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Abstract

A multi-agent singular system is an extension of a traditional multi-agent system. The
behavior of neural networks within the brain is crucial for cognitive functions, making it
essential to understand the learning processes and the development of potential disorders.
This study utilizes the analysis of singular linear systems representing brain neural networks
to delve into the complexities of the human brain. In this context, the digraph approach is a
powerful method for unraveling the intricate neural interconnections. Directed graphs, or
digraphs, provide an intuitive visual representation of the causal and influential relationships
among different neural units, facilitating a detailed analysis of network dynamics. This
work explores the use of digraphs in analyzing singular linear multi-agent systems that
model brain neural networks, emphasizing their significance and potential in enhancing our
understanding of cognition and brain function.

1. Introduction

The brain’s architecture constitutes a complex recurrent neuronal network that can depicted through a digraph representation (see Figure 1.1).
In this depiction, nodes symbolize distinct brain regions, while edges signify the intensity of connections formed between these regions
during specific task execution.

Figure 1.1: Recurrent Neuronal Network.

The term “neuronal network” refers to a specific framework for understanding brain function, wherein neurons serve as the fundamental
computational entities and computational processes are interpreted through the lens of network interactions.
It has been shown ( [1]) that cognitive control and the ability to control brain dynamics powerfully suggest improving cognitive functions
and reversing the possible disorder in learning processes. The human brain can travel between diverse cognitive states. Its most significant
function is in linking multiple sources of information in large-scale networks that are required to solve complex cognitive problems and
strengthen memory.
Kriegeskorte in [2], states that neuronal network models fix a starting point of a new time for computational neuroscience, in which
participants bear a part in real-world labors that require broad knowledge and elaborate calculations.
Neural networks that control their functions have been managed using dynamic linear control systems. In this study, neural networks are
considered multi-agent systems, meaning they are systems of linear dynamic systems interconnected through a predetermined topology.
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Digraphs offer an intuitive visual representation of the causal and influential relationships between different neural units, allowing a detailed
analysis of the network dynamics, [3].
Various fields of engineering employ multi-agent systems to solve synchronization problems and address consensus problems of the systems
(see, for example, [4, 5]). On the other hand, it should be said that neural networks are also being studied as non-linear dynamic systems (see,
for example, [6]).
In many instances, it is challenging and costly to convert a description of the brain into a multi-agent linear dynamic system. This process
involves a combination of differential equations and purely algebraic constraints, naturally transforming them into state-space equations such
as:

ẋ1(t) = A1x1(t)+B1u1(t)
...

ẋk(t) = Akxk(t)+Bkuk(t)

 , (1.1)

where Ai ∈Mn(R), Bi ∈Mn×m(R), xi(t) ∈ Rn, ui(t) ∈ Rm, 1≤ i≤ k. Garcı́a-Planas in [7] showed that a description of the system using
equations of the type

E1ẋ1(t) = A1x1(t)+B1u1(t)
...

Ek ẋk(t) = Akxk(t)+Bkuk(t)

 , (1.2)

where Ei ∈Mn(R) are allowed to be singular matrices, may be much more suitable.
A block diagram is plotted in Figure 1.2.

Figure 1.2: Diagram of a multi-agent singular system.

Systems and control theory can provide insights into the theoretical control of the human brain. Research on brain interfaces and
neuromodulation indicates that changes in regional activity, measured by evoked potentials or other methods, can lead to alterations in brain
function dynamics, [8].
Although fully understanding the relationship between mathematical control measures and the limited knowledge of cognitive control in
neuroscience is challenging, even slight advances in this field can encourage further research and efforts to address learning difficulties such
as dyscalculia and other issues like the phenomenon of forgetting, [8].
Structural controllability theory can be a powerful method for managing structured linear systems. In [7], Garcia-Planas demonstrated
that structural controllability is a mathematical tool applicable to multi-agent singular systems, where each agent follows a predetermined
structure.

2. Preliminaries

To investigate the proposed control problems, addressing the complexity inherent in the brain’s structure is essential. This complexity
necessitates dividing the global model into several local submodels, each representing distinct brain regions with intricate and interconnected
network structures. By breaking down the global model into these local submodels, we can better understand and manage each region’s
specific dynamics and interactions. This approach enables us to conceptualize the brain as a collection of neuronal subnetworks, each
contributing to the overall function and working together towards common cognitive and physiological objectives. By focusing on these
localized models, we can develop more targeted and effective control strategies, ultimately enhancing our ability to understand and influence
brain function as a cohesive multi-network system.
Let’s consider a group of k agents as described in (1.2).
In our specific setup, the agents communicate according to the topology defined by the graph G with

i) Set of Vertices: V = {1, . . . ,k},
ii) Set of Edges: E = {(i, j) | i, j ∈V} ⊂V ×V .
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Figure 2.1: Multiagent graph.

The Figure (2.1) shows the graph that defines the topology on the participating agents in the system.
It is well known that each graph has an associated matrix called Laplacian; this matrix is defined as

L = (li j) =


|Ni| if i = j,
−1 if j ∈Ni,
0 otherwise.

Writing:

X (t) =

x1(t)
...

xk(t)

 , Ẋ (t) =

ẋ1(t)
...

ẋk(t)

 , U (t) =

u1(t)
...

uk(t)

 ,

E =

E1
. . .

Ek

 , A =

A1
. . .

Ak

 , B =

B1
. . .

Bk

 .

With these notations, it is possible to describe the multisystem as a system:

E Ẋ (t) = A X (t)+BU (t).

The description of the local interrelation between systems defined by the considered topology is given by the control:

ui(t) = Fi ∑
j∈Ni

(xi(t)− x j(t)), 1≤ i≤ k. (2.1)

That in a matrix description is

FU (t) = F (L ⊗ In)X (t),

where F =

F1
. . .

Fk

.

Then, the multisystem with interrelation control is described as:

E Ẋ (t) = A X (t)+BFU (t) = (A +BF (L ⊗ In))X (t). (2.2)

3. Controllability Character of a Singular Linear System

Controllability is a crucial property of dynamical systems, which is why there is an extensive body of literature addressing this concept
( [7, 9, 10], among others).
Typical features of singular systems Eẋ(t) = Ax(t)+Bu(t), which are unknown in the realm of state-space systems ẋ(t) = Ax(t)+Bu(t) are
possible impulsive responses to nonimpulsive excitations as well as provision for the consistency of initial conditions, complicating the
analysis and design of control strategies. Understanding these features is essential for determining the controllability of such systems.
The controllability character can be defined using the following rank conditions which are generalizations of Hautus [9], and Kalman [10],
conditions.
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Proposition 3.1. The dynamical Singular system Eẋ(t) = Ax(t)+Bu(t) is controllable if and only if:

rank
(

E B
)
= n,

rank
(

sE−A B
)
= n, ∀s ∈ C.

Proposition 3.2 ( [11]). The dynamical system Eẋ(t) = Ax(t)+Bu(t) is controllable if and only if the rank of the following matrix in
Mn2×((n−1)n+nm)(C) is n2

rank


E 0 0 . . . 0 B 0 0 . . . 0 0
A E 0 . . . 0 0 B 0 . . . 0 0
0 A E . . . 0 0 0 B . . . 0 0

. . . . . . . . .
0 0 0 . . . E 0 0 0 . . . B 0
0 0 0 . . . A 0 0 0 . . . 0 B

= n2.

We give evidence of the work applying it to simple example of a graph represented in Figure 3.1.

Figure 3.1: Example of a graph.

The system is

E =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , A =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

 , B =


1 0 0
2 0 0
1 0 1
0 1 0
3 0 1
1 0 0

 .

We have that

rank
(

E B
)
= 6,

rank
(

sE−A B
)
= 6, ∀s ∈ C.

Then, the singular system is controllable. So, there exist matrices F and G in such away that(E +BF) is invertible and the standard

system ẋ(t) = (E +BF)−1(A+BG)x(t)+Bu(t) is controllable. For example, we can consider F =

0 0 1 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

 and G =0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

The fact that

rankB = 3,
rank

(
B (E +BF)−1(A+BG)B

)
= 5,

rank
(
B (E +BF)−1(A+BG)B ((E +BF)−1(A+BG))2B

)
= 6,

ensures that taking suitable controls u1,u2,u3 it is possible to reach a desired state from a fixed initial state in a finite time.
For example, taking u1 = (1,0,−2.5), u2 = (−0.5,0,3) and u3 = (−1.5,0,3.5), it is possible to reach the node 5 from the node 6.
Writing A = (E +BF)−1(A+BG), we have:

A3x6 +A2Bu1 +ABu2 +Bu3 = x5.

Determining which B matrices ensure system controllability is challenging, especially when these matrices require the minimum number of
inputs. Liu et al. [12] suggest “the maximum coincidence algorithm” based on the network representation of the matrix to select the control
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nodes to ensure that systems are controllable. Yuan et al. in [13] exhibit a general framework based on the maximum multiplicity theory to
investigate the exact controllability of multiplex interrelated networks, focussing the study on the controllability amount defined by the
minimum set of drivers that are needed to control steering the whole system toward any desired state but the authors do not construct the
possible drivers. Garcı́a-Planas in [14] builds the matrices (drivers) based on the matrix A eigenvalues and its geometric multiplicity.
Given a linear dynamical system as Eẋ(t) = Ax(t)+Bu(t) that for plainness, from now on, we can write as the triple of matrices (E,A,B).
It is well known that the system has many possible control matrices B that can assure the controllability condition; for that, it suffices to
consider invertible matrices B ∈ Gl(n;R).
The objective is to identify the set of all possible matrices B with the minimum number of columns, corresponding to the minimum number
nB(E,A) of independent controllers necessary to manage the entire network.
Controllability with the minimum number of inputs is referred to as exact controllability.

Definition 3.3. Let (E,A) be a pair of matrices defining the homogeneous singular system Eẋ(t) = Ax(t). The exact controllability nB(E,A)
is the minimum of the rank of all possible matrices B making the system Eẋ(t) = Ax(t)+Bu(t) controllable.

nB(E,A) = min{rankB,∀B ∈Mn×i 1≤ i≤ n,(E,A,B) controllable}.

If confusion is not possible we will write simply nB.
To want to know nB makes it attractive to be able to use systems with the same properties, but due to the simplicity of their expression, the
computation is immediate. In this sense, we consider the following equivalence relation:

Definition 3.4. We say that two systems (E,A,B) and (Ē, Ā, B̄) are equivalent if and only if, there exist invertible matrices P and Q such
that (Ē, Ā, B̄) = (QEP,QAP,QB).

This equivalence relation corresponds with strict equivalence of the pencil
(

sE−A B
)
. So, the collection of invariants of the pencil are

the invariants for the system.
Besides, it is easy to prove that nB is invariant under this equivalence relation,

Proposition 3.5. The exact controllability nB is invariant under equivalence relation considered, that is to say: for any couple of invertible
matrices (Q,P),

nB(E,A) = nQB(QEP,QAP).

Proof.

rank
(

QEP QB
)
= rankQ

(
E B

)( P
I

)
= rank

(
E B

)
,

rank
(

sQEP−QAP QB
)
= rankQ

(
sE−A B

)( P
I

)
= rank

(
sE−A B

)
.

As a consequence, if necessary we can consider (E,A,B) in a simpler form. In particular, the triple of matrices (E,A,B) can be reduced to a
weaker form called “Quasi-Weierstraß form” (see [15]) in the following manner:
Let P =

(
V W

)
and Q =

(
EV AW

)−1. Matrices V ∈ Mn×r(C) and W ∈ Mn×(n−r)(C) are in such a way that
(

V W
)

and(
EV AW

)
are invertible.

(QEP,QAP,QB) =
((

Ir
N

)
,

(
Ar

In−r

)
,

(
B̄1
B̄2

))
= (Ẽ, Ã, B̃),

where Ar is some matrix and N is nilpotent.
The vector spaces ImV and ImW are spanned by the generalized eigenvector at the finite and infinite eigenvalues respectively, and they are
derived by the following recursive subspace iteration with a limited number of steps called Wong sequences [16].

V0 =Cn, Vi+1 = {v ∈Cn | Av ∈ E(Vi)},
W0 = {0}, Wi+1 = {v ∈Cn | Ev ∈ A(Wi)}.

verifying

V0 ⊇V1 ⊇ . . .⊇V` =V`+1 = . . .V`+q =V ∗ ⊇ KerA,
W0 ⊆W1 ⊆ . . .⊆ wm =Wm+1 = . . .Wm+q =W ∗.

It is easy to prove that `= m and satisfy AV ∗ ⊆ EV ∗ and EW ∗ ⊆ AW ∗.
Matrices V and W are defined in such away that V ∗ = ImV and W ∗ = ImW .

Remark 3.6. Not every matrix B having nB columns is valid to make the system controllable. For example if E = I, A = diag(1,2,3) and
B = (1,0,0)t , the system (A,B) is not controllable, (rank

(
B AB A2B

)
= 1 < 3, or equivalently rank

(
A−λ I B

)
= 2 for λ = 2,3.

For standard systems we have the following result.
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Proposition 3.7 ( [17]). Let µ(λi) = dimKer(A−λiI) be the geometric multiplicity of the eigenvalue λi. Then,

nB = maxi {µ(λi)}

In [14] a manner to obtain a set of minimal number of controls is presented.
We now extend the theorem to the case of singular systems.

Theorem 3.8. Let (E,A) the fixed homogeneous part of a singular system. The exact controllability nB is computed in the following manner.

nB = max{nE ,µ(λi)}

where nE = rank(E,B), µ(λi) = dimKer(λiE−A) and λi (for each i) is the eigenvalue of pencil sE−A.

Proof. Proposition 3.5 permit us to consider the system in its canonical reduced form

rank(E,B) = rank
((

I
N

)(
B̄1
B̄2

))
= n1 + rank(N, B̄2),

N = diag(N1, . . . ,NnE ) with Ni =


0 1

. . .
. . .
0 1

0

 .

Taking

B̄2 =



0
...
1

. . .
0
...
1
0
...
0



=
(

w∞
1 . . . w∞

nE

)
,

we have that rank(N, B̄2) = n2.

rank
(

λiE−A B
)
= rank

(
λi

(
I

N

)
−
(

J
I

)(
B̄1
B̄2

))
= n2 + rank

(
λiI− J B̄1

)
.

J = diag(J1(λ1), . . . ,Jr(λr)),Ji(λi) = diag(Ji1(λi), . . . ,Jiri
(λi)),

and

Ji j (λi) =


λi 1

. . .
. . .
λi 1

λi

 .

Taking

B̄1i =



0
...
1

. . .
0
...
1
0
...
0



=
(

wλi
1 . . . wλi

µi(λi)

)
,
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we have that rank(λiI− J, B̄ii) = µ(λi).
Consider now the following collection of vectors

wλ1
1 , . . . ,wλ1

` ,
...
wλr

1 , . . . ,wλr
` ,

w∞
1 , . . . ,w

∞
` ,

where `= max(µ(λ1), . . . ,µ(λr),nE) and we complete each series of vectors with the zero vectors in case its length is less than `.
Finally we construct the family

w1 = wλ1
1 + . . .+wλr

1 +w∞
1 , . . . ,w` = wλ1

` + . . .+wλr
` +w∞

` .

Clearly,

rank
(

E B
)
= n,

rank
(

λE−A B
)
= n, for all λ ∈ C.

Now, it suffices to remark that if we consider B = (bi j) ∈Mn×m(C) with m < `, we have

i) if `= nE then rank
(

E B
)
< n,

ii) if `= µ(λi) then rank
(

λiE−A B
)
< n.

4. Controllability of Multiagent Singular Neural Networks

We are concerned about bringing the output of the system (1.1) to a reference value and keeping it there, we can ensure that it is possible
when the system is controllable. If topology relating systems is not considered, unquestionably, the system (1.1) is controllable if and only if
each subsystem is controllable, and, in this case, there is feedback in which we obtain the requested solution.
We can be interested with the control (2.1) and ask for the stability of the system (2.2)
If having considered this control the resulting system (2.2) has not the desired eigenvalues, we can try to consider different feedback Fi so
that, with the new control )with feedback = Ki),

ui(t) = Ki ∑
j∈Ni

(xi(t)− x j(t)), 1≤ i≤ k, (4.1)

the system has appointed, eigenvalues to take a requested output of the system.
In some cases could be attentive in a solution such that

lim
t→∞
‖xi− x j‖= 0, 1≤ i, j ≤ k.

Namely, finding solutions for each subsystem reaching all, the same point.

Proposition 4.1. Considering the control ui(t) = Ki ∑ j∈Ni
(xi(t)− x j(t)), 1≤ i≤ k the closed-loop system can be detailed as

E Ẋ (t) = (A +BK (L ⊗ In))X (t).

where K is the diagonal matrix

K1
. . .

Kk

.

Computing the matrix A +BK (L ⊗ In) we obtain


A1 + l11B1K1 l12B1K1 . . . l1kB1K1

l21B2K2 A2 + l22B2K2 . . . l2kB2K2
...

...
. . .

...
lk1BkKk lk2BkKk . . . Ak + lkkBkKk

 .

In the special case where all systems in the multi-system have the same dynamics, this is Ei = E, Ai = A, Bi = B and Ki = K Proposition 4.1
can be rewritten as follows:

Proposition 4.2. Considering the control ui(t) = K ∑ j∈Ni
(xi(t)− x j(t)), 1≤ i≤ k the closed-loop system for a multiagent with identical

linear dynamical mode, is detailed as

(Ik⊗E)Ẋ = ((Ik⊗A)+(Ik⊗BK)(L ⊗ In))X .
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It is also interesting to study the case that we can also consider external controls that allow us to obtain the desired eigenvalues.
It is of interest to recognize the minimum set of driver nodes needed to achieve full control of networks having arbitrary structures and
link-weight distributions.
In our particular setup, the objective is to find the collection of all possible matrices E, having the minimum number of columns corresponding
to the minimum number nD((A +BK (L ⊗ In))) of independent drivers that are necessary to control the whole network.
Given the protocol as (4.1) with K the feedback gain matrix, and defining

Uext(t) =

u1
ext(t)

...
uk

ext(t)

 , D =

D1
. . .

Dk

 .

Proposition 4.3. With these notations the system can be described as

E Ẋ (t) = (A +BK (L ⊗ In))X (t)+DUext(t).

And the minimum number of controls D necessary to ensure the controllability of the system is

nD = max
i
(nE ,µ(λi))

where nE = nk− rankE and µ(λi) = dimKer(sE − (A +BK(L ⊗ In)),D).

Example 4.4. Consider the case where Ei = E =

(
1 0
0 0

)
, Ai = A =

(
0 0
1 0

)
, Bi = B =

(
1
0

)
and Ki = K =

(
1 1

)
corresponding to the

Figure 4.1.

Figure 4.1: Neural network

The Laplacian matrix is

L =

1 −1 0
0 1 −1
0 0 0

 .

The matrix A +BK (L ⊗ In) is


1 0 −1 0 0 0
1 0 0 0 0 0
0 0 0 1 −1 0
0 0 1 0 0 0
0 0 0 0 1 −1
0 0 0 0 1 0

 .

In this case nD = 3.
Taking

D =

D1
D2

D3

=


1 0 0
2 0 0
0 0 0
0 1 0
0 0 0
0 0 1

 ,

we have

rank


E 0 0 0 0 B 0 0 0 0 0
A E 0 0 0 0 B 0 0 0 0
0 A E 0 0 0 0 B 0 0 0
0 0 A E 0 0 0 0 B 0 0
0 0 0 A E 0 0 0 0 B 0
0 0 0 0 A 0 0 0 0 0 B

= 36.

Then, the multisystem is controllable.
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5. Discussion and Conclusion

The concept of “control” implies taking action and represents the human endeavor to intervene in the environment to ensure survival and
continually enhance the quality of life. Many control problems can be addressed through a mathematical model that describes the physical
system in question with equations representing the system’s state.
Although control is a fundamental issue in numerous network systems, more studies are still needed to quantitatively explore the control of
directed networks, which are the most common configuration in real-world systems.
The primary issue is the network’s size. Liu et al. [12] have developed tools to investigate the controllability of networks with arbitrary sizes
and topologies using the controllability matrix, focusing on a few driver nodes within the network.
In [8], Gu et al. define different types of controllability (global, regional, average, modal, and boundary) from various perspectives to apply
to neural systems. These different viewpoints can help analyze the various roles in controlling the dynamic trajectories of brain network
functions.
This paper considers the brain network as a linear, discrete-time, time-invariant multisystem, which allows for considering a more significant
number of nodes. In 2018, Abiodun et al. ( [18]) conducted a survey on the state of the art in the applications of artificial neural networks.
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