
Turkish Journal of Engineering – 2025, 9(2), 385-393

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje

e-ISSN 2587-1366

Real Time Intrusion Detection In Edge Computing Using Machine Learning Techniques

Abhay Pratap Singh Bhadauria*1 , Mahendra Singh 2 , Rajesh Kumar 3 , Amit Kumar4

1Department of Computer Engineerieng & Applications, GLA University Mathura, India, abhaypratap00@gmail.com

2Department of Computer Science, Gurukula Kangri (Deemed to be University) Haridwar, India, msa@gkv.ac.in
3Thapar Institute of Engineerieng & Technology (Deemed to be University), Patiala, India, rakumar@thapar.edu
4Department of Computer Science, Gurukula Kangri (Deemed to be University) Haridwar, India, 19523002@gkv.ac.in

Cite this study: Bhadauria, A.P.S., Singh M., Kumar, R., & Kumar, A., (2025). Real Time Intrusion Detection In Edge
Computing Using Machine Learning Techniques. Turkish Journal of Engineering, 9 (2), 385-393.

https://doi.org/10.31127/tuje.1516046

Keywords Abstract
IoT Devices
Edge Computing
IDS
Machine Learning

 The proliferation of edge computing has introduced new opportunities for optimizing latency-
sensitive and bandwidth-intensive applications by processing the data closer to its source. In
addition, this paradigm shift also brings forth unique security challenges, particularly in the
realm of intrusion detection. In edge computing environments, where data is processed at the
network edge closer to the data source, real-time intrusion detection is crucial to safeguard
the security of the system. The attackers are also exploiting the edge network with rapid
extension. Conversely, conventional Intrusion Detection Systems (IDS) cannot detect the
latest types of attack patterns in high-speed real-time networks due to their complex behavior
and low processing capability. This study introduces a novel approach for developing an
effective IDS model to handle such threats in a real-time network and explores the design and
implementation of a real-time intrusion detection system (IDS) tailored for edge computing
environments. The proposed model is found to be methodical and reliable, and employs
supervised Machine Learning (ML) techniques. The objective is to precisely recognize and
categorize harmful intrusions or malignant activities within the network in real-time. In order
to train and test the model, a self created dataset which utilizes both malevolent and benign
PCAPs (Packet Capture files) is used in this research study. To determine the usefulness of the
IDS model, the random forest, decision tree, extra tree, and K-nearest neighbors were used as
classification techniques. The proposed IDS model exhibhits excellent performance based on
several factors such as adaptability and scalability. The model also generates higher values
for accuracy, detection rate, F-measure, precision, recall, and lower FPR.

Research Article

Received:14.07.2024
Revised:20.08.2024
Accepted:27.08.2024
Published:01.04.2025

1. Introduction

The Internet of Things (IoT) stands for interconnection
of the physical things that are implanted with sensors,
software, and other technologies with the goal of
communicating and transfering data to other devices and
systems over the internet [1-5]. Edge computing plays an
essential role in upgrading the functionality and efficiency
of IoT networks and it also mitigates the latency,
preserves the bandwidth and strengthens the information
security [6-8]. There are mainly two types of IoT
networks: centralized and decentralized. Centralized IoT
networks reckons on a single point of control or a middle
hub which manages all the connected objects. This hub
can be a cloud-based platform or a physical object such as
a server. In this type of network, all the devices
communicate with the hub, which then processes the

information and gives back commands to the devices.
These types of IoT networks are mainly utilized in
industrial and commercial applications where
information security and real-time processing are crucial.
Decentralized IoT networks, on the contrary, divide the
control among the connected objects themselves. It means
that the devices interconnect directly with each other,
rather than through a central hub. Decentralized IoT
networks are more workable and scalable than
centralized ones, and they are valuable for applications
where the devices need to perform independently without
depending on a central point of control [9-11]. IoT
networks can utilize several communication protocols,
including Wi-Fi, Bluetooth, Zigbee, LoRaWAN, and cellular
networks such as 5G [12-13]. Each protocol has its own
advantages and disadvantages in terms of range, power

https://dergipark.org.tr/en/pub/tuje
mailto:abhaypratap00@gmail.com
mailto:msa@gkv.ac.in
mailto:rakumar@thapar.edu
mailto:19523002@gkv.ac.in
https://orcid.org/0000-0002-1044-7557
https://orcid.org/0000-0003-2621-7200
https://orcid.org/0000-0003-4764-7656
https://orcid.org/0000-0002-4619-079X
https://dergipark.org.tr/en/pub/tuje/issue/90081/1516046

Turkish Journal of Engineering – 2025, 9(2), 385-393

 386

consumption, data transfer rates, and network capacity,
therefore the choice of protocol relies on the explicit
necessities of the IoT application. These devices increase
the vulnerability space for cyber-attacks. Furthermore,
IoT systems or Edge Computing (EC) networks are subject
to several security attacks such as DoS and DDoS attacks.
These styles of attacks can cause momentous damage to
IoT services and EC networks. Therefore, the security of
EC or IoT becomes more and more important [14]. IDS
functions as a security measure predominantly situated
within the network stratum of EC systems. The packets
must be analyzed by the IDS of the EC system deployed in
the multiple layers of the EC network, and responses to
these packets must be generated in real time. Therefore,
traditional IDSs are not fully compatible with EC
networks. In order to develop a mitigation strategy for EC
networks, we need to understand their security
vulnerabilities and how to mitigate them. This article
focuses on essential aspects that affect the performance of
IDS in EC, such as detection accuracy, FPR, and processing
time. This study also focuses to construct an efficient and
robust IDS that provides higher recall, precision, f1-score,
and detection time. Furthermore, the vast majority of
related work on IDS uses KDD cup99 or NSL-KDD
datasets, which are not updated. In this paper, malicious
PCAPs were gathered from the packet total [15], while
normal traffic was produced using the Wireshark tool [16-
17]. Over 80 statistical features related to network traffic
were computed and extracted for both normal and
malicious Biflows by utilizing the CICFlowmeter software,
which can be accessed openely on the website of the
Canadian Institute for Cybersecurity[18]. Subsequently,
an analysis was conducted on the dataset created for the
purpose of classifying malware categories, which is
update with new attacks compared to the KDD cup99
dataset and the NSL-KDD dataset. The proposed approach
in the study yielded numerous key observations, which
are outlined below:

 ML based techniques are employed to classify the
network traffic.

 The model developed in the study was
constructed, trained, and evaluated using several
classifiers, including RF, DT, k-NN, and ET. These
classifiers were used to evaluates the model’s
performance based on several performance
indicators.

The rest of the paper is designed as follows. Section 2
illustrates the existing literature and research relevant to
the topic. It delivers a summary of the previous work
conducted by other researchers in the area and identifies
the gap that this paper aims to fill. Section 3 and 4
describes the methodologies and resources utilized in
constructing the model. It outlines the approach adapted
to address the research problem and explains the tools,
datasets, algorithms, or frameworks employed. Section 5
discusses the experimental results. Finally, section 6
concludes the paper.

2. Related Work

This section examines general idea of the state-of-the-
art studies on IDS based systems. It delivers a widespread
summary of the existing research and advancements in

the field of IDS. The purpose of this section is to establish
the current knowledge and understanding of IDS systems,
highlighting the gaps and limitations that the proposed
approach aims to address.

Loganathan et al. [19] established a practical and
dynamic auto-scaling flow processor for the real-time
identification of potential threats. This system aims to
improve query efficiency, present innovative rules for
feature expansion, and remove redundant regulations to
mitigate resource utilization. Their results show that PSO
outperforms Bayesian optimization in the context of
optimizing rules for Complex Event Processing (CEP) via
the utilization of a simulated loss function. Rathore et al.
[20] introduced a novel real-time Intrusion Detection
System (IDS) designed to perform properly in high-speed
network environments. The system is divided into four
layers: the capturing layer, the filtration and load balancing
layer, the processing layer, and the decision-making layer.
The capturing layer is responsible for collecting network
traffic data, that handles as input for the IDS. The filtration
and load balancing layer inspects the captured data and
contributes the load evenly across the system for reliable
processing. The processing layer is the core module of the
system and combines of Hadoop master and data nodes.
Hadoop, along with Apache Spark as a other-party tool and
MapReduce as the backend programming, is utilized for
processing the network traffic. To categorize and inspect
intrusions in real-time, a combination of RepTree and J48
algorithms is utilized in the processing layer. These
algorithms used the proposed features to categorize
network traffic precisely. The performance of the system is
evaluated on a Hadoop single node setup with Apache
Spark and MapReduce. This research conducted on
comparative study to evaluate the proposed IDS system.
The evaluation determines that the system shows
enhanced accuracy, efficiency, and real-time adaptability in
high-speed network environments. The authors
determined the superiority of their proposed IDS by
comparing the results with alternative methods or existing
systems.

The study carried out by J. Lee et al. [21] introduces a
lightweight IDS called IMPACT (Impersonation Attack
detection using deep auto-encoder and feature
abstraction). The system is specifically designed to operate
efficiently on resource-constrained devices. IMPACT
utilizes a stacked autoencoder (SAE) and mutual
information (MI) techniques for feature extraction and
selection. These type of method to helped reduce the
number of features, making it appropriate for deployment
on devices with restricted computational resources. The
extracted and choosed features are then used to train a
gradient-based linear Support Vector Machine (SVM) and
C4.8 wrapper, which is the classification algorithm used in
this IDS. The system is trained on the Aegean Wi-Fi
Intrusion Dataset (AWID) to recognize impersonation
threats. The statistical findings retrieved from the
evaluation of IMPACT determines its effectiveness. The
presented IDS achieves an accuracy of 98.22%, with a
detection rate of 97.64% and a false alarm rate of 1.20.
Shaikh et al. [22] presented IDS model that is relyed on
deep learning method. This model uses ResNet50, a CNN
made up of 50 layers. The profit of ResNet is that it
delievers an advancement over tradational ML methods,

Turkish Journal of Engineering – 2025, 9(2), 385-393

 387

which are in-appropriate to mitigate false alarm rates. All
network packets are classified into normal or malevolent
groups by the started IDS model with respect to
identification of intrusions. By employing these three
datasets (KDD99, CICIDS2017, and UNSWNB15), the
presented model in the simulated work is trained and
validated on diverse network traffic data with several
attack types and normal activities. This method gurantees
that the model's performance is evaluated
comprehensively and contributes a robust assessment of
its effectiveness in recognizing and categorizing different
types of network intrusions. To verify the model's overall
accuracy, recall, precision, and F1 score, the ROC curve has
also been utilized. The model was then compared to seven
other well-known ML classifiers which includes Naive
Bayes, SVM, AdaBoost, k-NN, Random Forest, Decision
Tree, and Linear Regression, to produced its performance.
According to the proposed model, it overcomes existing
approaches by 97.65%, highlighting its high accuracy.

The state-of-the-art analysis reveals that the majority
of studies on IDS rely on benchmark datasets such as
KDD99 and NSL-KDD. Nevertheless, these datasets are
considered outdated and do not encompass current attack
scenarios. Additionally, only a limited number of papers
create their own real-time datasets to assess the intrusion
detection capabilities of their IDS models within a network.
Furthermore, the evaluation of intrusion detection rates in
most IDS studies primarily focuses on traditional machine
learning (ML) models, particularly for identifying DoS or
DDoS attacks. The primary objective of our proposed
research is to mitigate the time taken for detecting attacks
and achieve a high detection rate and classify attacks in
real-time, with a focus on improving the detection rate as
well.

3. Methodology

This section introduces the proposed Intrusion
Detection System (IDS) model that aims to optimize the
detection rate (DR) and FPR in a network. Figure 1.
represents the working methodology of the proposed IDS
model.

3.1. Network Flow Extraction

Initially, self generated normal network traffic data
and malignant network traffic data are collected. Later, we
proceeded to retrieve statistical features from both the
normal and malignant PCAPs using the CICFlowMeter tool
[23]. This tool has the ability to extract more than 80
network flow characteristics from the data. The Network
traffic is devided into five attributes: Source IP,
Destination IP, Source port, Destination port, and
Protocol. The CICFlowMeter tool inspects these properties
in the network flows and enumerates several statistical
features. These features contribute insights into the
characteristics and behavior of the network traffic,
helping to classify normal and malignant activities. By
leveraging the CICFlowMeter tool and to extract statistical
network flow features, the we gathered important
information that will aid in succeeding steps of the
proposed IDS model, such as feature selection and
classification algorithm implementation.

Figure 1. Flow diagram of the proposed methodology

3.2 Dataset Creation

After extracting the statistical network flow features, the

dataset is labeled to differentiate between specific malware

and benign network flow traffic. The labeling process

involves categorizing the network flows into three classes:

Benign, Denial-of-Service (DoS), and Distributed Denial-of-

Service (DDoS).

3.3 Data Pre-processing

Data preprocessing is a paramount task for dropping
and manipulating raw data before it is used to enrich the
performance of classifiers. The primary motive of
preprocessing is to mitigate the duplicate records and
unrelated features of the dataset. Three steps were
followed for preprocessing the dataset.

3.4 Data Cleaning

In this study, the self-created dataset was used for
evaluating the IDS model. The dataset contained 2867 nan
and infinity records, and these were removed from the
dataset. We used 636729 instances of normal or benign
attack and all instances of attacks to evaluate the IDS
model. The statistics of attacks are listed in Table 1. The
total number of records 1193285 were utilized for
building the IDS model.

Turkish Journal of Engineering – 2025, 9(2), 385-393

 388

Table 1. Statistics of Benign and Malicious flow

Class/Attack Types Number of Instances
Benign : 6,36729
Malicious : 5,56556
Total 11,93285

3.5 Label Encoding

One categorical label feature and several numerical

features are included in this dataset. Label encoding
denotes the process of transforming a label into a
numerical representation the is machine interpretable.
ML algorithms can then make superior decisions about
how those labels must be manipulated. It is a significant
preprocessing phase for structured datasets in supervised
learning. The label value must be converted into a vector
of numeric values. In the context of label feature for
multi-class classification; benign, DoS, and DDoS are
converted into 0, 1, and 2 respectively.

3.6 Normalization

Normalization in machine learning defines to the

mechanism of transforming input data into a standardized
range or distribution. It is a crucial preprocessing step that
helps enhance the performance and convergence of many
ML algorithms. Normalization ensures that all input
features or variables have similar scales, preventing some
features from dominating or biasing the learning process.
There are several common methods for normalization in
machine learning:

1. Min-Max Scaling (Normalization): This approach

rescales the data to a fixed range, usually between 0 and 1.
It can be represented as [24].

X_scaled = (X - X_min) / (X_max - X_min) (1)

Where X is the original value, X_scaled is the scaled

value, X_min is the minimum value in the dataset, and
X_max is the maximum value in the dataset.

2. Z-Score (Standardization): This apporach involves

standardizing the data to achieve a mean of 0 and a
standard deviation of 1. The mathematical expression for
standardizing using z-score can be represented as [25].

X_scaled = (X - X_mean) / X_std (2)

We have used z-score to normalize the dataset. Some
attributes in our dataset, for example 'Flow duration', 'Fwd
packet length std', 'Flow bytes / s', 'Flow packets / s', and
'Flow IAT mean', exhibit a significant difference between
their maximum and minimum values. It indicates a
substantial variation in the scales of these attributes. To
address this issue, it is advisable to apply normalization
techniques like Min-Max Scaling or Z-Score
Standardization. These methods help bring the attributes
to a comparable scale, ensuring that their discrepancies do

not disproportionately affect ML algorithms. By
normalizing the data, you can enhance the accuracy and
reliability of your models when functioning with these
attributes. To normalize the values of these attributes have
been attained in the range of [0, 1].

3.7 Feature Selection

It is a crucial procedure in building predictive models,

involving the selection of a subset of essential features or
variables from a bigger set of available features. The
purpose of feature chosen is to identify the most
meaningful and impactful features that contribute to the
predictive power of a model while eliminating irrelevant
or redundant features. This is important because
including too many features in a model can lead to
overfitting, that signifies the model will implement well on
the training data nonetheless unwell on new and
unrecognized data. There are various methods for feature
selection, some of them discussed.

3.7.1 Filter methods

These methods rely on statistical measures to rank the
importance of features. The most commonly utilized
filters are correlation-based feature selection, mutual
information-based feature selection, and chi-squared
feature selection.

3.7.2 Wrapper methods

These methods estimate the performance of the model
with diverse subgroups of features. This is a more
computationally expensive approach, as it involves
training and evaluating the model multiple times.

3.7.3 Embedded methods

These methods select features as portion of the model-
building process. For example, some ML algorithms, such
as Lasso and Elastic Net, have built-in feature selection
mechanisms.

Overall, feature selection is significant process in the
model-building process because it can help improve the
performance of a predictive model by mitigating the
number of features used. This research utilized the RFE
using a RF classifier for selecting the appropriate features.
The RF classifier was modified to utilize better parameters
to select the relative subset of features. The parameters
are summarized in Table 2. Moreover, RFE algorithm
measures the performance of the RF classifier for each
subset of features in an iterative manner. According to the
RF classifier's better performance, the RFE selects the best
subset of features and omits the weakest subset. The
iteration takes place until a set of features that is
considered the most effective is achieved. The list of
selected features is illustrated in Table 3 with types.

Turkish Journal of Engineering – 2025, 9(2), 385-393

 389

Table 2. Parameters used by RF in RFE

Classifiers Parameters

RF

n_estimators: 45
random_state: 23
max_depth: 26

n_jobs: -1

Table 3. List of selected features

S.No Features
1 Destination Port
2 Total Length of Fwd Packets
3 Bwd Packet Length Mean
4 Average Packet Size
5 Fwd Header Length
6 Packet Length Variance
7 Avg Bwd Segment Size
8 Fwd IAT Mean
9 Init_Win_bytes_forward
10 Init_Win_bytes_backward

4. Model Construction

Model construction is a crucial and essential phase
while identifying any threats in network. Here, we
provided two phases for constructing the proposed IDS
model. In first phase, we discussed about the selection of
classifier and used those classifier based on literature
survey which will give fruitful results. In second phase,
experimental set up and important simulation parameters
are discussed while making the IDS model.

4.1 Selection of classifiers

Random Forest is a versatile ML algorithm utilized for
tasks such as classification, regression, and more [26]. It
belongs to the ensemble learning family, utilizing a
combination of multiple decision trees to form a forest.
The algorithm operates by making a set of decision trees
using a randomly designated subclass of the training data
and an arbitrarily selected subclass of the features for
each tree. During the training phase, each tree is built
utilizing a different subset of the training data, and every
node of the tree is split utilizing the top feature and split
point among a random subset of features.

Decision tree algorithm is a popular ML algorithm
utilized for solving classification and regression problems
[27]. It operates by recursively partitioning the data into
subsets according to the most significant attribute or
feature at each node of the tree. The resulting decision tree
can be visualized as a tree structure where each internal
node enacts an attribute, each branch also enacts a value
for that attribute, and each leaf node denotes a particular
label.

One of the advantages of DT is that they are simple to
interpret and can be used to attain insights into the
relationships between the attributes and the target
variable. However, they are prone to overfitting and may
not perform well on noisy or complex datasets.
Techniques such as pruning, ensemble methods (such as
random forests), and boosting can be utilized to overcome
these limitations.

Extra Trees Classifier (ETC) is an ensemble learning
method used for classification tasks [28]. It is similar to
the Random Forest Classifier (RFC) in that it builds

numerous decision trees and amalgamates their
predictions to make the final decision [29-30]. However,
unlike RFC, ETC randomly selects splitting points for each
feature and uses the whole training set to grow each
decision tree, rather than using a random subset of
features and samples.

K-Nearest Neighbors (KNN) is also ML based algorithm
applied for both classification and regression problems
[31-35]. It is a kind of instance-based learning, where the
algorithm does not learn a model but instead memorizes
the training instances and makes prophecies according to
the similarity between new instances and the training
instances[36-39].

4.2 Training and Testing

We use Python programming language and Colab
Jupyter notebook for constructing the efficient and robust
IDS model. The experiment was conducted on a HP series
laptop with a 64-bit Intel-i5 processor running at 2.3 GHz,
and 16GB of RAM. Approximately 80% of the data in the
total dataset has been utilized for training, while 20% is
used for testing. We utilized four ML classifiers RF, DT, ET,
and K-NN to construct the IDS model. As shown in Table 4,
the simulation parameters are summarized in all used
classifiers. All classifiers are employed for building an IDS
model.

Table 4. Parameters used in constructing model

S.No Features

RF

n_estimators: 23, random_state:

23,max_depth: 23,

n_jobs: -1

DT random_state: 3

ET
n_estimators: 25, random_state: 23,

n_jobs: -1

KNN n_nieghbors: 3

4.3 Performance Evaluation Criteria

 The proposed IDS model is evaluated based on different
performance metrics. A detailed analysis of the selected
performance metrics from (3) to (7).

Accuracy =
TP+TN

 TP+FP+TN+FN
 (3)

Recall =
TP

TP+FN
 (4)

Precision =
TP

TP+FP
 (5)

FPR =
FP

Fp+TN
 (6)

5. Experiment Results

 After implementing the several classifiers in the self-
created dataset, the results were explored in terms of
different statistical measures as illustrated in Table 5. It
can be observed that the accuracy of the all classifier are
high for the proposed model. However, the least accurate
is k-NN. FPR and detection time are also low which is very

Turkish Journal of Engineering – 2025, 9(2), 385-393

 390

significant for achieving the malware detection in real
time. Moreover, confusion matrices are also represented
in Figure 2, Figure 3, Figure 4, and Figure 5 respectively.

A confusion matrix is a technique for describing the
performance of a statistical classification model.
Classification accuracy itself can be misleading if the
number of observations in each class is not the same, or if
the dataset has more than two classes. Calculating a
confusion matrix can gives a better understanding of the
classification model’s correct behaviour. Figure 6 presents

a comparison between the two key aspects: model
building time (sec) and detection time (sec). It is observed
that the proposed ML based model perform better than
the existing studies [40-41] the detection time of the IDS
model has been calculated using the formula as shown in
equation 7.

Detection Time (DT) = End Time(ET) − Start Time(ST)
 …(7)

Table 5. Comparison of different ML algorithms using self-created dataset

Figure 2. Confusion Matrix of DT

Figure 3. Confusion Matrix of ET

Model Accuracy (%) Recall (%) Precision (%)
F1-score

(%)
FPR (%)

Building
Time(sec)

Detection Time
(sec)

DT 99.96 99.96 99.98 99.97 0.0002 3.5 0.001

ET 99.96 99.97 99.98 99.97 0.0002 3.6 0.10

k-NN 98.82 98.76 99.48 99.11 0.01 30.87 0.003

RF 99.97 99.97 99.98 99.97 0.0001 6.10 0.10

Monika et.al
[40]

97.1 99.1 96 97.5 - - -

Neeraj et.al
[41]

98.92 98.35 99.47 98.80 0.52 - -

Turkish Journal of Engineering – 2025, 9(2), 385-393

 391

Figure 4. Confusion Matrix of k-NN

Figure 5. Confusion Matrix of RF

Figure 6. Building Time and Detection Time Comparison

6. Conclusion

Edge computing plays a significant role in performing
real-time data computation and preprocessing. However,
this system is susceptible to various attacks employed by
intruders or attackers to disrupt the services provided by
edge computing. This paper highlights the significance of
securing and maintaining the integrity of data in edge
computing systems. In addition, we proposed an IDS
model for edge computing system which assesses its
effectiveness using a self-created dataset that
encompasses common attacks such as DoS, DDoS, as well
as normal network behavior. The evaluation of the
proposed IDS model reveals superior performance when
compared to existing traditional ML based IDS models.
Several evaluation metrics, including Recall, Precision, DR
and FPR demonstrate higher levels of performance. It can
be concluded that the proposed IDS based model operates
effectively as "vulture eyes" within an edge computing
network, enabling the immediate detection of malicious
attacks. The advacnce deep learning algorithms will be
utilized in future work for better scalability of the model.

Author Contributions:
Abhay Pratap Singh Bhadauria: Conceptualization,
Methodology, Software Mahendra Singh: Data curation,
Writing-Original draft preparation, Software, Validation.
Rajesh Kumar: Visualization, Investigation, Writing-
Reviewing and Editing. Amit Kumar: Writing-Reviewing
and Editing.

Conflicts of interest
The authors declare no conflicts of interest.

References

1. King, J., & Awad, A. I. (2016). A distributed security
mechanism for resource-constrained IoT
devices. Informatica, 40(1), 133-143.

2. Weber, M., & Boban, M. (2016). Security challenges of
the internet of things. In 2016 39th International
Convention on Information and Communication
Technology, Electronics and Microelectronics
(MIPRO), 638–643.
https://10.1109/MIPRO.2016.7522219

3. Dirik, M. (2023). Machine learning-based lung cancer
diagnosis. Turkish Journal of Engineering, 7(4), 322–
330. https://doi.org/10.31127/tuje.1180931

4. Cao, K., Liu, Y., Meng, G., & Sun, Q. (2020). An overview
on edge computing research. IEEE Access, 8, 85714–
85728. https:// 10.1109/ACCESS.2020.2991734

5. Liu, B., Luo, Z., Chen, H., & Li, C. (2022). A survey of
state-of-the-art on edge computing: Theoretical
models, technologies, directions, and development
paths. IEEE Access, 10, 54038–54063.
https://10.1109/ACCESS.2022.3176106

6. Bakhsh, S. A., Khan, M. A., Ahmed, F., Alshehri, M. S., Ali,
H., & Ahmad, J. (2023). Enhancing IoT network security
through deep learning-powered intrusion detection
system. Internet of Things, 24, 100936.
https://doi.org/10.1016/j.iot.2023.100936

https://doi.org/10.1109/MIPRO.2016.7522219
https://doi.org/10.31127/tuje.1180931
https://doi.org/10.1109/ACCESS.2020.2991734
https://doi.org/10.1109/ACCESS.2022.3176106
https://doi.org/10.1016/j.iot.2023.100936

Turkish Journal of Engineering – 2025, 9(2), 385-393

 392

7. Ghazal, T. M., Hasan, M. K., Alzoubi, H. M., Alshurideh,
M., Ahmad, M., & Akbar, S. S. (2023). Internet of Things
connected wireless sensor networks for smart cities. In
The effect of information technology on business and
marketing intelligence systems, 1056, 1953–1968,
Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-031-12382-5_107

8. Neto, E. C. P., Dadkhah, S., Ferreira, R., Zohourian, A., Lu,
R., & Ghorbani, A. A. (2023). CICIoT2023: A real-time
dataset and benchmark for large-scale attacks in IoT
environment. Sensors, 23(13), 5941.
https://doi.org/10.3390/s23135941

9. Falayi, A., Wang, Q., Liao, W., & Yu, W. (2023). Survey of
distributed and decentralized IoT securities:
Approaches using deep learning and blockchain
technology. Future Internet, 15(5), 178.
https://doi.org/10.3390/fi15050178

10. Shao, S., Zheng, J., Guo, S., Qi, F., & Qiu, I. X. (2023).
Decentralized AI-enabled trusted wireless network: A
new collaborative computing paradigm for the
Internet of Things. IEEE Network, 37(2), 54–61.
https:// 10.1109/MNET.002.2200391

11. Song, F., Ma, Y., Yuan, Z., You, I., Pau, G., & Zhang, H.
(2023). Exploring reliable decentralized networks
with smart collaborative theory. IEEE
Communications Magazine, 61(8), 44–50. https://
10.1109/MCOM.003.2200443

12. Li, T., Yu, L., Ma, Y., et al. (2023). Carbon emissions of
5G mobile networks in China. Nature Sustainability,
6(12), 1620–1631. https://doi.org/10.1038/s41893-
023-01206-5

13. Kao, H. W., & Wu, E. H. K. (2023). QoE sustainability on
5G and beyond 5G networks. IEEE Wireless
Communications, 30(1), 118–125. https://
10.1109/MWC.007.2200260

14. Gendreau, A. A., & Moorman, M. (2016). Survey of
intrusion detection systems towards an end-to-end
secure Internet of Things. In 2016 IEEE 4th
International Conference on Future Internet of Things
and Cloud (FiCloud), 84–90. https://
10.1109/FiCloud.2016.20

15. Packet Total - A useful site for analyzing PCAP files.
(n.d.). Bleeping Computer. Retrieved December 14,
2023, from
https://www.bleepingcomputer.com/news/security/
packettotal-a-useful-site-for-analyzing-pcap-files/

16. Wireshark. (n.d.). Retrieved December 7, 2023, from
https://www.wireshark.org/

17. Banerjee, U., Vashishtha, A., & Saxena, M. (2010).
Evaluation of the capabilities of Wireshark as a tool for
intrusion detection. International Journal of Computer
Applications, 6(7), 1–5.

18. Canadian Institute for Cybersecurity (CIC). (n.d.).
Retrieved December 7, 2024, from
https://www.unb.ca/cic/datasets/index.html

19. Loganathan, G., Samarabandu, J., & Wang, X. (2018).
Real-time intrusion detection in network traffic using
adaptive and auto-scaling stream processor. In 2018
IEEE Global Communications Conference
(GLOBECOM), 1–6. https://
10.1109/GLOCOM.2018.8647489

20. Rathore, M. M., Paul, A., Ahmad, A., Rho, S., Imran, M., &
Guizani, M. (2016). Hadoop-based real-time intrusion

detection for high-speed networks. In 2016 IEEE
Global Communications Conference (GLOBECOM), 1–
6. https:// 0.1109/GLOCOM.2016.7841864

21. Lee, S. J., Yoo, P. D., Asyhari, A. T., Jhi, Y., Chermak, L.,
Yeun, C. Y., & Taha, K. (2020). IMPACT: Impersonation
attack detection via edge computing using deep
autoencoder and feature abstraction. IEEE Access, 8,
65520–65529. https://
10.1109/ACCESS.2020.2985089

22. Shaikh, A., & Gupta, P. (2022). Real-time intrusion
detection based on residual learning through ResNet
algorithm. International Journal of System Assurance
Engineering and Management, 1–15.
https://doi.org/10.1007/s13198-021-01558-1

23. Singh, A. P., Singh, M., Bhatia, K., Pathak, H. (2024).
Encrypted malware detection methodology without
decryption using deep learning-based approaches.
Turkish Journal of Engineering, 8(3), 498-509.
https://doi.org/10.31127/tuje.1416933

24. Raju, V. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., &
Padma, V. (2020). Study the influence of
normalization/transformation process on the
accuracy of supervised classification. In 2020 Third
International Conference on Smart Systems and
Inventive Technology (ICSSIT), 729–735. https://
10.1109/ICSSIT48917.2020.9214160

25. Patro, S. G. O. P. A. L., & Sahu, K. K. (2015).
Normalization: A preprocessing stage. arXiv.
https://arxiv.org/abs/1503.06462

26. Pradhan, D., & Muduli, D. (2023). Software defect
prediction model using AdaBoost-based random forest
technique. In 2023 14th International Conference on
Computing Communication and Networking
Technologies (ICCCNT), 1–6. https://
10.1109/ICCCNT56998.2023.10308208

27. Maurya, A., & Gaur, S. (2023). A decision tree classifier-
based ensemble approach to credit score classification.
In 2023 International Conference on Computing,
Communication, and Intelligent Systems (ICCCIS),
620–624. https://
10.1109/ICCCIS60361.2023.10425039

28. Khandelwal, N., & Sakalle, V. (2024). A review of
customer churn prediction in telecommunications and
the medical industry using machine learning
classification models. International Journal of
Innovative Research in Technology and Science, 12(2),
366–379.

29. Basholli, F.,Mema, B.,& Basholli, A. (2024). Training of
information technology personnel through
simulations for protection against cyber-attacks.
Engineering Applications, 3(1), 45-58

30. Leka, B., & Hoxha, K. (2024). Software engineering
methodologies in programming companies in
Albania. Engineering Applications, 3(1), 85-91

31. Pradhan, D., & Muduli, D. (2023). Software defect
prediction model using AdaBoost-based random forest
technique. In 2023 14th International Conference on
Computing Communication and Networking
Technologies (ICCCNT), 1–6. https://
10.1109/ICCCNT56998.2023.10308208

32. Mogaraju, J. K. (2024). Machine learning empowered
prediction of geolocation using groundwater quality
variables over YSR district of India. Turkish Journal of

https://doi.org/10.1007/978-3-031-12382-5_107
https://doi.org/10.3390/s23135941
https://doi.org/10.3390/fi15050178
https://doi.org/10.1109/MNET.002.2200391
https://doi.org/10.1109/MCOM.003.2200443
https://doi.org/10.1038/s41893-023-01206-5
https://doi.org/10.1038/s41893-023-01206-5
https://doi.org/10.1109/MWC.007.2200260
https://doi.org/10.1109/FiCloud.2016.20
https://www.bleepingcomputer.com/news/security/packettotal-a-useful-site-for-analyzing-pcap-files/
https://www.bleepingcomputer.com/news/security/packettotal-a-useful-site-for-analyzing-pcap-files/
https://www.wireshark.org/
https://www.unb.ca/cic/datasets/index.html
https://doi.org/10.1109/GLOCOM.2018.8647489
https://doi.org/10.1109/GLOCOM.2016.7841864
https://doi.org/10.1109/ACCESS.2020.2985089
https://doi.org/10.1007/s13198-021-01558-1
https://doi.org/10.31127/tuje.1416933
https://doi.org/10.1109/ICSSIT48917.2020.9214160
https://arxiv.org/abs/1503.06462
https://doi.org/10.1109/ICCCNT56998.2023.10308208
https://doi.org/10.1109/ICCCIS60361.2023.10425039
https://doi.org/10.1109/ICCCNT56998.2023.10308208

Turkish Journal of Engineering – 2025, 9(2), 385-393

 393

Engineering, 8(1), 31-45.
https://doi.org/10.31127/tuje.1223779

33. Raman, R., Kantari, H., Gokhale, A. A., Elangovan, K.,
Meenakshi, B., & Srinivasan, S. (2024). Agriculture
yield estimation using machine learning algorithms. In
2024 International Conference on Automation and
Computation (AUTOCOM), 187–191. https://
10.1109/AUTOCOM60220.2024.10486107

34. Juraev, D. A., Elsayed, E. E., Bulnes, J. J. D., Agarwal, P., &
Saeed, R. K. (2023). History of ill-posed problems and
their application to solve various mathematical
problems. Engineering Applications, 2(3), 279–290.
https://publish.mersin.edu.tr/index.php/enap/article
/view/1178

35. Mema, B., & Basholli, F. (2023). Internet of Things in
the development of future businesses in Albania.
Advanced Engineering Science, 3, 196–205.
https://publish.mersin.edu.tr/index.php/ades/article
/view/1325

36. Demiröz, A., Barstugan, M. ., Saran, O., & Battal, H.
(2023). Determination of compaction parameters by
image analysis technique. Advanced Engineering
Science, 3, 137–150.
https://publish.mersin.edu.tr/index.php/ades/article
/view/1192

37. Kocalar, A. C. (2023). Sinkholes caused by agricultural
excess water using and administrative traces of the
process. Advanced Engineering Science, 3, 15-20

38. Naumov, A., Khmarskiy, P., Byshnev, N., & Piatrouski,
M. (2023). Methods and software for estimation of
total electron content in ionosphere using GNSS
observations. Engineering Applications, 2(3), 243–
253. Retrieved September 14, 2024, from

https://publish.mersin.edu.tr/index.php/enap/article
/view/1165

39. Meghraoui, K., Sebari, I., Bensiali, S., & Ait El Kadi, K.
(2022). On behalf of an intelligent approach based on
3D CNN and multimodal remote sensing data for
precise crop yield estimation: Case study of wheat in
Morocco. Advanced Engineering Science, 2, 118–126.
Retrieved September 14, 2024, from
https://publish.mersin.edu.tr/index.php/ades/article
/view/329

40. Vishwakarma, M., & Kesswani, N. (2023). A new two-
phase intrusion detection system with Naïve Bayes
machine learning for data classification and elliptic
envelope method for anomaly detection. Decision
Analytics Journal, 7, 100233.
https://doi.org/10.1016/j.dajour.2023.100233

41. Saini, N., Bhat Kasaragod, V., Prakasha, K., & Das, A. K.
(2023). A hybrid ensemble machine learning model for
detecting APT attacks based on network behavior
anomaly detection. Concurrency and Computation:
Practice and Experience, 35(28),
e7865. https://doi.org/10.1002/cpe.7865

© Author(s) 2024. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.31127/tuje.1223779
https://doi.org/10.1109/AUTOCOM60220.2024.10486107
https://publish.mersin.edu.tr/index.php/enap/article/view/1178
https://publish.mersin.edu.tr/index.php/enap/article/view/1178
https://publish.mersin.edu.tr/index.php/ades/article/view/1325
https://publish.mersin.edu.tr/index.php/ades/article/view/1325
https://publish.mersin.edu.tr/index.php/enap/article/view/1165
https://publish.mersin.edu.tr/index.php/enap/article/view/1165
https://doi.org/10.1016/j.dajour.2023.100233
https://doi.org/10.1002/cpe.7865
https://creativecommons.org/licenses/by-sa/4.0/

