Rabadi, 2002). The steps and 
formulas of the presented model are given below. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒           𝐶௫ 
subject to 
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𝐶 ≥ 0   ∀𝑗 = 1, … , 𝑛 (7) 
𝐶 = 0    (8) 
𝑋,, ∈  {0,1}  ∀𝑖 = 0, … , 𝑛, ∀𝑗 = 0, … , 𝑛 ,    ∀𝑘 = 1, … , 𝑚 (9) 

 

Where, 

𝑛: Number of jobs  

𝑚: Number of machines 

𝐶: Completion time of job 𝑗 

𝑃,: processing time of job 𝑗 on machine 𝑘 

𝑆,,: Setup time if job 𝑗 is scheduled directly after job 𝑖 on machine 𝑘 

𝑆,,: Setup time if job 𝑗 is scheduled to go first on machine 𝑘 

𝑋,,: 1 if job 𝑗 is scheduled directly after job 𝑖 on machine 𝑘 and 0 otherwise 

𝑋,,: 1 if job 𝑗 is scheduled first on machine 𝑘 and 0 otherwise 

𝑋,,: 1 if job 𝑗 is scheduled last on machine 𝑘 and 0 otherwise 

𝐻𝑉: a large positive integer 

 

The goal (1) is to minimize the makespan. Constraints (2) ensure that each job is assigned to only one machine 
and scheduled once. Constraints (3) make sure that each job has a predecessor and a successor. Constraints (4) are 
responsible for calculating the completion times and prevent any job from being both the predecessor and the 
successor of the same job. Constraints (5) define the makespan. Constraints (6) ensure that no job is scheduled as 
the first job more than once. There's no need for additional constraints to guarantee only one job is scheduled last, 
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as this is already covered by constraints (6) and (3) together. Constraints (7) and (8) ensure that completion times 
are non-negative and that the dummy job's completion time is zero, respectively. Finally, constraints (9) state that 
the decision variable 𝑥 is binary across all domains. 

3. Literature Review 

The scheduling problem is encountered in many production areas. The differences in these problems have led to 
the formation of various objective functions. One of the common objective functions is to minimize Cmax. Table 
1 shows other academic studies that use same benchmark dataset and used algorithms. 

Table 1. Previous Studies used same benchmark 

Study 
No Study Algorithm 

Compared  
Study 

1 Al-Salem (2004)  PH (Partitioning Heuristic) - 
2 Rabadi et al. (2006) Meta-RaPS 1 
3 Helal et al. (2006) TS 1 
4 Arnaout et al. (2010) Ant Colony Optimization 1,2,3 
5 Chang and Chen (2011) SA and GA 1 
6 Ying et al. (2012) Restricted TS 1,2,3,4 
7 Fleszar et al. (2012) Multi-Start VND 2,4 

8  Lin ve Ying (2014)  
Artificial Bee Colony 
Hybrid Artificial Bee Colony 1,2,3,4,5  

9 Arnaout et al. (2014) Ant Colony Optimization 1,2,3,4 
10 Yılmaz Eroğlu et al. (2014) GA+ Local Search 4,5 
11 Cota et al. (2017) Automata - Adaptive Large Neighborhood Search 4,9 
12 
 

De Abreu, L. R., and  
De Athayde (2020) 

GA+VND+SA (GIVP) 
 

4,5,10 
 

13 Arnaout (2020) Worm Optimization Algorithm 3,6,8,9,10 

As seen in Table 1, the tested work has attracted attention from many researchers and different solutions have been 
developed with different algorithms. These developed solutions have been compared with each other. For solving 
this problem, single-solution methods such as Tabu Search and Simulated Annealing have been used, as well as 
population-based metaheuristic algorithms such as Ant Colony Optimization, Worm Optimization Algorithm, 
Genetic Algorithm, and Artificial Bee Colony Algorithm. Additionally, hybrid algorithms that combine both 
single-solution and population-based algorithms have also been employed. The methods developed by researchers 
have achieved successful results in the test benchmark. 
The unrelated parallel machine scheduling problem has also been the subject of academic studies on different 
objective functions and different data sets. Some of recent studies are as follows.  
 
In the study by Zhang et al. (2021), a new model for the UPMSPST problem was proposed by incorporating limited 
workforce and the learning effects of individuals. To solve this proposed model, a combinatorial evolutionary 
algorithm (CEA) was presented, which includes list scheduling (LS), the shortest setup time (SST) priority rule, 
and the earliest completion time (ECT) priority rule. For testing the algorithm, 72 instances were created, and the 
Taguchi method was used to determine the best parameter combinations. The proposed algorithm was compared 
with other algorithms and found to be successful. 
In the study by Berthier et al. (2022), they focused on a real industrial problem in a textile factory. Two additional 
features were incorporated into the parallel machine scheduling problem with sequence-dependent setup times: 
machine eligibility and limited resources. The study aimed to balance the workload by addressing the dynamic 
layout between jobs in the workshop and determining machine groups. A mathematical model of the problem was 
developed, and solutions were obtained using a genetic algorithm. 
In the study by Sanati et al. (2023), the authors address the unrelated parallel machine energy-efficient scheduling 
problem with sequence-dependent setup times, considering various energy consumption tariffs. The study 
evaluates setup times in two different ways: separately and jointly with processing times, developing mixed-integer 
linear programming models for both scenarios. In the models where setup times are separate, solutions were 
obtained for problems involving up to 16 machines and 45 jobs, while for the joint setup time models, solutions 
were achieved for up to 20 machines and 40 jobs. Additionally, a fix-and-relax heuristic was developed for large-
scale problems, enabling solutions for instances ranging from 20 to 100 jobs. 
In their study, Saraç and Özçelik (2023) focus on a multi-objective problem in the unrelated parallel machine 
scheduling problem, aiming to minimize both total completion time and total tardiness. To achieve this, they 
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propose an alternative metaheuristic algorithm to the Augmented ε-constraint (AEC) algorithm. The authors 
emphasize that the proposed algorithm outperforms the AEC algorithm. 
In the study, Ramos-Figueroa et al (2023) they aimed to solve the unrelated parallel machine scheduling problem 
using a Group Genetic Algorithm, an extension of the standard Genetic Algorithm. They achieved a 52% 
improvement over the original mutation operator by introducing a new mutation operator called 2-Items. 
In their study, Elyasi et al.(2024) focus on an unrelated parallel machine scheduling problem related to Vestel. 
This problem aims to minimize both early and tardy completion times in a production environment with unrelated 
parallel machines. To achieve this, they employed the Imperial Competitive Algorithm, and the results showed 
that their algorithm outperformed the current state of the art by 39%, as well as surpassing the best algorithms in 
the literature by 23% and 12%. 
In their study, Fonseca et al. (2024) proposed a "fix and optimize" algorithm for the unrelated parallel machine 
scheduling problem. They aimed to solve subproblems grouped by subsets of machines. To address these 
subproblems, they introduced a mathematical program called MPA, which was used to find solutions. 
Computational experiments demonstrated that the proposed approach provided significantly higher-quality 
solutions compared to the standalone exact algorithm. When compared to the best heuristic approaches in the 
literature, the proposed algorithm performed better in instances with a high number of jobs per machine, but 
exhibited lower performance in instances with fewer jobs per machine. 
In their 2024 study, Muñoz-Díaz et al. proposed an unrelated parallel machine problem inspired by a station in the 
wind tower production process, which includes setup times for the machines. They also introduced a new feature 
involving supportive machines that assist those with capacity shortages. For this problem, a mixed-integer linear 
programming model was formulated, and solutions were proposed using three different algorithms: a constructive 
heuristic, simulated annealing, and tabu search. The results of these algorithms were compared to evaluate their 
effectiveness. 
 
The aim of this study is to develop a proposed VND algorithm (VND_KMP_SP), which is a single-solution 
metaheuristic, with two new parameters, and to test it on a commonly used problem, instead of proposing an 
algorithm to be compared with hybrid or population-based algorithms. 
 
4. Variable Neighborhood Descent Algorithm 

The Variable Neighborhood Search (VNS) algorithm is based on the idea of systematically changing predefined 
neighborhood structures to search for solutions (Mladenović and Hansen, 1997). In this study, the proposed 
algorithm with new parameters is the Variable Neighborhood Descent (VND) algorithm, which is the deterministic 
version of the VNS algorithm and does not include a local search phase (Hansen and Mladenovic, 2003). The 
VND algorithm has been used as the local search phase in many hybrid metaheuristic algorithms, including 
scheduling problems (Gao et al., 2008; Haupt and Haupt, 2004). The basic form of the VND algorithm is presented 
below. 

Algorithm VND 

input: x = initial solution, neighborhood structures Nk, k = 1, . . ., kmax 

output: x: Final Scheduled Jobs 

1.  procedure VND (x, Nk) 

2.  repeat until stopping criterion is met: 

3.     k =1 

4.     k = kmax repeat until: 

5.         x’= Nk(x) 

6.              if (x’is better then x): 

7.                       x = x’, k = 1 

8.              else: 

9.                       k=k+1;  

10. return x 

11. finish. 
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VND algorithm aims to search for a better solution by swapping jobs within neighborhood structures. In solving 
scheduling problems, typically five different neighborhood structures are used. Three of these involve intra-
machine swaps, while the other two involve inter-machine job swaps. The intra-machine swaps consist of 
swapping two jobs on the same machine (K1), inserting one job after another job on the same machine (K2), and 
reversing the order of two jobs on the same machine (K3). The inter-machine job swaps involve swapping jobs 
between two different machines (K4) and inserting a job from one machine after a job on another machine (K5) 
(Wang et al., 2016). 
 
5.Proposed adapted VND Algorithm 

VND algorithm requires an initial solution and the predefinition of neighborhood structures. In this study, five 
different neighborhood structures, as outlined in Section 3, have been utilized, and a balanced-random initial 
algorithm has been proposed for generating the initial solution. 

5.1 Initial Solution (Balanced- Random) 
The proposed balanced-random initialization algorithm aims to distribute jobs across machines such that all 
machines are assigned an equal number of jobs. When a randomly selected job is assigned to a machine, the 
machine with the fewest jobs is chosen from the available machines. If there is more than one machine with the 
minimum load, the selection among these machines is made randomly. 

Algorithm Balanced- Random 

input: N: All Jobs, M: All machines UM: Available machines 

output: x: Final scheduling 

1.  procedure balaced-random (N, M, UM) 

2.   N, M, UM ← M, m=j=L=Ø  

3.     repeat until N is empty: 

4.            if UM is empty: 

5.                  UM ←M 

6.              j=random.choise (N) 

7.              m= random.choise (UM) 

8.              x.append(m,j) 

9.              N.remove(j) 

10.           UM.remove(m) 

11. return x 

12. finish. 

 

The balanced-random algorithm creates an initial solution for testing the parameters proposed to the VND 
algorithm. The initial solution is the same for each scenario. In this way, the proposed parameters were tested with 
the same initial solutions in different scenarios. 

5.2 New parameters for VND 

In this study, two new parameters are proposed for the VND algorithm. These are the critical machine selection 
parameter and the constraint parameter. 

5.2.1 Critical machine selection parameter 
In scheduling problems where the objective function is Cmax, the machine with the highest load determines the 
Cmax value. This machine can be referred to as the critical machine. When selecting two machines randomly 
during neighborhood changes, if one of these machines is not the critical machine, the Cmax value does not 
decrease even if the workloads of the selected machines change when the neighborhood structure is applied. For 
this reason, a critical machine parameter (kmp) has been added to the neighborhood structures found in the 
literature. When the kmp parameter is 1, if the number of affected machines is one in the neighborhood structure 
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to be applied, it is ensured that this machine is the critical machine. If the number of affected machines is two, one 
of these machines is ensured to be the critical machine. This parameter aims to reduce the Cmax value as soon as 
possible in the neighborhood structure. The kmp parameter aims to more effectively explore the solution space. 

5.2.2 Constraint parameter 
The study proposes a constraint parameter (sp) to constrain the tasks that can change in neighborhood structures. 
This parameter can take values in the range sp = [0- N/2) where N is the total number of jobs. During neighborhood 
changes, the restriction parameter sp can limit the change to all tasks in the list or only to those on the critical 
machine. If only the tasks on the critical machine are limited to change, the sp can take values in the range sp = 
[0- nkm /2), where nkm is the number of tasks on the critical machine. When sp=0, it is possible to select all jobs 
during the neighborhood change. For each increment of 1 in the sp parameter, the two consecutive jobs with the 
lowest processing and setup times among the tasks assigned to the machines are calculated. These jobs are then 
fixed on their assigned machine and prevented from changing. 

5.2.3 Test Scenarios 
By introducing new parameters to the VND algorithm, a new adapted VND algorithm called VND_KMP_SP has 
been proposed. These parameters have been tested with initial solutions generated using the balanced-random 
initialization algorithm in four different scenarios. The scenarios and parameter values, including the critical 
machine selection (kmp) from Section 3.2.1 and the constraint parameter (sp) from Section 3.2.2, are presented in 
Table 2. 

Table 2. Test scenarios ve parameter values 

Scenario kmp sp 
scenario -1 0 0 
scenario -2 1 0 
scenario -3 1 deg_sp 
scenario -4 1 km_sp 

 

The explanations of the scenarios and their parameters given in Table 2 are as follows. 

scenario-1: In this scenario, machine and job selection is kept free. All machines and jobs can be selected in the 
neighborhood change. This scenario represents the basic VND algorithm introduced in section 3. 

scenario -2: In this scenario, one of the selected machines must be a critical machine. There is no constraint in job 
selection, all jobs can be chosen. 

scenario -3: In machine selection, one of the selected machines must be a critical machine. In job change, change 
of some of the jobs is not allowed according to the sp parameter. The sp parameter varies depending on the number 
of iterations and the number of jobs to be prevented from changing also varies. 

scenario -4: In machine selection, one of the selected machines must be a critical machine. In job change, only 
some of the jobs on the critical machine are not allowed to change according to the sp parameter. 

A new adapted VND algorithm is proposed with the scenarios and parameters introduced above (VND_KM_SP). 
The parameters of the VND _KMP_SP algorithm are as follows. 

Algorithm VND_KMP_SP 

input: Neighborhood structures: Nk, k = 1, . . ., kmax , stopping count: (n = 50). x = initial solution with balanced-rondom 
algorithm. scenario = (scenario -1, scenario -2, scenario -3, scenario -4). i =iteration number is 0 at beginig 

output: x: Final scheduling 

1. procedure VND_KMP_SP (Nk, x, scenario, n): 

2. while (i <= n): 

3.    if (scenario = scenario -1) then sp=0, kmp=0 

if (scenario = scenario -2) then sp=0, kmp =1 

if (scenario = scenario -3) then maxsp = n/2, kmp =1 

if (scenario = scenario -4) then maxsp = job count on critical machine/2, kmp =1 
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4.     k =1 

5.     while (k = kmax): 

if (scenario = scenario -3 or scenario = scenario -4) then  sp=mod (i, maxsp) 

6.          x’= Nk(x) 

7.              if (x’is better then x): 

8.                       x = x’, k = 1 

9.              else: 

10.                       k=k+1;  

11.    i=i+1 

12. return x 

13. finish. 

The difference between scenario -1 and scenario -2 lies in the kmp parameter. These two scenarios allow for 
measuring the effectiveness of the kmp parameter without any constraints on job swaps. In scenario-3 and scenario-
4, the constraint parameter (sp) starts at 0 and is modulated by the number of iterations relative to the maximum 
value of sp (maxsp). In this case, the selection of all jobs is random, allowing for a broader search. As the sp 
parameter approaches its maximum value, the swapping of jobs on the critical machine becomes more restricted 
to the least costly jobs, enabling a narrower, more refined search. When the number of iterations reaches the maxsp 
parameter, only the two most costly jobs are swapped. 

6. Application 

6.1 Benchmark dataset 
In this study, the parameters proposed for the VND_KMP_SP algorithm were tested using the dataset created by 
Al-Salem (2004). This large dataset consists of 540 data files, with balanced setup and processing times. The data 
files involve scheduling N jobs {20, 40, 60, 80, 100, and 120} on M machines {2, 4, 6, 8, 10, and 12}. The small 
dataset involves scheduling N jobs {6, 7, 8, 9, 10, and 11} on M machines {2, 4, 6, and 8}. 

The problem and dataset of interest have been widely recognized in academic studies, with many researchers 
proposing solutions using various metaheuristic methods (Arnaout, 2020; Rabadi et al., 2006; Helal et al., 2006; 
Arnaout et al., 2010; Chang and Chen, 2011; Ying et al., 2012; Fleszar et al., 2012; Lin and Ying, 2014; Arnaout 
et al., 2014; Yilmaz Eroglu et al., 2014; Cota et al., 2017). The dataset and the results of other researchers can be 
accessed through (SchedulingResearch, 2022). 

6.2 Testing VND_KMP_SP 

6.2.1 Testing VND_KMP_SP on small dataset 
The proposed VND_KMP_SP algorithm was run 50 times for each data file using a balanced-random initial 
algorithm on a small dataset. The Cmax values obtained under different scenarios and initial solutions are grouped 
by the number of machines and jobs. The results are presented in Table 3. 

Table 3. Average Cmax Values for VND_KMP_SP Algorithm on Small Dataset Grouped by Number of Machines 
and Jobs 

machines jobs Balanced-
random 

scenario -1 
(VND) 

scenario -2  scenario -3 scenario -4 

2 6 467.676 419.968 418.880 416.512 418.460 

2 7 599.843 528.648 523.541 522.727 523.440 

2 8 615.835 558.229 555.761 552.149 552.896 

2 9 743.924 654.793 650.467 645.248 647.107 

2 10 770.911 698.211 693.653 688.008 690.609 

2 11 890.765 783.955 777.759 769.104 774.276 

4 6 315.395 281.159 267.207 273.863 267.813 

4 7 322.011 288.125 276.287 279.723 277.176 

4 8 327.483 299.732 289.931 296.623 289.591 

4 9 446.104 389.524 373.972 378.749 374.844 

4 10 469.175 412.669 398.072 400.733 397.380 
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4 11 479.261 426.984 412.529 410.853 411.833 

6 8 313.833 278.704 259.276 268.360 259.725 

6 9 322.355 287.687 269.043 273.920 268.793 

6 10 329.653 296.924 279.063 285.601 278.844 

6 11 332.701 301.708 285.552 289.047 285.792 

8 10 317.083 278.535 254.501 265.771 254.341 

8 11 323.837 288.816 265.243 271.511 265.281 

According to Table 3, The use of the proposed parameters results in average best outcomes compared to the basic 
VND algorithm. When the number of machines is 2, Scenario 3 is the most successful. However, as the number 
of machines increases, the effectiveness of Scenario 2 and Scenario 4 increases. 

The proposed VND_KMP_SP algorithm has been compared with previously used algorithms on the same small 
dataset. For each compared algorithm, the known best results for all instances (Cmax_alg) were compared with 
the best results from the test scenarios of the proposed algorithm (Cmax_ scenario). The error percentages were 
calculated using Equation 1.  

𝑒𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 =
C𝑚𝑎𝑥_𝑎𝑙𝑔 − C𝑚𝑎𝑥_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

C𝑚𝑎𝑥_𝑎𝑙𝑔
𝑥100 (10)

The averages of the values obtained with Equation 1 have been calculated for all instances. The average error 
percentages are provided in Table 4. 

Table 4. Averages of Initial Solution Improvement Percentages by Number of Machines with VND_KMP_SP 
Algorithm 

Algorithm scenario-1 scenario-2 scenario -3 scenario -4 

Meta-RaPS (Rabadi et al. (2006)) 4.093111 1.738846 2.079439 1.618032 

Tabu Search (Helal et al. (2006)) 1.600028 -0.66695 -0.3482 -0.78759 
Ant Colony Optimization (Arnaout et al. 
(2010)) 4.087209 1.733748 2.074086 1.61281 
Ant Colony Optimization (Arnaout et al. 
(2010)) 1.817143 2.145203 1.675349 1.672795 

When examining Table 4, it is observed that the VND_KMP_SP algorithm, run 50 times, produces better results 
than the commonly used Tabu Search algorithm. Additionally, it achieves results close to those of population-
based algorithms such as Ant Colony Optimization. It is evident that the effectiveness of the VND_KMP_SP 
algorithm increases when its parameters are adjusted in the scenarios.  

While VND_KMP_SP algorithm performs better than the metaheuristic Tabu Search algorithm in solving 
problems, it does not outperform the population-based Ant Colony Optimization algorithm. The goal of this study 
is not necessarily to develop a superior algorithm but to enhance the effectiveness of the basic VND algorithm 
with the proposed parameters. 

6.2.2 Testing VND_KMP_SP on big dataset 

The proposed VND _KMP_SP algorithm was run 50 times on a large dataset using a balanced-random initial 
algorithm for each data file. The improvement percentages of the initial solution Cmax values (Cmax_bas) 
compared to the Cmax values from the tested scenarios (Cmax_ scenario) were calculated using Equation 2.  

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 =
C𝑚𝑎𝑥_𝑏𝑎𝑠 − C𝑚𝑎𝑥_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

C𝑚𝑎𝑥_𝑏𝑎𝑠
𝑥100 (11)

The averages of the development percentages were calculated and grouped according to the number of jobs and 
machines, and the results in Table 5 and Table 6 were obtained. The best results in the tables are indicated in bold. 

Table 5. Average of initial solution improvement percentages according to the number of jobs with the 
VND_KMP_SP algorithm 

Machines scenario -1 scenario -2 scenario -3 scenario -4 

2 8.594 9.521 11.039 10.359 
4 7.62 10.106 11.78 10.869 
6 8.591 11.707 12.941 12.295 
8 8.186 11.465 12.507 11.929 
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10 6.884 10.115 10.678 10.469 
12 8.397 12.302 12.69 12.537 

When Table 5 is examined, it can be seen that the most successful scenario in developing the balanced-random 
starting solution according to the number of machines is scenario-3, where one of the machines is forced to choose 
a critical machine and the constraint parameter is variable. 

Table 6. Average of initial solution improvement percentages according to the number of jobs with the 
VND_KMP_SP algorithm  

Jobs scenario -1 scenario -2 scenario -3 scenario -4 
20 9.533 13.87 13.501 13.939 
40 8.809 11.978 12.915 12.486 
60 7.834 10.429 11.739 11.03 
80 7.663 10.062 11.496 10.697 

100 7.794 10.114 11.675 10.853 
120 6.638 8.763 10.309 9.452 

When Table 6 is examined, it is seen that similar results are obtained when grouped according to the number of 
jobs and scenario-3 is the most successful scenario. It has been observed that when the number of jobs is low, 
restricting only the jobs on the critical machine (scenario-4) gives better results. 

7. Conclusion 
In this study, a newly adapted VND algorithm is proposed to solve the UPMSPSDST. The proposed new algorithm 
tests the effectiveness of two new parameters in four different scenarios. The proposed new VND_KMP_SP 
algorithm suggests an effective critical machine selection parameter for scheduling problems with the objective 
function Cmax. The proposed critical machine selection parameter has added efficiency to the machine selection 
and has been effective in reducing the Cmax value. The other proposed constraint parameter has been found to be 
beneficial in reducing the Cmax value by preventing job changes in scheduling problems with sequence-dependent 
setup times. The proposed VND_KMP_SP algorithm can solve the UPMSPSDST and other scheduling problems 
more effectively by being used in hybrid form with other metaheuristic algorithms. The effectiveness of the 
parameters can be investigated more extensively by adding new neighborhood structures. Also the proposed 
algorithm may use with local searches in the VNS algorithm. The effectiveness of the proposed algorithm can be 
investigated with local searches in the VNS algorithm. 
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