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Abstract. In this study, we first define the concept of neutrosophic β-open
set. Then, using this new set definition, we present neutrosophic β-compact

and neutrosophic β-closed spaces and examine their properties. Also, we clas-

sify these spaces using the concept of neutrosophic filterbase, which is intro-
duced for the first time in this study. And, relationships between these different

types and forms of compactness are investigated.

1. Introduction

The concept of compactness is one of the indispensable characters of general
topology and other topology forms. In general topology, these concepts of β-open
sets and β-continuous functions were first introduced by Abd El-Monsef [1]. Later,
these concepts were adapted to different topology forms and some interesting prop-
erties of them were investigated in different forms of topology as in [4, 6, 8]. By
using these notions, the basic classical results that have been going on in the general
topology from the very beginning are generalized. The aim of this paper is to de-
fine and investigate the concepts of neutrosophic β-compactness and neutrosophic
β-closed spaces. Also, the concept of neutrosophic filterbases is presented and by
using this, we characterize these new types of compactness and space. Additionally,
the relationship between these new types and some different forms of compactness
in neutrosophic topology is clarified and a comparison between them is established.

2. Preliminaries

In this section, we present the basic definitions related to neutrosophic set theory.
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Definition 2.1. ([10]) A neutrosophic set A on the universe set X is defined as:

A = {〈x, TA (x) , IA (x) , FA (x)〉 : x ∈ X} ,
where T , I, F : X → ]−0, 1+[ and −0 ≤ TA (x) + IA (x) + FA (x) ≤ 3+.

Scientifically, membership functions, indeterminacy functions and non-membership
functions of a neutrosophic set take value from real standart or nonstandart subsets
of ]−0, 1+[. However, these subsets are sometimes inconvenient to be used in real
life applications such as economical and engineering problems. On account of this
fact, we consider the neutrosophic sets, whose membership function, indeterminacy
functions and non-membership functions take values from subsets of [0, 1].

Definition 2.2. ([7]) Let X be a nonempty set. If r, t, s are real standard or non
standard subsets of ]−0, 1+[ then the neutrosophic set xr,t,s is called a neutrosophic
point in X given by

xr,t,s(xp) =

{
(r, t, s), if x = xp
(0, 0, 1), if x 6= xp

For xp ∈X, it is called the support of xr,t,s, where r denotes the degree of mem-
bership value, t denotes the degree of indeterminacy and s is the degree of non-
membership value of xr,t,s.

Definition 2.3. ([9]) Let A be a neutrosophic set over the universe set X. The com-

plement ofA is denoted byAc and is defined by: Ac =
{〈
x, FF̃ (e)(x), 1− IF̃ (e)(x), TF̃ (e)(x)

〉
: x ∈ X

}
.

It is obvious that [Ac]c = A.

Definition 2.4. ([9]) Let A and B be two neutrosophic sets over the universe
set X. A is said to be a neutrosophic subset of B if TA(x) ≤ TB(x), IA(x) ≤
IB(x), FA(x) ≥ FB(x), every xinX. It is denoted by A ⊆ B. A is said to be
neutrosophic soft equal to B if A ⊆ B and B ⊆ A. It is denoted by A = B.

Definition 2.5. ([9]) Let F1 and F2 be two neutrosophic soft sets over the universe
set X. Then their union is denoted by F1 ∪ F2 = F3 is defined by:

F3 = {〈x, TF3
(x), IF3

(x), FF3
(x) : x ∈ X〉},

where
TF3(x) = max{TF1(x), TF2

(x)},

IF3(x) = max{IF1(x), IF2
(x)},

FF3(x) = min{FF1(x), FF2
(x)}.

Definition 2.6. ([9]) Let F1 and F2 be two neutrosophic soft sets over the universe
set X. Then their intersection is denoted by F1 ∩ F2 = F4 is defined by:

F4 = {〈x, TF4
(x), IF4

(x), FF4
(x) : x ∈ X〉},

where
TF4(x) = min{TF1(x), TF2

(x)},

IF4(x) = min{IF1(x), IF2
(x)},
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FF4(x) = max{FF1(x), FF2(x)}.

Definition 2.7. ([9]) A neutrosophic set F over the universe set X is said to be
a null neutrosophic set if TF (x) = 0, IF (x) = 0, FF (x) = 1, every x ∈ X. It is
denoted by 0X .

Definition 2.8. ([9]) A neutrosophic set F over the universe set X is said to be
an absolute neutrosophic set if TF (x) = 1, IF (x) = 1, FF (x) = 0, every x ∈ X. It
is denoted by 1X .

Clearly 0cX = 1X and 1cX = 0X .

Definition 2.9. ([9]) Let NS(X) be the family of all neutrosophic sets over the
universe the set X and τ ⊂ NS(X). Then τ is said to be a neutrosophic topology
on X if:

1) 0X and 1X belong to τ ;
2) the union of any number of neutrosophic soft sets in τ belongs to τ ;
3) the intersection of a finite number of neutrosophic soft sets in τ belongs to τ .

Then (X, τ) is said to be a neutrosophic topological space over X. Each member
of τ is said to be a neutrosophic open set [9].

Definition 2.10. ([9]) Let (X, τ) be a neutrosophic topological space over X and
F be a neutrosophic set over X. Then F is said to be a neutrosophic closed set iff
its complement is a neutrosophic open set.

Definition 2.11. ([2]) A neutrosophic point xr,t,s is said to be neutrosophic quasi-
coincident (neutrosophic q-coincident, for short) with F , denoted by xr,t,s q F if
and only if xr,t,s * F c. If xr,t,s is not neutrosophic quasi-coincident with F , we
denote by xr,t,s q̃ F .

Definition 2.12. ([2]) A neutrosophic set F in a neutrosophic topological space
(X, τ) is said to be a neutrosophic q-neighborhood of a neutrosophic point xr,t,s if
and only if there exists a neutrosophic open set G such that xr,t,s q G ⊂ F .

Definition 2.13. ([2]) A neutrosophic set G is said to be neutrosophic quasi-
coincident (neutrosophic q-coincident, for short) with F , denoted by G q F if and
only if G * F c. If G is not neutrosophic quasi-coincident with F , we denote by G
q̃ F .

Definition 2.14. ([3]) A neutrosophic point xr,t,s is said to be a neutrosophic
interior point of a neutrosophic set F if and only if there exists a neutrosophic open
q-neighborhood G of xr,t,s such that G ⊂ F . The union of all neutrosophic interior
points of F is called the neutrosophic interior of F and denoted by F ◦.

Definition 2.15. ([2]) A neutrosophic point xr,t,s is said to be a neurosophic cluster
point of a neutrosophic set F if and only if every neutrosophic open q-neighborhood
G of xr,t,s is q-coincident with F . The union of all neutrosophic cluster points of
F is called the neutrosophic closure of F and denoted by F -.

Definition 2.16. ([2]) Let f be a function from X to Y . Let B be a neutro-
sophic set in Y with members hip function TB(y), indeterminacy function IB(y)
and non-membership function FB(y). Then, the inverse image of B under f , written
as f−1(B), is a neutrosophic subset of X whose membership function, indetermi-
nacy function and non-membership function are defined as Tf−1(B)(x) = TB(f(x)),
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If−1(B)(x) = IB(f(x)) and Ff−1(B)(x) = FB(f(x)) for all x in X, respectively.
Conversely, let A be a neutrosophic set in X with membership function TA(x), in-
determinacy function IA(x) and non-membership function FA(x). The image of A
under f , written as f(A), is a neutrosophic subset of Y whose membership function,
indeterminacy function and non-membership function are defined as

Tf(A)(y) =

{
supz∈f−1(y){TA(z)}, if f−1(y) is not empty,

0, if f−1(y) is empty,

If(A)(y) =

{
supz∈f−1(y){IA(z)}, if f−1(y) is not empty,

0, if f−1(y) is empty,

Ff(A)(y) =

{
supz∈f−1(y){FA(z)}, if f−1(y) is not empty,

0, if f−1(y) is empty,

for all y in Y , where f−1(y) = {x : f(x) = y}, respectively.

3. Some Definitions

This section provides some new definitions that form the cornerstones of the
sections that follow.

Definition 3.1. A neutrosophic set F in a neutrosophic topological space (X, τ) is
said to be

Neutrosophic semiopen, if F ⊆ F ◦,
Neutrosophic preopen, F ⊆ (F )◦,

Neutrosophic β-open, F ⊆ (F )◦. Equivalently, if there exists a neu-
trosophic preopen set A such that A ⊆ F ⊆ A.

It is obvious that each neutrosophic semiopen and neutrosophic preopen neutro-
sophic set implies neutrosophic β-open.

Definition 3.2. If, F be a neutrosophic set in neutrosophic topological space (X, τ)
then, F -

p =
⋂
{F : F ⊆ A, A is neutrosophic preclosed} (resp. F ◦p =

⋃
{F :

F ⊆ A, A is neutrosophic preopen}) is called a neutrosophic preclosure of F (resp.
neutrosophic preinterior of F).

Definition 3.3. If, F be a neutrosophic set in neutrosophic topological space (X, τ)
then, F -

s =
⋂
{F : F ⊆ A, A is neutrosophic semiclosed} (resp. F ◦s =

⋃
{F : F ⊆

A, A is neutrosophic semiopen}) is called a neutrosophic semiclosure of F (resp.
neutrosophic semi-interior of F).

Definition 3.4. If, F be a neutrosophic set in neutrosophic topological space (X, τ)
then, F -

β =
⋂
{F : F ⊆ A, A is neutrosophic β − closed} (resp. F ◦s =

⋃
{F : F ⊆

A, A is neutrosophic β − open}) is called a neutrosophic β-closure of F (resp.
neutrosophic β-interior of F ).

It is obvious that (F c)-β = (F ◦β )c and (F c)◦β = (F -
β)c.
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Definition 3.5. Let f : (X, τ) → (Y, σ) be a function from a neutrosophic topo-
logical space (X, τ) into a neutrosophic topological space (Y, σ). The function f is
said to be neutrosophic β-continuous, if f−1(A) is a neutrosophic β-open set of X,
for each A ∈ σ.

Definition 3.6. Let f : (X, τ) → (Y, σ) be a function from a neutrosophic topo-
logical space (X, τ) into a neutrosophic topological space (Y, σ). The function f is
said to be neutrosophic Mβ-continuous, if f−1(A) is a neutrosophic β-open set of
X, for each neutrosophic β-open set A in (Y, σ).

Lemma 3.1. Let f : (X, τ)→ (Y, σ) be a function from a neutrosophic topological
space (X, τ) into a neutrosophic topological space (Y, σ). Then the following are
equivalent:

a) f is neutrosophic Mβ-continuous.
b) f(F -

β) ⊆ (f(F ))-β, for every neutrosophic set F in (X, τ):

Proof. a) =⇒ b): Let F be a neutrosophic set in (X, τ), then f(F ))-β is neutro-

sophic β-closed. By (a), f−1(f(F ))-β is neutrosophic β-closed and so f−1(f(F ))-β =

(f−1(f(F ))-β)-β . Since F ⊆ f−1(f(F )), F -
β ⊆ (f−1(f(F )))-β ⊆ (f−1((f(F ))-β))-β =

f−1(f(F ))-β). Hence f(F -
β) ⊆ (f(F ))-β .

b) =⇒ a): Let G be a neutrosophic β-closed in (Y, σ): By (b), if F = f−1(G);
then (f−1(G))-β ⊆ f−1((f(f−1(G)))-β) ⊆ f−1(G-

β) = f−1(G). Since f−1(G) ⊆
(f−1(G))-β , then f−1(G) = (f−1(G))-β . Hence f−1(G) is a neutrosophic β-closed in

set in (X, τ). Hence f is neutrosophic Mβ-continuous. �

Lemma 3.2. Let f : (X, τ)→ (Y, σ) be a function from a neutrosophic topological
space (X, τ) into a neutrosophic topological space (Y, σ). Then the following are
equivalent:

a) f is neutrosophic β-continuous.
b) f(F -

β) ⊆ (f(F ))-, for every neutrosophic set F in (X, τ):

Proof. Obvious. �

Theorem 3.3. If f : (X, τ) → (Y, σ) is neutrosophic open function[5], then
f−1(G-) ⊆ (f−1(G))- for every neutrosophic set G in (Y, σ).

Definition 3.7. A collection of neutrosophic subsets ω of a neutrosophic topological
space (X, τ) is said to form a neutrosophic filterbases if and only if, for every finite
collection {Fi : i = 1, ..., n},

⋂n
i=1 Fi 6= 0x.

Definition 3.8. A collection ϕ of neutrosophic sets in a neutrosophic topologi-
cal space (X, τ) is said to be cover of a neutrosophic set G of X if and only if,
T(∪F∈ϕF )(x) = 0, I(∪F∈ϕF )(x) = 0 and F(∪F∈ϕF )(x) = 0, where x is any support in
G. A neutrosophic cover ϕ of a neutrosophic set G in a neutrosophic topological
space (X, τ) is said to have a finite subcover if and only if, there exists a finite subcol-
lection ρ = {F1, ..., Fn} of ϕ such that T(

⋃n
i=1 Fi)

(x) ≥ TG(x), I(
⋃n
i=1 Fi)

(x) ≥ IG(x),

and F(
⋃n
i=1 Fi)

(x) ≥ FG(x), where x is any support in G.

Definition 3.9. A neutrosophic topological space (X, τ) is said to be neutrosophic
strongly compact if and only if, every neutrosophic preopen cover of X has a finite
subcover.
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Definition 3.10. A neutrosophic topological space (X, τ) is said to be neutrosophic
semicompact if and only if, every neutrosophic semiopen cover of X has a finite
subcover.

Definition 3.11. A neutrosophic topological space (X, τ) is said to be neutrosophic
almost compact if and only if, every neutrosophic open cover of X has a finite
subcollection whose closures cover X .

Definition 3.12. A neutrosophic topological space (X, τ) is said to be neutrosophic
S-closed if and only if, every neutrosophic semiopen cover of X has a finite subcol-
lection whose closures cover X.

Definition 3.13. A neutrosophic topological space (X, τ) is said to be neutrosophic
s-closed if and only if, every neutrosophic semiopen cover of X has a finite subcol-
lection whose semiclosures cover X.

Definition 3.14. A neutrosophic topological space (X, τ) is said to be neutrosophic
P-closed if and only if, every neutrosophic preopen cover of X has a finite subcol-
lection whose preclosures cover X.

4. Neutrosophic β-Compact Space

In this subheading, we introduce the term neutrosophic β-compactness, which
forms the basis of our study. Then, we examine the relationship of this new concept
we introduced with other concepts introduced for the first time in this study and
conduct an in-depth research on its properties.

Definition 4.1. A neutrosophic topological space (X, τ) is said to be neutrosophic
β-compact if and only if, for every family ϕ of neutrosophic β-open sets such that
∪G∈ϕG = 1X , there is a finite subfamily ω ⊆ ϕ such that ∪G∈ωG = 1X .

Definition 4.2. A neutrosophic set δ in a neutrosophic topological space (X, τ) is
said to be neutrosophic β -compact relative to (X, τ) if and only if, for every family
ϕ of neutrosophic β-open sets such that T(∪F∈ϕF )(x) ≥ Tδ(x), I(∪F∈ϕF )(x) ≥ Iδ(x)
and F(∪F∈ϕF )(x) ≤ Fδ(x), where x is any support in G, there is a finite subfamily
ρ ⊆ ϕ such that T(∪F∈ρF )(x) ≥ Tδ(x), I(∪F∈ρF )(x) ≥ Iδ(x) and F(∪F∈ρF )(x) ≤
Fδ(x), where x is any support in G.

Remark. Since each of neutrosophic semiopenness and neutrosophic preopenness
implies neutrosophic β-openness, it is clear that every neutrosophic β-compactness
implies each of neutrosophic strongly compactness and neutrosophic semicompact-
ness. But the converse need not to be true.

Theorem 4.1. A neutrosophic topological space (X, τ) is neutrosophic β-compact
if and only if, for every collection {Fi : i ∈ I} of neutrosophic β-closed neutrosophic
sets in (X, τ) having the finite intersection property

⋂
i∈I Fi 6= 0x.

Proof. Let {Fi : i ∈ I} be a collection of neutrosophic β-closed sets with the finite
intersection property. Suppose that

⋂
i∈I Fi = 0X . Then,

⋃
i∈I F

c
i = 1X . Since

{F ci : i ∈ I} is a collection of neutrosophic β-open sets cover of X, then from the
neutrosophic β-compactness of X it follows that there exists a finite subset J ⊆ I
such that

⋃
j∈J F

c
j = 1X . Then,

⋂
j∈J Fj = 0X , which gives a contradiction and

therefore
⋂
i∈I Fi 6= 0X .

Conversely, Let {Fi : i ∈ I} be a collection of neutrosophic β-open sets cover of
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X. Suppose that for every finite subset J ⊆ I, we have
⋃
j∈J Fj 6= 1X . Then,⋂

j∈J F
c
J 6= 0X . Hence {F ci : i ∈ I} satisfies the finite intersection property. Then,

from the hypothesis we have
⋂
i∈I F

c
i 6= 0X , which implies

⋃
j∈J Fj 6= 1X and this

contradicting that {Fi : i ∈ I} is a neutrosophic β-open cover of X. Thus, X is
neutrosophic β-compact. �

Now, we give some results of neutrosophic β-compactness in terms of neutro-
sophic filterbases.

Theorem 4.2. A neutrosophic topological space (X, τ) is neutrosophic β-compact
if and only if, every filterbases µ in (X, τ),

⋂
H∈µH

-
β 6= 0X .

Proof. Let ϕ be a neutrosophic β-open cover of X and ϕ have no a finite subcover.
Then, for every finite subcollection {F1, ..., Fn} of ϕ, there exists x ∈ X such that
TFj (x) < 1 or IFj (x) < 1 or FFj (x) > 0 for every j = 1, ...., n. Then, TF cj (x) > 0

or IF cj (x) > 0 or FF cj (x) < 1. So,
⋂
j∈J F

c
j 6= 0X . {F cj : Fj ∈ ϕ} forms a filterbases

in (X, τ). Since ϕ is neutrosophic β-open cover of X , then TFj (x) = 1, IFj (x) = 1
and FFj (x) = 0 for every x ∈ X and hence

⋂
Fj∈ϕ(F cj )-β =

⋂
Fj∈ϕ F

c
j = 0X which is

a contradiction. Then, every neutrosophic β-open cover of X has a finite subcover
and hence X is neutrosophic β-compact.
Conversely, suppose there exists a filterbases µ such that

⋂
H∈µH

-
β = 0X . So,⋃

H∈µ(H-
β)c = 1X . Hence, {(H-

β)c : H ∈ µ} is a neutrosophic β-open cover

in (X, τ). Since X is neutrosophic β-compact, then there exists a finite sub-
cover {((H1)-β)c, . . . . . . . . . . . . . . . , ((Hn)-β)c}. Then,

⋃n
i=1((H1)-β)c = 1X and hence⋃n

i=1(Hi)
c = 1X . So,

⋂n
i=1Hi = 0X , which is a contradiction, since the Hi are

members of filterbases µ. Therefore,
⋂
H∈µH

-
β 6= 0X every filterbases µ. �

Theorem 4.3. A neutrosophic set α in a neutrosophic topological space (X, τ) is
neutrosophic β-compact relative to X if and only if, for every filterbase µ such that
every finite number of members of µ is neutrosophic quasi-coincident with α,

(
⋂
H∈µ

H-
β) ∩ α 6= 0X .

Proof. Suppose that α is not be neutrosophic β-compact relative to X, then there
exists a neutrosophic β-open cover ϕ of α, which has a finite subcover. Then, for
every finite subcover δ of ϕ, α *

⋃
Hi∈δHi. So,

⋂
Hi∈δH

c
i * αc 6= 0X . Then,

µ = {Hi)
c : Hi ∈ ϕ} forms a filterbases and (

⋂
Hi∈δH

c
i )qα. From our assumption,

(
⋂
Hi∈δ(H

c
i )-β) ∩ α 6= 0X . Clearly, (

⋂
Hi∈δH

c
i ∩ α 6= 0X . Then, (

⋂
Hi∈δH

c
i 6= 0X .

This implies that (
⋃
Hi∈δHi 6= 1X . From this contradiction, α is neutrosophic β-

compact relative to X. Conversely, suppose that there exists a filterbases µ such
that every finite number of members of µ is neutrosophic quasi-coincident with α
and (

⋂
H∈µH

-
β) ∩ α = 0X .

This implies α ⊆ (
⋂
H ∈ µH-

β)c. So, α ⊆
⋃
H ∈ µ(H-

β)c. Then, ϕ = {(H-
β)c : H ∈ µ}

is neutrosophic β-open cover of α. Since α is neutrosophic β-compact relative to X,
then there exists a finite subcover δ of ϕ, say δ = {((Hi)

-
β)c, . . . . . . . . . . . . . . . , ((Hn)-β)c},

such that α ⊆
⋃n
i=1((Hi)

-
β)c. Then,

⋂n
i=1(Hi)

-
β ⊆ αc. This means that (

⋂n
i=1(Hi)

-
β)q̃α.

From thi contradiction, it is clear that, for every filterbase µ such that every finite
number of members of µ is neutrosophic quasi-coincident with α, (

⋂
H∈µH

-
β)∩α 6=

0X . �
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Theorem 4.4. Every neutrosophic β-closed subset of a neutrosophic β-compact
space is neutrosophic β-compact relative to X.

Proof. Let ϕ be a neutrosophic filterbases in X such that αq(
⋂
{H : H ∈ δ}) holds

for every finite subcollection δ of ϕ and a neutrosophic β-closed set α. Consider
ϕ∗ = {α}∪ϕ. For any finite subcollection δ∗ of ϕ∗, if α /∈ δ∗ then

⋂
δ∗ 6= 0X . If α ∈

δ∗ and since αq(
⋂
{H : H ∈ δ∗−{α}}), then

⋂
δ∗ 6= 0X . Hence δ∗ is a neutrosophic

filterbases in X. Since X is neutrosophic β-compact, then (
⋂
H ∈ ϕ∗(H-

β) 6= 0X .

So, (
⋂
H ∈ ϕ(H-

β)∩ α = (
⋂
H ∈ ϕ(H-

β)∩ α-
β 6= 0X . Hence by Theorem 4.3, we have

α is neutrosophic β-compact relative to X. �

Theorem 4.5. If a function f : (X, τ) → (Y, σ) is neutrosophic Mβ-continuous
and α is neutrosophic β-compact relative to X, then so is f(α).

Proof. Let {Fi : i ∈ I} be a neutrosophic β-open cover of f(α). Since f is
neutrosophic Mβ-continuous, {f−1(Fi) : i ∈ I} is neutrosophic β-open cover of
α. Since α is neutrosophic β-compact relative to X, there is a finite subfam-
ily {f−1(Fi) : i = 1, . . . . . . , n} such that α ⊆

⋃n
i=1 f

−1(Fi). Then, f(α) ⊆
f(
⋃n
i=1 f

−1(Fi)) ⊆
⋃n
i=1 Fi. Therefore, f(α) is neutrosophic β-compact relative

to Y . �

Lemma 4.6. If f : (X, τ)→ (Y, σ) is neutrosophic open and neutrosophic contin-
uous function, then f is neutrosophic Mβ-continuous.

Proof. Let ω be a neutrosophic β-open set in Y ; then ω ⊆ (ω)◦. So, f−1(ω) ⊆
f−1((ω)◦) ⊆ f−1((ω)◦) . Since f is neutrosophic continuous[5], then f−1((ω)◦) =
(f−1((ω)◦)). Also by Theorem 3.3, f−1((ω)◦) = (f−1((ω)◦))◦ ⊆ (f−1(ω))◦ ⊆
(f−1(ω))◦. Thus, f−1(ω) ⊆ f−1((ω)◦) ⊆ ((f−1(ω)))◦). This implies that f−1(ω)
is neutrosophic β-open. So, f is neutrosophic Mβ-continuous. �

Corollary 4.7. Let f : (X, τ) → (Y, σ) be neutrosophic open and neutrosophic
continuous function. Consider that X is neutrosophic β-compact. Then, f(X) is
neutrosophic β-compact .

Proof. It is follows directly from Lemma 4.6 and Theorem 4.5. �

Definition 4.3. A function f : (X, τ)→ (Y, σ) is said to be neutrosophic Mβ-open
if and only if, the image of every neutrosophic β-open set in X is neutrosophic β-
open in Y .

Theorem 4.8. Let f : (X, τ) → (Y, σ) be a neutrosophic Mβ-open bijective func-
tion and Y is neutrosophic β-compact, then X neutrosophic β-compact.

Proof. Let {Fi : i ∈ I} be a neutrosophic β-open cover of X. Then, {f(Fi) : i ∈ I}
is a neutrosophic β-open cover of Y . Since Y is neutrosophic β-compact, there is
a finite subset J ⊆ I such that {Fj : j ∈ J} is a neutrosophic β-open cover of
Y . So, 1Y =

⋃
j∈J f(Fi). Since f is a neutrosophic Mβ-open bijective function,

1X = f−1(1Y ) = f−1(f(
⋃
j∈J Fj)) =

⋃
j∈J Fj . Therefore, X is neutrosophic β-

compact. �
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5. Neutrosophic β-Closed Spaces

Definition 5.1. A neutrosophic set α in a neutrosophic topological space (X, τ)
is said to be a neutrosophic βq-neighborhood of a neutrosophic point xr,t,s in X, if
there exists a neutrosophic β-open set F ⊆ α such that xr,t,sqF .

Proof. Let xr,t,s ∈ α-
β and there exists a neutrosophic βq-neighborhood G of xr,t,s

, Gq̃α. Then there exists a neutrosophic open set F ⊆ G in X such that xr,t,sqF ,
which implies F q̃α and hence α ⊆ F c. Since F c neutrosophic β-closed, α-

β ⊆ F c.

From xr,t,s /∈ F c, we see that xr,t,s /∈ α-
β . This is a contradiction. Conversely, let

xr,t,s /∈ α-
β =

⋂
{F : Fisβ − closedinX,α ⊆ F}. Then, there exists a neutrosophic

β-closed set F such that xr,t,s /∈ F and α ⊆ F . Hence, xr,t,sqF
c and αq̃F c, where

F c is neutrosophic β-open in X. Then, F c is a neutrosophic βq-neighborhood of
xr,t,s and αq̃F c. �

Definition 5.2. A neutrosophic topological space (X, τ) is said to be neutrosophic
β-closed if and only if, for every family ϕ of neutrosophic β-open sets such that⋃
H∈ϕH = 1X , there is a finite subfamily δ ⊆ ϕ such that

⋃
H∈δH

-
β = 1X .

Remark. From the above definition and other types of neutrosophic compactness,
one can draw the following diagram:

Neutrosophic semi− compact→ Neutrosophic s− closed→ Neutrosophic S − closed
↓ ↓

Neutrosophic β − compact → Neutrosophic β − closed
↓ ↓

Neutrosophic strongly compact→ Neutrosophic P − closed

Example 5.1. Let (X, τ) be a neutrosophic topological and neutrosphic sets αn
be defined as αn = {〈x, 1 − 1

n , 1 −
1
n ,

1
n 〉 : x ∈ X} for each n ∈ N+. Consider a

neutrosophic topological space (X, τ) that {αn : n ∈ N+} is a neutrosophic base for
τ . Then, {αn : n ∈ N+} is obviously a neutrosophic β-open cover of X. In (X, τ),
(αn)-β = 1X for each n ≥ 3. Then, X is neutrosophic β-closed but not neutrosophic
β-compact.

Remark. Example 5.1 also shows that:

(i) Each of the concepts neutrosphic s-closed, neutrosphic S-closed
and neutrosphic P-closed spaces does not imply neutrosphic β-compact.
(ii) Since {αn : n ∈ N+} is also neutrosophic semiopen cover of
X, then X is also neutrosophic β-closed space but not neutrosophic
semi-compact space.
(iii) Since {αn : n ∈ N+} is also neutrosophic preopen cover of
X, then X is also neutrosophic β-closed space but not neutrosophic
strongly compact space.

Example 5.2. Let X = [0, 1] and consider the following neutrosophic sets
α1 = {〈x, 1,7√

3
, 1,7√

3
, 1 − 1,7√

3
〉 : x ∈ X}, α2 = {〈x, 1,73√

3
, 1,73√

3
, 1 − 1,73√

3
〉 : x ∈ X}, α3 =

{〈x, 1,732√
3
, 1,732√

3
, 1 − 1,732√

3
〉 : x ∈ X}, α4 = {〈x, 1,7320√

3
, 1,7320√

3
, 1 − 1,7320√

3
〉 : x ∈ X},

α5 = {〈x, 1,73205√
3

, 1,73205√
3

, 1− 1,73205√
3
〉 : x ∈ X}, where

√
3 = 1, 7320508075688. . . . . .

Let ϕ = {αi : i ∈ N+} ∪ {0X , 1X}. It is clear that ϕ is a neutrosophic topology on
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X. Now, the collection {αi : i ∈ N+} is a neutrosophic semiopen (resp. neutro-
sophic preopen) cover of X but not has a finite subcover. So X is not neutrosophic
semicompact space (resp. neutrosophic strongly compact space). Since the neutro-
sophic semi-closure (resp. neutrosophic pre-closure) of every neutrosophic semiopen
(resp. neutrosophic preopen) set of X is 1X , then X is neutrosophic s-closed (resp.
neutrosophic P-closed).

Remark. Example 5.2 is also shows that each of the concepts neutrosophic S-closed
and neutrosophic P-closed spaces does not imply each of neutrosophic semicompact
and neutrosophic strongly compact spaces.

Remark. From the remark just after, Definition 4.2, Example 5.1,
the remark just after Example 5.1, Example 5.2 and the remark just
after Example 5.2, it is clear that:
(i) Neutrosophic S-closed and neutrosophic P-closed spaces are in-
dependent notions.
(ii) Neutrosophic S-closed and neutrosophic strongly compact spaces
are independent notions.
(iii) Neutrosophic P-closed and neutrosophic semicompact spaces
are independent notions.
(iv) Neutrosophic β-compact, neutrosophic semicompact and neu-
trosophic strongly compact spaces are independent notions.

Theorem 5.1. A neutrosophic topological space (X, τ) is neutrosophic β-closed if
and only if, for every neutrosophic β-open filterbases ϕ in (X, τ),

⋂
H∈ϕH

-
β 6= 0X .

Proof. Let δ be a neutrosophic β-open cover of X and let for every finite subfamily
ρ of δ,

⋃
B∈ρB

-
β 6= 1X . Then, 0X ⊂

⋂
B∈ρ(B

-
β)c. Thus, ϕ = {(B-

β)c : B ∈ δ} forms
a neutrosophic β-open filterbases in X. Since δ is a neutrosophic β-open cover of
X,

⋂
B∈δ B

c = 0X . For B ⊆ B-
β , (B-

β)c ⊆ Bc. As Bc is neutrosophic β-closed,

((B-
β)c)-β ⊆ Bc. So,

⋂
B∈δ((B

-
β)c)-β = 0X . This contradicts with our assumption.

This means that every neutrosophic β-open cover of X has a finite subfamily ρ such
that

⋃
B∈ρB

-
β = 1X . Hence, X is neutrosophic β-closed.

Conversely, suppose there exists a neutrosophic β-open filterbases ϕ in X such
that

⋂
H∈ϕH

-
β = 0X . So,

⋃
H∈ϕ(H-

β)c = 1X . Then, δ = {(H-
β)c : B ∈ ϕ} is

a neutrosophic β-open cover of X. Since X is neutrosophic β-closed, then δ has
a finite subfamily ρ such that

⋃
H∈ρ((H

-
β)c)-β = 1X . So,

⋂
H∈ρ(((H

-
β)c)-β)c = 0X .

Thus,
⋂
H∈ρH = 0X . This contradicts with our assumption that ϕ is a neutrosophic

filterbese in (X, τ). �

Definition 5.3. A neutrosophic set α in a neutrosophic topological space (X, τ) is
said to be neutrosophic β-closed relative to X if and only if, for every family δ of
neutrosophic β-open sets such that

⋃
B∈δ B = α, there is a finite subfamily ρ ⊆ δ

such that α ⊆
⋃
B∈ρB

-
β.

Theorem 5.2. A neutrosophic set α in a neutrosophic topological space (X, τ)
is neutrosophic β-closed relative to X if and only if, every neutrosophic β-open
filterbases ϕ in (X, τ), (

⋂
H∈ϕH

-
β) ∩ α = 0X , there exists a finite subfamily ω of ϕ

such that (
⋂
H∈ωH)q̃α.

Proof. Let α be a neutrosophic β-closed relative to X; suppose ϕ is a neutro-
sophic β-open filterbases in (X, τ) such that for every finite subfamily ω of ϕ,
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(
⋂
H∈ωH)qα but (

⋂
H∈ϕH

-
β)∩α = 0X . For every support x in α, T(

⋂
H∈ϕH

-
β)

(x) =

0, I(
⋂
H∈ϕH

-
β)

(x) = 0 and F(
⋂
H∈ϕH

-
β)

(x) = 1. This implies that, for every support

x in α, T(
⋂
H∈ϕ(H

-
β)
c)(x) = 1, I(

⋂
H∈ϕ(H

-
β)
c)(x) = 1 and F(

⋂
H∈ϕ(H

-
β)
c)(x) = 0. Then,

δ = {(H-
β)c) : B ∈ ϕ} is neutrosophic β-open cover of α and hence there exists a

finite subfamily ω ⊆ ϕ such that α ⊆ (
⋃
H∈ω((H-

β)c)-β . So,
⋂
H∈ω(((H-

β)c)-β)c ⊆
αc. Then,

⋂
H∈ω(((H-

β)◦β ⊆ αc. This means that
⋂
H∈ωH ⊆ αc. Therefore,

(
⋂
H∈ωH)q̃αc. This is a contradiction.

Conversely, let α not be a neutrosophic β-closed set relative to X; then there ex-
ists a neutrosophic β-open cover δ of α such that every finite subfamily ρ ⊆ δ,⋃
B∈ρB

-
β * α. Then, αc * (B-

β)c. This implies that
⋂
B∈ρ(B

-
β)c 6= 0X . So,

ϕ = {(B-
β)c : B ∈ δ} forms a neutrosophic β-open filterbases in (X, τ). Let

there exists a finite subfamily {(B-
β)c : B ∈ ρ} such that (

⋂
B∈ρ(B

-
β)c)q̃α. Then,

α ⊆
⋃
B∈ρB-

β
. Hence, exists a finite subfamily ρ ⊆ δ such that α ⊆

⋃
B∈ρB-

β
,

which is a contradiction. Then, for each finite subfamily ω = {(B-
β)c : B ∈ ρ}

of ϕ, we have (
⋂
B∈ρ(B

-
β)c)qα. From our assumption, (

⋂
B∈δ((B

-
β)c)-β ∩ α 6= 0X .

So,
⋂
B∈δ(((B

-
β)c)-β)c ∪ αc 6= 1X . Clearly,

⋂
B∈δ(((B

-
β)c)-β)c ∪ αc 6= 1X . Then,⋃

B∈δ(((B
-
β)◦β 6= 1X . So,

⋃
B∈δ B 6= 1X . This contradicts with the fact that δ is

a neutrosophic β-open cover of α. Therefore α is neutrosophic β-closed relative to
X. �

Definition 5.4. A neutrosophic set α in a neutrosophic topological space (X, τ) is
said to be neutrosophic β-regular, if it is both neutrosophic β-open and neutrosophic
β-closed set.

Proposition 5.3. If α is neutrosophic β-open set in (X, τ), then α-
β is neutrosophic

β-regular.

Proof. Since α-
β is neutrosophic β-closed, we must show that α-

β is neutrosophic

β-open. Since α is neutrosophic β-open in (X, τ), ϑ ⊆ α ⊆ ϑ- holds for some
neutrosophic preopen set ϑ in (X, τ). Therefore, we have ϑ ⊆ ϑ-β ⊆ α-

β ⊆ ϑ- and
hence α-

β is neutrosophic β-open. �

Theorem 5.4. For a neutrosophic topological space (X, τ), the following are equiv-
alent:

(a) (X, τ) is a neutrosophic β-space.
(b) Every neutrosophic β-regular cover of X has a finite subcover.
(c) For every collection {Bi : i ∈ I} of neutrosophic β-regular sets
such that (

⋂
i∈I Bi = 0X , there exists a finite subset G ⊆ I such

that (
⋂
i∈GBi = 0X .

Proof. It is obvious from Proposition 5.3 and from the facts that, for every col-
lection {Bi : i ∈ I}, (

⋃
i∈I Bi)

c =
⋂
i∈I(Bi)

c, (
⋂
i∈I Bi)

c =
⋃
i∈I(Bi)

c and B is
neutrosophic β-open set if and only if, Bc is neutrosophic β-closed set. �

Theorem 5.5. Let f : (X, τ) → (Y, σ) be a neutrosophic β-continuous surjection
function. If (X, τ) is neutrosophic β-closed space, then (Y, σ) is neutrosophic almost
compact.

Proof. Let {Bi : i ∈ I} be a neutrosophic open cover of Y . Then, {f−1(Bi) : i ∈ I}
is a neutrosophic β-open cover of X. By hypothesis, there exists a finite subset G ⊆
I such that (

⋃
i∈G(f−1(Bi))

-
β = 1X . From the surjectivity of f and by Lemma 3.2,
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1Y = f(1X) = f((
⋃
i∈G(f−1(Bi))

-
β) ⊆

⋃
i∈G(f(f−1(Bi)))

-
β =

⋃
i∈G(Bi)

-. Hence

(Y, σ) is neutrosophic almost compact. �

Using Lemma 3.1, we have also the following theorem which can proved similarly
to Theorem 5.5.

Theorem 5.6. If f : (X, τ) → (Y, σ) is neutrosophic Mβ-continuous surjection
function and (X, τ) is neutrosophic β-closed space, then (Y, σ) is so.

6. Conclusion

In our article, first of all, all the factors that make it necessary for us to do
this study and the definitions that form the cornerstones of our study are given in
the introduction and preliminaries section, respectively. In the third chapter, some
types of open sets and continuities, which have already been introduced and whose
properties have been examined in detail in general topology, but have never been
introduced before in neutrosophic spaces, are given and some properties of these
concepts are given. In the fourth and fifth sections, some types of space are given
using the new concepts given in the third section, and the relationships between
these spaces are shown through diagrams. In order to better demonstrate these
relationships, reverse examples were also given.
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