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Abstract 

Forested lands on the west coast of Türkiye, with their similarity to Mediterranean forests, are often found to be highly susceptible to 

wildfires, necessitating the development of a forest management program to refine and quantify forest fires and their impacts on the 

environment. In light of this fact, a multi-temporal approach combining Principal Component Analysis (PCA) and Normalized 

Difference Vegetation Index (NDVI) analysis derived from Sentinel-2 imagery is suggested in the current study. Through PCA of 

carefully selected bands of Sentinel-2, we attempt to capture both recent and historic fire impacts. It was found that the first two 

principal components (PC1 and PC2) predominantly describe landscape characteristics, while the third and fourth components (PC3 

and PC4) have high abilities in detecting burn scars. It is worth noting that an increase in the ability to detect burn scars was observed 

with the inclusion of NDVI and its difference in time (Δ𝑁𝐷𝑉𝐼) within the PCA process. A high effectiveness level in distinguishing 

burnt areas from unburnt landscapes was presented by the multi-temporal PCA approach, particularly with Δ𝑁𝐷𝑉𝐼 integration. PC2 

and PC3, especially with Δ𝑁𝐷𝑉𝐼 integration, were found to be strong indicative factors of burnt areas. In the classification result, 

accuracies of different years of fire events differed, and a high accuracy of 98.76% was found in the last fire event year of 2019. 

However, slight underestimation and overestimation were also observed in older fire scars. Mean accuracy, on average, for the PCA-

Δ𝑁𝐷𝑉𝐼 method was found to be higher than that of the Maximum Likelihood Classification (MLC) method. Furthermore, significant 

vegetation losses by fire, particularly by the 2019 fire incident, were realized through NDVI assessment. Although it worked well in 

recent fire scars, overestimating the extent in the case of burned areas from previous years was observed. The results of this work 

highlight the potential of integrating multi-temporal PCA with NDVI for mapping burned areas at various scales in fire-prone 

ecosystems in western Türkiye. This approach contributes to the development of more effective forest management and assessment 

strategies following fires in these ecosystems. Moreover, the approach is suggested to be one of the strong tools for monitoring fire-

induced damages across many time scales toward better understanding and management of long-term impacts caused by forest fires in 

the region. 
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Introduction 

In recent years, the frequency and intensity of fires in the 

natural ecosystems have increased significantly. 

According to the European Forest Fire Information 

System (EFFIS), the average annual burned area in the 

Mediterranean countries has more than doubled in the last 

decade compared to the 1980s" (San-Miguel-Ayanz et al., 

2020). According to data from the General Directorate of 

Forestry of Türkiye, huge waves have been present in case 

numbers and acres affected between 2008 and 2022 all 

over the country (General Directorate of Forestry, 2022) 

While the number of fires noted in 2008 was 2,135 that 

had increased to 3,399 by 2020. However, 2021 was 

absolutely the worst, with 2,793 forest fires counted. 

These differences drastically changed the affected areas 

from 3,117 hectares in 2021. Interestingly, this is not 

directly proportional to the affected areas most of the 

time. For example, whereas 2020 had more fires (3,399) 

compared to 2008, which had 2,135, the affected area 

stood at 29,749 ha in 2008, compared with 20,971 ha in 

2020 (General Directorate of Forestry, 2022). This 

indicates that the relationship is not monotonic, reflecting 

the complexity of forest fires and their impacts. The 

significant variation in the number of fire occurrences and 

affected areas underscores the critical need for advanced, 

reliable methods capable of assessing forest fire impacts. 

This will be extremely helpful in understanding the fire 

pattern and developing better management strategies to 

reduce the ecological and economic impacts of forest fires 

in the region. 

While remote-sensing techniques have proven to be of 

great value in burned area assessment, several existing 

methods are faced with quite a few challenges concerning 

the accurate delineation of burn scars in landscapes of 

complex nature. Traditional approaches might struggle 

through spectral confusion between the burned areas and 

other dark surface features, or in depicting the full extent 

of partially burned regions (Lentile et al., 2006). Besides, 

the recovery rate can be different for various vegetation’s, 

and, according to Veraverbeke et al. (2010), it may limit 

the effectiveness of single-date post-fire imagery. The 

above limits are overcome in this paper by combining 

multi-temporal Principal Component Analysis with 

vegetation indices, hence possibly offering enhanced 
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accuracy in the detection of burn scars and extent 

estimation. Accurate burned area mapping bears great 

importance, not only for the purpose of quantifying the 

impacts brought about by fire but also to inform 

appropriate restoration efforts in forests, enhance resource 

management efficiency in case of a fire occurrence, and 

attain a better understanding of fire ecology dynamics 

(Chuvieco et al., 2019). This research improves the 

accuracy of burned area estimates, hence helping to 

support more robust forest management practices and 

evidence-based decision-making in fire-prone areas. 

Remote sensing techniques have been very useful for fire-

prone landscapes, allowing large-area monitoring and 

enforcing the consistent availability of data, making it 

possible to be covered under a wide range of wavelengths. 

These techniques, widely applied in land use change 

detection and burned area evaluation, include image 

classification (Cihlar et al., 1998; Khorrami et al., 2019; 

Sunar Erbek et al., 2004; Tuia et al., 2011), dimensional 

transformations (Carper et al., 1990; Choi, 2006; Huang 

et al., 2022; Leung et al., 2014; Lu et al., 2011), spectral 

indices, and machine learning algorithms. 

Principal Component Analysis (PCA) is known as one of 

the main techniques, probably the most versatile and 

useful in remote sensing and in pattern recognition. PCA 

is a statistical technique to discover the principal structure 

of image data sets (Wintz, 1973). It has been applied to 

digital image enhancement, detecting temporal changes in 

digital images, and analyzing seasonal variations in land 

cover types (Walsh et al., 1990; Byrne et al., 1980; 

Townshend et al., 1985). In essence, PCA involves a 

combination of variables correlated to obtain new, 

uncorrelated combinations; each principal component has 

a successively smaller variance than the previous one. 

What is more, this very property makes PCA especially 

useful and effective when original variables happen to be 

highly correlated, because in that instance, the first few 

principal components may capture most of the total 

variance. 

Therefore, in multi-temporal data change detection 

analysis for burned area mapping, PCA is especially 

efficient at highlighting the differences related to burn 

scars by analyzing the variation of the data before and 

after a fire event. Although a conventional way of 

mapping these areas is mostly based on detailed field 

surveys and aerial photography, PCA provides a faster 

technique to process satellite data for change detection 

purposes without heavy fieldwork and therefore can give 

timely information about the burned area. 

The current study makes use of remote sensing indices, 

such as the Normalized Difference Vegetation Index in 

conjunction with multi-temporal PCA for optimizing the 

estimated variance of the datasets. During this process, 

areas without substantial changes show a high correlation 

and areas with large changes have lower correlation. This 

approach allows one to determine which combination 

among the bands is the best for a selective band PCA and 

to evaluate the accuracy of the resulting map using official 

data provided by the National Forest Service. 

In this regard, three major fire incidents that occurred in 

two districts of İzmir Province, Seferihisar and Menderes, 

within the period between 2016 and 2019, are focused. 

The largest fire was that of 2019, which burned an area of 

about 5000 hectares of forestland, while two other fires 

previously occurred in 2016 burning about 500 ha and in 

2017 burning 986 ha (General Directorate of Forestry, 

2020). The timeline for fire events and the corresponding 

Sentinel-2 image acquisition dates is summarized in Table 1. 

Table 1.Fire Events and Sentinel-2 images Acquisition 

Timeline 

Fire 

Event 

Initial 

Date 

Final 

Date 

Acquisition 

Time 

Fire 

2016 
8/3/2016 8/3/2016 9/15/2016 

Fire 

2017 
7/1/2017 7/3/2017 8/26/2017 

Fire 

2019 
8/18/2019 8/20/2019 9/15/2019 

In the present study, Sentinel-2 imagery was used with its 

native spatial resolution of 10 meters for key bands, a 

revisit time of 5 days at the equator, and free-of-cost 

availability. Such characteristics make Sentinel-2 

perfectly suitable for monitoring dynamic events like 

forest fires and subsequent vegetation recovery. Table 1 

The main objectives of this research can be viewed three-

fold:  

1. Mapping the spatial extent of burnt areas due to

three different fire incidents using an integrated

multi-temporal Principal Component Analysis

and Normalized Difference Vegetation Index

analysis.

2. Visualizing the affected regions to assess the

damages caused by the fires, emphasizing the

importance of accurately mapping these areas.

3. Determining the accuracy of detection

methodologies for burned areas to ensure the

scientific validity and reliability of the findings.

The burned area maps were validated against official fire 

perimeter data from the Turkish General Directorate of 

Forestry and MODIS burned area products. The accuracy 

of the multi-temporal PCA-based Δ𝑁𝐷𝑉𝐼 was further 

checked by the obtained results using the Maximum 

Likelihood Classification method. Description of the 

patterns of spatial spreading and trends in intensity 

observed for the fires over the area studied provide insight 

into how forest fires behave in the region. The following 

are particularly important objectives to achieve an 

improved understanding of fire behavior in Western 

Türkiye's fire-prone ecosystems and to evaluate how 

effective remote sensing-based approaches would be, 

more specifically, by using the integration of multi-

temporal PCA and Δ𝑁𝐷𝑉𝐼 for fire detection and analysis. 

Materials and Methods 

Study Area Description 

The study area includes the Seferihisar and Menderes 

districts in the İzmir Province, a coastline province of 
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Western Türkiye. It is approximately located between 

26°45′–27°20′ east longitudes and 37°60′–38°20′ north 

latitudes. It covers an area of approximately 1168 km2, 

with a perimeter of about 256 km. From a geological 

perspective, it is a heterogeneous region with various rock 

types, particularly limestones and marbles, which have 

important industrial uses. This Mediterranean climate; 

with hot, dry summers and mild rainy winters; permits 

vegetation covers of maquis shrubland, Turkish pine 

(Pinus brutia), and oak forests (Quercus spp.), which 

support fire-prone and regenerating vegetation (Kavgacı 

et al., 2023; Atalay et al., 2014; Sabuncu and 

Özener2019). The dry season increases the risk of 

wildfires, as they are among the most critical factors that 

threaten biodiversity in this particular region by causing 

habitat loss and fragmentation.  

According to Kavgacı et al., 2023 and Fernández-García 

et al., 2021, wildfires pose the greatest risk to biodiversity 

in these forests. The biodiversity in the forests of İzmir is 

quite striking; it shelters a wide variety of animals and 

host many endemic plant species. The forests play a very 

vital role in the balance of ecosystems and habitats for 

many species. Habitat loss and fragmentation, on the other 

hand, happen because these ecosystems are prone to forest 

fires. National forest service’s records indicate that 

several of the largest forest fires in recent history have 

occurred in these regions, leading to the loss of vast forest 

areas, underscoring the need for effective monitoring and 

assessment strategies. From 2004 to 2022, İzmir was the 

third province in Türkiye with the highest number of 

forest fires: 4,622 incidents that burned an area of about 

23,983 hectares. In 2022, the number of forest fire 

incidents was 293, with 1,300 hectares of burned areas 

(Kavgacı et al., 2023). Large fire events for this study took 

place in different years, like 2016, 2017, and 2019. These 

included both surface and crown fires. Forest 

management agents extinguished these fires after they had 

been burning for several days. We acquired historical 

records about the fire events from the official site of the 

General Directorate of Forestry. 

Data Collection 

Despite the availability of various satellite data sources, 

such as those from Landsat and MODIS, Sentinel-2 

imagery was selected in this present study due to its 

optimal combination of spatial and temporal resolution 

and its rich spectral information. Among these sensors, 

Sentinel-2 has the finest spatial resolution (10 m) for the 

key visible and near-infrared bands, providing a more 

detailed delineation of burn scars compared with the 

resolution of 30-m offered by Landsat or the coarser 

resolution provided by MODIS (250-1000m) (Chuvieco 

et al., 2019). Because its revisit time is 5 days, Sentinel-2 

has a higher chance of acquiring cloud-free imagery 

shortly after fire events compared to the 16-day cycle of 

Landsat. 

Fig. 1: The location of the study area in Izmir 

Operated by the European Space Agency, Sentinel-2 

provides a great opportunity to visualize and analyze the 

effects of wildfires. Significant fire events from 2016 to 

2019 served as valuable case studies. Two key images 

were gathered from the Copernicus program for each fire 

incident, remarking on the situation before and after the 

fire. These images are instrumental in assessing the 

impact of the fire and understanding the land cover 

dynamics over time. 

The Satellite System Sentinel-2 generates 13 spectral 

bands: 4 visible bands, 2 near-infrared bands, and 2 short-

wave infrared bands, with 3 vegetation red edge bands and 

2 for atmospheric correction. The spatial resolutions of 
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these bands range from 10 to 60 meters. The spectral 

bands and spatial resolutions make the Sentinel-2 mission 

of great value in giving detailed and accurate information 

about the earth's surface (Sentinel-2 Mission Overview, 

2015). 

Table 2.Sentinel-2 spectral bands and their 

characteristics 

In this respect, the data gathered from Sentinel-2 is key to 

capturing a holistic view of the post-fire landscape. In this 

regard, it provides detailed analysis and mapping of 

burned areas, changes in land cover, and the ecological 

impact of the wildfires in the study area. Supporting the 

analysis are also land cover maps and fire perimeter data 

from MODIS.   

Such a data-driven approach gives invaluable insights into 

the future of wildfire management and ecological 

restoration. Understanding how fire-prone ecosystems 

function in a changing climate and with human impacts is 

critical to conserving the natural heritage of forest 

ecosystems. The study will aim to advance our 

understanding of the impacts of wildfires and develop 

better strategies for land management and ecological 

restoration. 

Image processing and Classification 

Prior to initiating image classification, it is imperative to 

undertake preprocessing procedures for the Sentinel-2 

satellite data. Comprehensive pre-processing was 

performed to ensure that the data was accurate and 

reliable in the detection of areas of forest fires with 

Sentinel-2 imagery. First, the atmospheric correction of 

all Level-1C Sentinel-2 data is done using the Sen2Cor 

processor to convert them into Level-2A, which includes 

bottom-of-atmosphere reflectance values. The most 

important processing steps involved in creating the cloud 

and shadow masks included pixel masking with more than 

50% cloud probability in the cloud probability layer. 

Detecting cloud shadows involved a modified version of 

the Google Earth Engine script by intersecting predicted 

shadow areas and low-reflectance near-infrared pixels. To 

facilitate multi-band analysis, all Sentinel-2 bands were 

harmonized to a common 10-meter spatial resolution. The 

shortwave infrared bands (B11 and B12), originally at 20-

meter resolution, were resampled to 10 meters using the 

nearest neighbor interpolation method. This approach 

preserves the original pixel values while aligning the 

bands spatially (Mandanici and Bitelli, 2016). Subsets of 

the images were extracted using forest fire coordinates.  

Image processing operations included histogram 

equalization and linear stretching to enhance the contrast 

between the burned and unburned forest areas. 

Reflectance in various bands was standardized through 

the process of min-max normalization, which rescales the 

reflectance values to a range of 0-255. To avoid crossing 

the memory limit of Google Earth Engine, this study 

mosaicked images obtained on close dates to produce a 

single image, thus reducing the number of images. In 

addition, co-registration and alignment with a map 

projection system were necessary to make it easier to look 

at Sentinel-2 satellite images and find changes Geometric 

correction serves to rectify distortions that stem from the 

representation of the Earth's curved surface in two 

dimensions within the imagery. This correction ensures 

that the data from different times aligns seamlessly, 

allowing for meaningful comparisons (Baillarin et al., 

2012). 

For land cover classification within the study area, a 

supervised classification approach was employed. This 

approach combined spectral information from the 

Sentinel-2 satellite images with a priori knowledge of the 

terrain. The Sentinel-2 sensor, with its high-resolution 

multispectral capability, was the source of data for the 

analysis. All bands available were used in a color 

composite from the Sentinel-2 images. The band 

combination used was 8-4-3, representing the Near 

Infrared, Red, and Green bands, respectively. This 

combination is selected because it has the capability of 

giving optimum visual contrast between various land 

cover categories (Delegido et al., 2011). To aid the 

classification, training areas were selected for all the land 

cover categories using the Area of Interest tools. Carefully 

computed were spectral signatures of those training areas. 

The classification categories used were the seven discrete 

classes generated from the early image and the later 

images. The classification was performed using the 

Maximum Likelihood classifier (MLC), which is a widely 

accepted parametric algorithm used for classifying 

remotely sensed imagery in the presence of probabilistic 

models, thus an important requirement for many 

monitoring environmental changes and land cover 

mapping exercises. 

The Maximum Likelihood method uses the concept of 

multivariate normal distribution to assign pixels to pre-

defined classes according to their spectral signatures 

(Foody, 2002; Richards, 2013). The Maximum likelihood 

classification is performed according to the following 

equation;  

𝑔𝑖(𝑥) = 𝑙𝑛 𝑃(𝑤𝑖) −
1

2
𝑙𝑛|𝛴𝑖| −  

1

2
(𝑥 − 𝜇𝑖)

𝑇𝛴𝑖
−1(𝑥 − 𝜇𝑖),

     (Eq.1) 

Bands Central 

Wavelength 

(nm) 

Resolution 

(m) 

Band 1- Coastal Aerosol 443 60 

Band 2 - Blue 490 10 

Band 3 - Green 560 10 

Band 4 - Red 665 10 

Band 5 - Red Edge 1 705 20 

Band 6 - Red Edge 2 740 20 

Band 7 - Red Edge 3 783 20 

Band 8 - Visible and 

Near Infrared (VNIR) 
842 

10 

Band 8A - Narrow NIR 865 20 

Band 9 - Water Vapor 945 60 

Band 10 - SWIR - 

Cirrus 
1375 

60 

Band 11 - SWIR 1 1610 20 

Band 12 - SWIR 2 2190 20 
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where 𝑔𝑖(𝑥) is the discriminant function for class 𝑤𝑖,

𝑃(𝑤𝑖) is the prior probability of the class 𝑤𝑖 , Σ𝑖  is the

covariance matrix of the class 𝑤𝑖 ,  𝜇𝑖 is the mean vector

of the class 𝑤𝑖 , 𝑥 is the pixel vector, and |Σ𝑖| is the

determinant of Σ𝑖  (Richards and Jia, 2006). This equation

describes the probability distribution for a given set of 

data, facilitating classification by choosing the class with 

the highest probability. 

A contingency error matrix and the Kappa coefficient 

were used to analyze the accuracy of the classification. An 

error matrix is a category-by-category comparison of the 

known reference data with the result of the automated 

classification. Error matrices provide information on 

accuracy measures such as overall accuracy, the user's 

accuracy, and the producer's accuracy. Overall accuracy 

is a basic measure that is calculated by dividing the total 

number of correctly classified pixels by the total number 

of reference pixels. 

Simultaneously, the user's accuracy informs them of 

whether or not a given class on the map corresponds to 

the same class on the ground in the real world. The user’s 

accuracy is calculated as follows:  

𝑈𝑠𝑒𝑟′𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑖𝑖

𝐶𝑖∗
× 100%, (Eq.2) 

Where 𝐶𝑖𝑖  is the element at the position of the 𝑖-th row and

𝑖-th column, and 𝐶𝑖∗ is the row sum for class𝑖.
On the other hand, the producer's accuracy serves to 

inform how well each class has been correctly classified 

(Congalton and Green, 2008). Producer’s accuracy is 

calculated as: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑎𝑎

𝐶𝑠𝑎
× 100%, (Eq.3) 

Where 𝐶𝑎𝑎 is the element at the position of the 𝑎 -th row

and the 𝑎 -th column, and 𝐶𝑠𝑎  is the column sum for

class 𝑎.  

The weakness of these two measures is that they are 

limited in scope in the sense that they only inform about 

the performance of the classification strategy concerning 

the training areas (Congalton, 2015; Lillesand and Kiefer, 

1994). To improve the interpretation of the error matrix, 

the Kappa coefficient was introduced. This coefficient 

helps in finding out whether or not the result that is 

represented on the error matrix is better than a random 

chance would provide (Congalton and Green, 2008; 

Foody, 2010). The Kappa coefficient is calculated as, 

 𝜅 =
𝑁 Σ𝑖=1

𝑟 𝑥𝑖𝑖 − Σ𝑖=1
𝑟 (𝑥𝑖+ ∙ 𝑥+𝑖)

𝑁2 − Σ𝑖=1
𝑟 (𝑥𝑖+ ∙ 𝑥+𝑖)

 (Eq. 4) 

Where 𝑟 is the number of rows in the error matrix, 𝑥𝑖𝑖  is

the number of the observations in row I and column 𝑖 (the 

diagonal cells), 𝑥𝑖+ is the total observations of row I, 𝑥+𝑖

is the total observations of column 𝑖, and 𝑁 is the total 

number of observations in the matrix. A kappa value of 1 

indicates perfect agreement, while a value of 0 indicates 

no agreement better than chance (Foody, 2002).  

These assessment methods of accuracy are very useful in 

verifying the performance of likelihood classification in 

remote sensing. For they, can be used quantitatively with 

the producer and user's accuracy, along with the kappa 

coefficient, to compare the performance of classification 

algorithms concerning the analysis of different remote 

sensing scenes, in which the classification results will be 

used for mapping land cover or monitoring the 

environment. 

Principal component Analysis (PCA) 
Principal component analysis is one of the central 

methods in multivariate statistics that provides a way of 

reorienting complex data sets along new axes, which 

capture maximum variance in data manner (Hotelling, 

1933; Huang et al., 2022; Lanorte et al., 2015; Singh and 

Harrison, 1985). The procedure, although very old; with 

roots well into the beginning of the 20th century; has 

grown to become one of the most recognizable and widely 

used multivariate analysis tools. This is reflected in the 

broad spectrum of applications that PCA finds use in. It 

enables researchers to visualize complicated patterns of 

correlated datasets, removing redundancies, spotting 

anomalies, and compressing information. Of course, one 

of these strong points is the enhancement of the 

interpretability of data by reducing their dimensionality 

while retaining their essential characteristics. Such is the 

strength of PCA across a wide array of fields, from 

ecological ordination to machine learning applications for 

cluster analysis, feature selection, and enhancing 

statistical discrimination. Nevertheless, one should be 

aware of the limitations of PCA.  

Although good for discovering the general structure of the 

data, it does not have any optimization criteria for class 

separation. Indeed, the transformation is based on global 

variance measures and includes dimensions which are not 

necessarily the most informative for a given classification 

task. This leaves the responsibility in most cases to the 

researcher to identify which principal components offer a 

high signal-to-noise ratio and relevant insights for some 

particular research question or application. 

A Sentinel-2 image can be mathematically described in 

matrix format as follows: 

𝑋𝑛,𝑏 = (

𝑥1,1 ⋯ 𝑥1,𝑛

⋮ ⋱ ⋮
𝑥13,1 ⋯ 𝑥13,𝑛

)  (Eq.5) 

Where n is the number of pixels and b the number of 

bands. Considering each spectral band as vector, the 

aforementioned matrix can be simplified as follows: 

𝑋𝑘 = (

𝑥1

𝑥2

⋮
𝑥13

) (Eq.6) 

Where 𝑘 is is the total number of bands. To achieve 

dimensionality reduction from the original bands, the 

eigenvalues of the covariance matrix have to be 

calculated. The description of this matrix is given as 

follows: 
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𝐶𝑏,𝑏 = (

𝜎1,1 ⋯ 𝜎1,𝑛

⋮ ⋱ ⋮
𝜎13,1 ⋯ 𝜎13,𝑛

)  (Eq.7)

Where 𝜎𝑖,𝑗, is the covariance of each pair of different

bands;  

𝜎𝑖,𝑗 =  
1

𝑁−1
∑ (𝐷𝑁𝑝,𝑖 − 𝜇𝑖)(𝐷𝑁𝑝,𝑗 − 𝜇𝑗)𝑁

𝑝=1  (Eq.8) 

Where 𝐷𝑁𝑝,𝑖 is a digital number of a pixel 𝑝 in the band

𝑖, 𝐷𝑁𝑝,𝑗 is a digital number of a pixel 𝑝 in the band 𝑗, 𝜇𝑖

and 𝜇𝑗  are the average of the 𝐷𝑁 for the bands 𝑖 and 𝑗, 

respectively. 

The eigenvalues (𝜆) are obtained by solving the 

characteristic equation of the covariance matrix, 

det(𝐶 − 𝜆𝐼) = 0 (Eq.9) 

Where 𝐼 represents the identity matrix with diagonal 

elements, and  𝐶 symbolizes the covariance matrix of the 

bands.  

The eigenvalues represent the amount of information 

contained in every band. By computing a ratio of 

individual eigenvalues with respect to their sum, the 

percentage of original variance captured by each principal 

component can be determined. This can be used to 

identify and remove components with the lowest 

variance, which contribute minimal information.  

The principal components can be expressed in a matrix 

form as follows:  

𝑌13 = (

𝑦1

𝑦2

⋮
𝑦13

) = (

𝑤1,1 ⋯ 𝑤1,13

⋮ ⋱ ⋮
𝑤13,1 ⋯ 𝑤13,13

) (

𝑥1

𝑥2

⋮
𝑥13

)   (Eq.10) 

Where 𝑌 stands for the vector of the principal 

components, 𝑊 is the transformation matrix, and 𝑋 

represents the vector of the original data. The 

transformation matrix (𝑊) coefficients are eigenvectors 

that diagonalize the original bands' covariance matrix. 

These coefficients allow us to connect principal 

components with real variables, providing insights into 

their relationships. The eigenvectors can be calculated 

from the vector-matrix equation for each eigenvalue 𝜆𝑘,

(C − 𝜆𝑘𝐼)𝑤𝑘 = 0       (Eq.11) 

Where C is the covariance matrix, 𝜆𝑘 is the 𝑘 eigenvalues,

𝐼  is the diagonal identity matrix, and 𝑤𝑘 is the 𝑘‘s

eigenvectors.  

The multi-temporal PCA analysis was conducted on 

satellite images from Seferihisar and Menderes in Izmir 

province. Images taken with Sentinel-2 in 2016 and 2019 

were used in this study. The choice of principal 

components was made to cause the least possible loss of 

information while emphasizing the presence of vegetation 

and areas damaged by fire (Chuvieco et al., 2002). The 

choice of the bands was on bands B3, B4, B5, B8, B11 

and B12. More specifically, components that contained 

detailed information about the burned areas were 

carefully inspected. 

Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) is 

one of the most commonly applied indices in remote 

sensing. It quantifies vegetation by measuring the 

difference between near infrared (NIR) and red (R) light 

reflected by vegetation. NDVI is an indicator of 

photosynthetic activity and general plant health; 

therefore, it is significantly useful in assessing vegetation 

cover and how it varies over time (Rouse et al., 1974). 

NDVI values vary between -1 and +1. The higher the 

value, the denser and healthier the vegetation; lower 

values indicate sparse or unhealthy vegetation. NDVI is 

more reliable while monitoring agricultural fields, forests, 

and natural vegetation cover (Tucker, 1979). 

In the current study, NDVI values have been derived for 

the pre- and post-fire periods (2016 and 2019). The 

formula to compute NDVI is as follows:  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝑁𝐼𝑅+𝑅𝐸𝐷)
       (Eq.12) 

NIR represents the reflectance in the near-infrared band 

and Red is the reflectance in the red band; band 8 and band 

4 from sentinel-2. NDVI values helped to differentiate 

between burned and unburned areas by analyzing the 

difference in vegetation indices between pre- and post-fire 

images. Fire-prone ecosystems typically experience 

significant impacts on vegetation cover, leading to a 

significant difference in NDVI values. By subtracting the 

NDVI values of the post-fire image from the pre-fire 

image, we can create an NDVI difference image:  

Δ𝑁𝐷𝑉𝐼 =  𝑁𝐷𝑉𝐼2019 − 𝑁𝐷𝑉𝐼2016      (Eq.13) 

This image is useful for representing a forested area of 

severe change because large negative values correspond 

to a reduction in vegetation cover due to fire damage 

(Lutes et al., 2006). 

The NDVI Thresholding Process 

We used a combination of statistical analysis and expert 

knowledge to decide on threshold levels in the NDVI 

process. The mean and standard deviation of the NDVI 

difference values for the entire study area were calculated. 

We then defined a preliminary threshold as two standard 

deviations below the mean-a threshold that is generally 

considered to capture significant vegetation loss due to 

fire (Key and Benson, 2006). 

The result was visually interpreted and the threshold 

further refined by comparing the classification output to 

high-resolution post-fire imagery and any available 

ground truth data. The threshold was selected at the point 

that maximized agreement between our classification and 

known burned areas, while minimizing commission errors 

(false positives) in unburned areas (Lillesand and Kiefer, 

1994). The threshold selection has been validated by 

randomly choosing 100 points within the study area and 
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compared our classification result against a visual 

interpretation of high-resolution imagery. This resulted in 

an overall accuracy of 92%, with a Kappa coefficient of 

0.84, showing strong agreement between our 

classification and reference data  

The methodology used for the current study couples PCA 

with NDVI values to evaluate and map burned areas in the 

forests of western Türkiye. PCA is a data transformation 

method that allows for the possibility of a clear 

visualization of the areas characterized by multi-temporal 

dynamics. Thus, persistent land cover types correlate with 

the major features of the multi-temporal images, and the 

PCA components include areas characterized by 

significant dynamics. Each successive PCA component 

explains a smaller proportion of the total variance of the 

multi-temporal dataset. In this way, the integration of 

NDVI makes it possible to notice the dynamics in smaller 

areas (Lanorte et al., 2015; Lasaponara, 2006). Fig.  2 

illustrates the complete approach followed to achieve the 

purpose of this study:  

Results and Discussion 

Remote sensors face many choices and challenges when 

using multi-temporal satellite data to map burned areas of 

mixed forest ecosystems. Our study hereby demonstrates 

these aspects with greater precision in relation to MLC for 

burned areas mapping across three clearly distinct fire 

events in 2016, 2017, and 2019. Though the general 

accuracy of MLC was very high, the accuracy of the 

burned area category was different among these three fire 

events. This is a common variability in remote-sensing 

studies of complex landscapes, mainly when dealing with 

fires of different scales and intensities in such studies 

(Petropoulos et al., 2011; Gigović et al., 2019).  

Fig. 2.Schematic flowchart of the adopted methodology 

Several factors complicate the supervised classification of 

burned areas, particularly when dealing with multiple fire 

events over years. The spectral signatures for burned areas 

are still highly variable due to burn severity, pre-fire 

vegetation types, and time passed since the burning 

occurred (Lentile, et al., 2006). Moreover, this further 

complicates the problem of fires, as they can burn at 

varying magnitudes and in different years, each with its 

own unique characteristics. Furthermore, a high spectral 

overlap of burned areas with dark surfaces, such as water 

bodies and shadows on steep terrain, along with certain 

types of bare soil or rock, typically results in classification 

errors (Bastarrika et al., 2011; Mallinis and Koutsias, 

2012). For the 2016 and 2017 fire events, our supervised 

classification gave overall accuracies of 96.80% and 

96.53%, respectively in comparison with ground truth 

area. The ground-truth data was retrieved from field 

survey reports and an official map provided by the 

General Directorate of Forestry. This result provides 

insight into our classification method's overall strengths 

under varying fire incidences. The slight increment in 

2019 with an overall accuracy of 97.86% is probably 

because of the large scale of the 2019 fire incident which 

made its distinction much easier (Liu et al., 2020). 

Focusing on the class's burned area for each fire event 

reveals some interesting patterns. The user's accuracy for 

burned areas was high in all years, which indicates that 

the identification of those specific burned areas was 

perfect, presenting a low amount of false positives. For 

the 2019 fire event, the accuracy decreased slightly to 

95.08% compared to the fire incidents in 2016, and 2017, 

which may be due to the larger and possibly more 

complex nature of such fires.  
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Table 3: Error Matrix of Classified Sentinel-2 Acquired in 2016 

Table 4: Error Matrix of Classified Sentinel-2 Acquired in 2017 

Table 5: Error Matrix of Classified Sentinel-2 Image Acquired in 2019 

Water Forest 
Planted/ 

Cultivated 
Developed Rangeland Barren 

Burned 

area 
Total 

User's 

accuracy 

(%) 

Water 35 0 0 0 0 0 0 35 100 

Forest 2 260 1 0 7 0 0 270 96.30 

Planted/ 

Cultivated 
0 0 133 4 0 0 0 137 97.08 

Developed 0 0 1 88 0 0 0 89 98.88 

Rangeland 0 6 0 0 156 0 2 164 95.12 

Barren 0 0 0 0 1 20 0 21 95.24 

Burned 

area 
0 0 0 0 0 0 34 34 100 

Total 37 266 135 92 164 20 36 750 

Producer's 

accuracy 

(%) 

94.59 97.74 98.52 95.65 95.12 100 94.44 96.80 

Water Forest 
Planted/ 

Cultivated 
Developed Rangeland Barren 

Burned 

area 
Total 

User's 

accuracy 

(%) 

Water 35 0 0 0 0 0 0 35 100 

Forest 2 252 1 0 7 0 0 262 96.18 

Planted/ 

Cultivated 
0 0 128 5 0 0 0 133 96.24 

Developed 0 0 2 90 0 0 0 92 97.83 

Rangeland 0 6 0 0 164 0 2 172 95.35 

Barren 0 0 0 0 1 20 0 21 95.24 

Burned 

area 
0 0 0 0 0 0 35 35 100 

Total 37 258 131 95 172 20 37 750 

Producer's 

accuracy 

(%) 

94.59 97.67 97.71 94.74 95.35 100 94.59 0.00 96.53 

Water Forest 
Planted/ 

Cultivated 
Developed Rangeland Barren 

Burned 

area 
Total 

User's 

accuracy 

(%) 

Water 39 0 0 0 0 0 0 39 100 

Forest 0 253 3 0 0 0 1 257 98.44 

Planted/ 

Cultivated 
0 1 133 1 0 0 0 135 98.51 

Developed 0 0 0 105 0 0 0 105 100.00 

Rangeland 1 3 0 0 130 0 0 134 97.01 

Barren 0 0 0 0 3 16 0 19 84.21 

Burned 

area 
0 1 0 0 2 0 58 61 95.08 

Total 40 258 136 106 135 16 59 750 

Producer's 

accuracy 

(%) 

97.50 98.06 97.79 99.06 96.30 100 98.30 0.00 97.86 
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Table 6: Total Accuracy and Kappa Coefficient of Maximum Likelihood Classified Sentinel-2 Images 

The progressive improvement in the accuracy of the 

producer perception during all three-fire events, 

successively, was 94.44% in 2016, 94.59% in 2017, and 

98.30% in 2019. This trend would prove an amelioration 

of our perception of detecting the whole extent of burned 

areas over time and acknowledge different gradients of 

fire intensity (Roteta et al., 2019).  

The variation in accuracy across the three fire events 

highlights challenges in developing a single classification 

approach that would perform equally effectively for fires 

of different sizes and intensities. One plausible reason for 

the discrepancy between the user's accuracy of the 2019 

fire and the producer's increased accuracy is our method's 

superior sensitivity in detecting a larger burned area, 

albeit at a slight additional cost in false positives. This 

sensitivity-specificity trade-off can be more pronounced 

with different sizes and magnitudes of fires (Chuvieco et 

al., 2019). Fire characteristics such as intensity, severity, 

and extent can have a significant impact on the spectral 

signature of burned areas and, consequently, the accuracy 

of their identification. A highly intense fire such as the 

2019’s fire incident, that consumes the majority of the 

vegetation typically results in a very important spectral 

signature and thus provides higher classification 

accuracy. Because of this, it will be hard to make accurate 

classifications when low-intensity fires or fires that 

happen in areas with few plants cause subtle changes in 

the reflectance signature  (Lentile, et al., 2006). Moreover, 

the elapsed time between the fire event date and image 

acquisition may influence the mapping accuracy.  

Fresh burn scars usually have more striking spectral 

signatures; in older scars, however, vegetation regrowth 

might have already distinctly changed their spectral 

features (Chu and Guo, 2013). Most of the time, we 

observe slight variations in classification accuracies for 

our burns across different years, indicating that each fire 

event must have had unique characteristics in terms of 

intensity, extent, and the time between the fire and image 

acquisition.  Despite these high accuracies, the separation 

of burned areas from other classes of land cover that are 

spectrally similar has been challenging. In general, this 

forms a common challenge in burned area mapping, while 

in heterogeneous landscapes, burned areas may spectrally 

be very similar to other darksurfaces like water bodies, 

shadows, or specific types of soil classes. The results of 

these analyses and their implications for burned area 

mapping are presented hereinafter. PCA was applied to a 

stacked raster of six bands selected from the 2019 

Sentinel-2 image. The choice of these bands is based on 

their sensitivity to fire-induced changes and their ability 

to capture different landscape characteristics.  

Table 7 indicates how the different bands have 

contributed to the principal components. Strong negative 

loadings are noticed in all bands, with PC1, and especially 

band 5 with values of -0.53, would point towards this 

representing the overall brightness or albedo. A very 

strong positive loading for PC2 lies on band 4, with a 

value of 0.89 compared to the negative loadings on the 

other bands. This is likely the contrast between visible and 

NIR/SWIR bands and may turn out to be informative in 

vegetation analyses. 

Model performance was evaluated using the percentage 

of correctly classified observations. The most efficient 

models were used to map burned areas for the entire 

dataset. The second PCA was performed on stacked bands 

4, 8, 1, and 12 from both 2016 and 2019 imagery (Table 

8). These bands were selected based on their capability in 

discriminating the burned areas efficiently. This has been 

done in order to look at a more specific part of the spectral 

bands to enhance the burned area detection. In this 

analysis, PC1 accounts for 75.65% of the variance, 

slightly less than in the 2019-only analysis. The first four 

components cumulatively explain 97.14% of the total 

variance, indicating that most of the information, 

including temporal changes, is captured in these 

components. The interesting patterns observed in PC4 and 

PC5 are likely to be more relevant to the detection of burn 

scars, as they reflect the evolution between 2016 and 

2019. The strong contrasts among corresponding bands of 

different years (e.g., Band 4 of 2016 vs. Band 4 of 2019) 

represented by the loadings within these components 

might be indicative of an area that experienced strong 

change, most probably by fire. 

2016 Classification 2017 Classification 2019 Classification 

User's 

accuracy 

(%) 

Producer's 

accuracy 

(%) 

User's 

accuracy 

(%) 

Producer's 

accuracy 

(%) 

User's 

accuracy (%) 

Producer's 

accuracy (%) 

Water 100.00% 94.59% 100.00% 94.59% 100.00% 97.50% 

Forest 96.30% 97.74% 96.18% 97.67% 98.44% 98.06% 

Planted/ 

Cultivated 
97.08% 98.52% 96.24% 97.71% 98.52% 97.79% 

Developed 98.88% 95.65% 97.83% 94.74% 100.00% 99.06% 

Rangeland 95.12% 95.12% 95.35% 95.35% 97.01% 96.30% 

Barren 95.24% 100.00% 95.24% 100.00% 84.21% 100.00% 

Burned Area 100.00% 94.44% 100.00% 94.59% 95.08% 98.30% 

Overall Accuracy 

(%) 
96.80% 96.53% 97.86% 

Kappa Coefficient 0.95 0.95 0.97 
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Fig.  3: Maximum Likelihood Classified Sentinel-2 Image from 2016 

Fig.  4:  Maximum Likelihood Classified Sentine-2 from 2017. 

Fig.  5: Maximum Likelihood Classified Sentinel-2 from 2019. 
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Table 7: PCA of the 2019 Sentinel-2 Image. Note the strong negative loadings in PC1 across all bands, indicating 

overall brightness, and the strong positive loading for Band 4 in PC2, suggesting its importance in vegetation analysis 

Table 8: Multi-temporal PCA of Sentinel-2 images from 2016 and 2019. Observe how the first four components explain 

97.14% of the total variance, capturing most of the temporal changes between the two years  

Later, vegetation indices were included in more detail to 

explain their contribution to PCA using NDVI data for 

both 2016 and 2019 (Table 9). The uneven spread of 

variance across components observed in the previous 

analyses (Table 8) was likely driven by variance in the 

input spectral traits; the addition of NDVI data seems to 

ameliorate this issue by spreading the explained variance 

more evenly across the principal components 

This decrease in the variance of NDVI distribution across 

components strongly suggests that the integration of 

NDVI has added non-redundant information compared to 

the earlier analysis. The information collected from the 

NDVI data is clearly distinct and independent; but 

complementary to the information collected from the 

spectral band data. The detailed patterns of landscape 

dynamics, especially those of change in burn scars, is 

much better captured by data from both spectral and 

vegetation index data. 

The fluctuation of PC3 and PC4 exhibits a distinct pattern 

that is particularly relevant for burn scar recognition, 

while explaining a smaller percentage of the overall 

variance. The loading correspondence or opposition of 

spectral bands against NDVI value might occur more 

starkly for vegetation health change, which perhaps in 

most of the manifestations could be the result of fire 

damage. 

As such, in the final analysis, we substituted NDVIs in the 

single bands with Δ𝑁𝐷𝑉𝐼 representing the NDVI 

difference between 2019 and 2016. We note in the table 

below that PC1 represents 69.20% of the variance, while 

PC2 represents 15.14% of it. These together represent an 

additional 12.81% variance. Fig.  13 shows that the 

addition of Δ𝑁𝐷𝑉𝐼 seems to increase the separation of the 

burned areas. 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Eigenvalue 0.09 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

% Eigenvalue 75.65 13.28 5.50 2.71 2.23 0.31 0.24 0.08 

Cumulative % 75.6 88.9 94.4 97.1 99.4 99.7 99.9 100.0 

Bands Eigenvectors 

B3-16 -0.36 -0.19 -0.36 -0.40 -0.46 -0.48 0.30 0.12 

B4-16 -0.29 0.46 -0.40 0.67 -0.28 0.04 0.01 -0.13

B8-16 -0.40 -0.13 -0.41 -0.09 0.43 0.50 0.11 0.45

B11-16 -0.31 -0.16 -0.27 -0.21 0.21 -0.05 -0.57 -0.62

B3-19 -0.35 -0.24 0.40 -0.03 -0.58 0.56 -0.10 -0.07

B4-19 -0.35 0.75 0.33 -0.40 0.10 -0.07 -0.11 0.11

B8-19 -0.43 -0.17 0.36 0.22 0.36 -0.16 0.56 -0.36

B11-19 -0.31 -0.26 0.27 0.36 0.07 -0.42 -0.48 0.48

PC1 PC2 PC3 PC4 PC5 PC6 

Eigenvalue 0.06 0.01 0.00 0.00 0.00 0.00 

%Eigenvalue 78.5 16.8 3.93 0.41 0.27 0.09 

Cumulative% 78.5 95.3 99.24 99.6 99.9 100 

Bands Eigenvectors 

B2 -0.28 -0.18 -0.42 -0.32 -0.47 -0.62

B3 -0.32 -0.12 -0.46 -0.19 -0.23 0.76

B4 -0.45 -0.25 -0.36 0.56 0.51 -0.16

B8 -0.43 0.89 -0.04 -0.08 0.10 -0.06

B11 -0.53 -0.14 0.59 0.35 -0.47 0.05

B12 -0.38 -0.28 0.35 -0.65 0.48 -0.01
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Fig.  6: PCA results showing (a) PC1, representing overall landscape brightness, (b) PC2, highlighting vegetation 

contrasts, (c) PC3 and (d) PC4, emphasizing areas of significant change potentially related to burn scars. 

Table 9:  Multi-temporal PCA of Sentinel-2 images and NDVI for 2016 and 2019. Note how the inclusion of NDVI 

spreads the explained variance more evenly across components, indicating its contribution of non-redundant information. 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Eigenvalue 0.10 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

% Eigenvalue 61.2 25.0 5.88 4.15 2.38 0.63 0.31 0.19 0.10 0.06 

Cumulative % 61.3 86.3 92.2 96.3 98.7 99.3 99.7 99.8 99.9 100 

Bands Eigenvectors 

B3-16 -0.36 -0.02 0.27 -0.26 -0.27 -0.53 -0.27 0.08 0.54 0.10 

B4-16 -0.23 0.35 -0.25 -0.53 -0.43 0.25 -0.28 0.11 -0.37 -0.11

B8-16 -0.39 0.07 0.16 -0.38 0.39 0.12 0.51 0.22 -0.07 0.45

B11-16 -0.30 0.01 0.18 -0.22 0.23 -0.03 0.19 -0.59 -0.01 -0.63

NDVI-16 0.26 0.38 -0.66 -0.20 0.15 -0.31 0.26 -0.08 0.34 -0.02

B3-19 -0.35 -0.07 -0.20 0.34 -0.26 -0.55 0.33 0.08 -0.48 -0.04

B4-19 -0.28 0.55 0.11 0.47 -0.30 0.34 0.22 -0.16 0.31 0.09

B8-19 -0.41 0.04 -0.25 0.25 0.44 0.10 -0.29 0.50 0.15 -0.37

B11-19 -0.31 -0.06 -0.30 0.12 0.25 -0.01 -0.44 -0.54 -0.11 0.48

NDVI-19 0.21 0.64 0.40 0.07 0.32 -0.35 -0.24 0.04 -0.31 0.02
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Fig. 4.PCA results incorporating NDVI data. (a) PC1, representing overall landscape structure and vegetation density; 

(b) PC2, highlighting contrasts between vegetation types and potential burn areas; (c) PC3, emphasizing vegetation

changes that may indicate burn scars or recovery; (d) PC4, showing finer details of landscape variability potentially

related to burn severity or recovery stages.

This is especially true in PC3 and PC4. The highest 

loading of Δ𝑁𝐷𝑉𝐼, has 0.59 loading on PC2 and -0.61 

loading on PC3; this would thus imply that the two 

components are vital in capturing dominant changes of 

vegetation over time that are relevant for the correct 

detection of burn scars.  The results of PCA are shown in 

Fig. s 6, 7, and 8. In all these cases, visual analysis further 

supports and extends the insights obtained from the 

numerical data. On the other hand, standard PCA, as 

shown in Fig.  6, underlines the general landscape 

structure in PC1, while PC3 and PC4 specify high-

contrast areas that might eventually indicate significant 

changes. Fig.  7, including NDVI, strengthens the 

discriminatory capability of vegetation patterns in both 

PC2 and PC3, thus highlighting probable burn scars more 

than regular PCA would. Most importantly, the PCA 

including Δ𝑁𝐷𝑉𝐼, shown in Fig.  8, shows maximum 

contrast, mainly in PC2, with dark areas probably 

indicating huge losses in vegetation, characteristic of burn 

scars. PC3 and PC4 can give additional information on 

vegetation change in this analysis, which may indicate 

different stages of burn severity or recovery. This 

graphical evidence corresponds quite agreeably to the 

numerical findings, especially how, in Table 10, Δ𝑁𝐷𝑉𝐼 

has strong loadings in PC2 at 0.59 and PC3 at 0.62. The 

clear separation of the burned areas in PCA based on 

Δ𝑁𝐷𝑉𝐼, especially visible in PC2 and PC3, further 

confirms the applicability of the method for semi- 

automated burn area mapping. These results show the 

effectiveness of multi-temporal PCA for burn-area 

detection and characterization, mainly when associated 

with vegetation indices. The technique can be a helpful 

tool for enhancing the accuracy and detail of burned area 

mapping in complex forest ecosystems, able to detect 

burns at different intensities and stages of recovery. Age 

classes of burn scars from individual fire events were 

mapped using the multi-temporal PCA applied to Sentinel 

2 bands and the Δ𝑁𝐷𝑉𝐼 index. The large 2019 fire is green 

is obvious, having a quite different spectral signature than 

the surrounding, older burn scars from 2017 and 2016. 

Another small burn scars appeared to have the same color, 

which means that they are recent. 
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Table 10: Statistics of Temporal NDVI Differencing. 

This table summarizes the NDVI values for 2016 and 

2019, as well as their difference (ΔNDVI), providing 

insight into overall vegetation changes in the study area 

NDVI-

2016 

NDVI-

2019 
Δ𝑁𝐷𝑉𝐼 

Minimum 

values 
-0.44 -0.41 -0.67

Maximum 

values 
0.77 0.79 0.64 

Mean values 0.35 0.34 0.01 

Standard 

deviation 
0.16 0.17 0.1 

This is particularly evident in the PC2 and PC3 

components of the Δ𝑁𝐷𝑉𝐼-based PCA, where the 2019 

burn scar represents a darker area facing the highest 

recent vegetation loss. In Fig.  9, the burn scars from 2017 

and 2016 have varying contrasts, probably due to the 

different stages of vegetation recovery. This observation 

validates Veraverbeke et al. (2011)’s assertion that multi-

temporal vegetation indices can effectively monitor post-

fire vegetation recovery. The color variation between 

these older burn scars is very fine, suggesting that 

revegetation occurred gradually with the 2016 scar in a 

more advanced state of recovery than the 2017 scar. 

These findings align with the findings of Röder et al. 

(2008), who reported that Mediterranean ecosystems 

typically show rapid initial recovery, followed by a 

gradual regeneration process over time. These results, 

with a clear difference between recent and older burn 

scars, prove the sensitivity of the method for detecting 

acute fire damage and long-term recovery dynamics. 

Upon evaluating the computed burned areas from the 

MLC and temporal PCA-based Δ𝑁𝐷𝑉𝐼 against the 

observed burned areas for three fire events (2016, 2017, 

and 2019), the results in table 12 were found. These 

findings provide key insights into the effectiveness of 

these methods across different temporal scales. 

According to the above table, the multi-temporal PCA 

based Δ𝑁𝐷𝑉𝐼 performed the best for a recent fire in 

2019, mapping about 98.76% of the officially reported 

area, while Maximum Likelihood Classification (MLC) 

overestimated this parameter at 111.29%, and there is a 

major overestimation by MODIS of about 136.00%. It is 

important to mention at this stage that the accuracy of the 

multi-temporal PCA method for mapping recent burn 

scars is higher, which conforms with the analysis by 

Veraverbeke et al. (2010) on the basics of multiple time 

periods used in fire impact assessment. Performance 

varied across fire years for all methods, which mirrors the 

complexities in mapping burn scars over time in 

Mediterranean-type ecosystems. 

For the 2017 fire, all methods overestimated the burned 

area: MODIS by 178.40%, PCA by 128.50% and MLC 

by 106.36%. This may indicate overestimation because 

these methods account for secondary fire effects or 

further landscape-level changes beyond the initial burn 

scar, as noted by Díaz-Delgado et al. (2002). For the 

oldest fire event (2016), all methods returned 

overestimation, but with the highest overestimation 

expressed by PCA-based Δ𝑁𝐷𝑉𝐼 at 125.34%, followed 

by the high-resolution MODIS data at 107.20%, with an 

overestimation of 103.38% by MLC. This systematic 

overestimation thus challenges the supposition of Röder 

et al. (2008) regarding the difficulty of mapping 

historical burn scars in rapidly recovering ecosystems. It 

would instead suggest that all methods could be sensitive 

to long-term landscape changes, which might easily be 

confused with burn scars.  

Table 11: Multi-temporal PCA of Sentinel-2 images and ΔNDVI. Observe the high loadings of ΔNDVI in PC2 and PC3, 

highlighting its importance in capturing vegetation changes over time, crucial for burn scar detection. 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Eigenvalue 0.10 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

% Eigenvalue 69.20 15.14 8.03 4.78 2.07 0.37 0.23 0.12 0.07 

Cumulative % 69.20 84.34 92.36 97.14 99.21 99.59 99.81 99.93 100 

Bands Eigenvectors 

B3-16 -0.36 -0.08 -0.32 -0.25 -0.57 -0.27 0.09 0.54 0.01 

B4-16 -0.29 0.25 0.48 -0.61 -0.07 -0.29 0.09 -0.39 -0.04

B8-16 -0.40 -0.05 -0.25 -0.33 0.37 0.53 0.22 0.03 0.44

B11-16 -0.31 -0.07 -0.27 -0.17 0.13 0.20 -0.58 -0.11 -0.63

B3-19 -0.35 -0.26 0.04 0.36 -0.55 0.29 0.12 -0.52 0.04

B4-19 -0.36 0.62 0.38 0.35 -0.04 0.25 -0.19 0.35 0.03

B8-19 -0.43 -0.19 0.06 0.32 0.42 -0.31 0.50 0.08 -0.38

B11-19 -0.30 -0.29 0.07 0.19 0.19 -0.44 -0.54 -0.06 0.51

Δ𝑁𝐷𝑉𝐼 -0.06 0.59 -0.62 0.16 0.03 -0.29 0.07 -0.37 0.09
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Fig. 5. PCA results incorporating ΔNDVI (NDVI difference between 2019 and 2016). (a) PC1, representing 

stable landscape features; (b) PC2, strongly highlighting areas of significant vegetation change, with dark areas 

likely indicating severe burns; (c) PC3, further differentiating burn scars and showing potential recovery 

patterns; (d) PC4, capturing subtler changes that may relate to burn severity gradients or different stages of 

vegetation recovery.

Fig. 6. Multi-temporal PCA results showing age classes of burn scars. Recent burn scars (2019) appear in green, 

exhibiting a distinct spectral signature compared to older burn scars from 2017 and 2016. Color variations 

between older scars indicate different stages of vegetation recovery, with 2016 scars showing more advanced 

regeneration than 2017 scars. 
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Table 10: Comparison of observed, MODIS and computed Burned Areas (BA) for the three fire incidents. Note 

the increasing overestimation trend for older fire events across all methods. 

Fire Year 
Officially Reported 

BA (ha) 
MODIS BA (ha) MLC BA (ha) PCA-Δ𝑁𝐷𝑉𝐼 BA (ha) 

2019 5000 6800.00 (136.00%) 
5564.45 

(111.29%) 

4938 

(98.76%) 

2017 986 1759.00 (178.40%) 
1048.74 

(106.26%) 

1267 (128.50%) 

2016 500 536.00 (107.20%) 
516.88 

(103.38%) 
626.69 (125.34%) 

Table 11: Analysis of Accuracy Metrics for 2019 Fire Incident. This table provides a detailed breakdown of the 

accuracy assessment, comparing the PCA-based method with the MLC method for the most recent fire event 

Metric Fire Incident 2019 

Total Study Area (ha) 116844.34 

MLC Burned Area  (ha) 5564.45 

PCA Classified Burned Area (ha) 4938.71 

True Positive (TP) Area (ha) 4730.20 

False Positive (FP) Area (ha) 833.92 

False Negative (FN) Area (ha) 208.51 

Overall Accuracy (%) 81.94 

User’s Accuracy (%) 85.01 

Producer’s Accuracy (%) 95.78 

Omission Error (%) 0.04 

Commission Error (%) 0.15 

The overestimation of burned areas in older fire events 

could be attributed to several factors. Firstly, vegetation 

regrowth in Mediterranean ecosystems is often rapid, 

which can confound spectral signatures over time. 

Secondly, other landscape changes unrelated to fire, such 

as drought stress or land use changes, may be misclassified 

as burn scars. To mitigate these issues in future studies, 

integrating higher temporal resolution data to capture the 

trajectory of vegetation recovery more precisely could be 

beneficial. Additionally, incorporating ancillary data such 

as topography, climate, and vegetation type could help 

distinguish fire-related changes from other landscape 

dynamics. 

The accuracy assessment for the fire incident in 2019 

conveys information on how well the PCA-based method 

performs as compared to what obtains using the MLC 

method. It should be noted that although an official 

estimation of the burned area has been given by the 

concerned authorities, the spatial perimeter data of this is 

not available, that puts a limitation on carrying out a 

comprehensive ground truth validation. For the total study 

area of 116,844.34 ha, the MLC method estimated a larger 

burned area of 5564.45 hectares compared to the PCA 

method's 4938.71 ha.  

Compared to the reference data classified by MLC, the 

PCA method returned an overall agreement of 81.94%. The 

high producer's accuracy of 95.78% argues that a vast 

majority of areas classified as burned by the MLC are 

identified by the PCA method. This is further supported by 

a low omission error of 0.04, arguing that areas classified 

as burned by the MLC are rarely missed by PCA. The user 

accuracy of 85.01% and the commission error of 0.15 show 

that some areas are classified as burned by PCA that are 

not by MLC, which might point out to higher sensitivity in 

PCA or even possible over-classification.  

This agreement between both methods is represented by a 

true positive area of 4730.20 ha, and these differences are 

underlined by false positives of 833.92 ha and false 

negatives of 208.51 ha. By these measures, it is shown that 

on one hand there is major consensus between PCA and 

MLC methods; on the other hand, there are certain 

significant differences. The discrepancies may be caused 

by the fact that the PCA method is more sensitive to slight 

burn signatures or due to overestimation by the MLC 

method.  

While our study focused on comparing our PCA-NDVI 

method with MLC, it is worth noting that other machine 

learning approaches like Random Forest and Support 

Vector Machines have shown promise in burn scar 

mapping. These methods often excel in handling complex, 

non-linear relationships in spectral data. However, our 

PCA-NDVI approach offers the advantage of being more 

interpretable and computationally efficient, while still 

achieving high accuracy, especially for recent burn scars. 

That is to say, while the multi-temporal PCA-based 

Δ𝑁𝐷𝑉𝐼 method may vary within the years of fire; from 
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slight underestimation in recent fires to huge 

overestimation in older fires; it works well for recent burn 

scar mapping but may need some refinement and 

integration of more time series data to track the 

regeneration state in historical burn scars. This variability 

thus underlines the complexity of mapping burn scars in 

fire-prone ecosystems. In this regard, it needs adaptive 

methods that can encompass the existing diversity of 

landscape dynamics occurring postfire. 

Conclusion 

This research demonstrates the effectiveness of integrating 

multi-temporal principal component analysis with 

vegetation indices to improve burned area detection and 

mapping within Izmir's forest ecosystems. The application 

of PCA to Sentinel-2 data, especially integrated with NDVI 

and Δ𝑁𝐷𝑉𝐼, reveals a significant over-improvement on the 

accuracy front compared to conventional techniques, 

particularly in identifying recent burn scars. 

The multi-temporal PCA method, incorporating Δ𝑁𝐷𝑉𝐼 as 

a variable, showed highly promising results for mapping 

areas severely affected by forest fires. Notably, PC2 and 

PC3 proved to be the most informative variables for 

identifying burn scars. The clear visual distinction of 

burned areas in the principal components suggests a strong 

potential for developing semi-automated mapping 

techniques. 

A key strength of this multi-temporal approach lies in the 

ability to detect changes over time, which provides not only 

the basis for burn scar identification but also insight into 

their development and eventual recovery patterns. The 

simple fact of having this capability places great value on 

fire management and studies in ecology within the fire-

prone Mediterranean landscapes. 

However, our results indicated that while this methodology 

of multi-temporal PCA is appropriate for mapping recent 

burn scars, it overestimates the extent of older burns. This 

trend of overestimation when the age of fire is rising is an 

area for future refinement.  

This limitation could be overcome by future research 

investigating the integration of other high-resolution data 

sources, such as multispectral imagery and LiDAR, for the 

clear separation of direct fire impacts from the rest of the 

secondary landscape changes. In this regard, developing 

methods for accounting for the very rapid vegetation 

recovery characteristic of Mediterranean ecosystems could 

save much room for improving the historical mapping of 

burn scars. 

Future directions in research may concern the integration 

of LiDAR data to capture changes in three-dimensional 

forest structure post-fire, or hyperspectral imagery 

sensitive to subtle spectral changes associated with various 

burn severities. Machine learning techniques might also be 

explored that allow for the automated discrimination of 

burn scars from other spectrally similar land cover 

changes. 

Results have important practical implications for forest 

management. The possibility of mapping recent burn scars 

could facilitate rapid assessment of fire damage and inform 

immediate post-fire restoration. Long-term monitoring of 
ecosystem recovery, informed by the multi-temporal 
aspect of our approach, should also help managers target 
areas that might require intervention to promote 
regeneration. Additionally, historical mapping of burn 
scars-although currently limited-could provide insight into 
the fire regimes and improve fire risk models, key to 
proactive fire management strategies in Mediterranean 
ecosystems. 
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