
Computers and Informatics

2757-8259 2024, Volume 4 Issue 2
DOI: 10.62189/ci.1516319 Research Article

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

112

Evaluation of end-user web mashup development

Alwi Bamhdi

Umm Al-Qura University, College of Computing, Department of Computer Sciences, Al Qunfudhah, Makkah,

Saudi Arabia, iambamhdi@uqu.edu.sa

Submitted: 15.07.2024

Accepted: 19.12.2024

Published: 31.12.2024

Abstract:

Mashup End-User Programming (EUP) paradigms leverage tools that enable users to customize web content from

various data sources, offering a potentially simple, effective, and efficient method for developing end-user

applications. Although it is hypothesized that mashup technology is easy to use for individuals without

programming skills, this paper examines this claim through an experiment. Using two Application Programming

Interfaces (APIs) from Flickr and Google Maps as test cases, participants were tasked with creating meta-applications

using one of three mashup tools: Yahoo! Pipes, Intel Mash Maker, or Dapper. The research methodology,

measurement methods, and findings are presented, revealing that mashup development is not as accessible for

non-programmers as widely believed, highlighting key challenges in end-user application development. The results

showed that while participants found mashup tools engaging and transformative in their approach to web

development, they struggled with complexity, particularly non-programmers and even some confident

programmers. The findings emphasize the need for intuitive, user-friendly mashup tools that simplify development

and support effortless end-user programming. This is a research and development challenge mashup facilities

should offer in a seamless manner with new supportive paradigms.

Keywords: End–user development, Mashup, Mashup tools, Meta–applications, Web 1.0 to Web 5.0

© 2024 Published by peer-reviewed open access scientific journal, Computers and Informatics (C&I) at DergiPark

(dergipark.org.tr/ci)

Cite this paper as: Bamhti, A., Evaluation of end-user web mashup development, Computers and Informatics, 2024; 4(2); 112-129,

https://doi.org/10.62189/ci.1516319

https://dergipark.org.tr/en/pub/@alwi-bamhdi
mailto:iambamhdi@uqu.edu.sa
https://dergipark.org.tr/en/pub/ci
https://orcid.org/0000-0003-4428-2292
https://doi.org/10.62189/ci.1516319

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

113

1. INTRODUCTION

Before 1999, users were primarily consumers of web content, and the internet was regarded as a

sophisticated tool that only professionals, tech-savvy users, and enthusiasts could engage with. At that

time, less than 5% of the global population used the internet, and web technology was still in its infancy

with the advent of Web 1.0. However, the latest statistics on global internet usage and digital behaviour

are now available. As of October 2024, there are 5.52 billion internet users globally, reflecting a year-on-

year growth of 151 million users at a 2.8% annual rate. Social media has also seen significant expansion,

with 5.22 billion active users, accounting for 67.5% of the world’s population. Additionally, mobile

adoption is noteworthy, with 5.75 billion unique mobile users globally, representing 70.3% of the global

population [1]. This growth underscores the increasing engagement with digital platforms, highlighting

the ongoing relevance of tools like mashups in empowering user-generated content.

Similarly, web technology has evolved rapidly from Web 1.0 to Web 2.0, Web 3.0, and now Web 4.0, with

Web 5.0 platforms emerging to offer more than just reading news or checking emails. Emerging web

applications and content services, such as smart search functions, have started to evolve into topic-

specific searches and crawlers, creating new revenue streams through mechanisms like pay-per-click

advertising [2], [3]. As of 2024, web development trends increasingly depend on the preferences and

needs of users, with tools like Artificial Intelligence (AI) and chatbots becoming integral to mashup

development. Studies such as those by Aghaee & Pautasso [5] and Lian & Tang [7] highlight how mashup

tools, particularly those powered by AI or advanced API frameworks, empower non-programmers to

develop meta-applications. This democratization is facilitated by simplified platforms (e.g., no-code tools

like Zapier or Bubble) and evolving web technologies.

Web mashups are content aggregators that combine various types of content into a more advanced

form through remixes, creating meta-applications that cater to users ranging from technical experts to

casual users. For instance, by the end of 2010, over 2,500 APIs had been integrated to create more than

5,400 mashups, with new mashups being created daily [6]. In comparison, according to the latest

statistics from the largest web API portal, ProgrammableWeb.com, the number of open web APIs now

exceeds 24,500 [1]. With such an abundance of web APIs, developers frequently reuse or combine them

to create value-added services or new meta-applications through mashup development [7].

Web development mashup tools have been made publicly available through open-source platforms,

aiming to provide opportunities for end-users to create their own mashups [8]. However, the rapid

expansion of web technology and intense market competition have led to several mashup tools falling

by the wayside because they could not keep up with advancements made by their competitors or

evolving end-user requirements for remixed meta-applications [9].

In development terms, there is no single industry-standard definition for mashup interworking or

interoperability. Mashups epitomize web services technology by fusing data from two or more web

applications to create an integrated functionality experience based on the original data sources. Mashup

developers dynamically extract data from one source and combine it with another. For example, the Fast

Food Maps mashup combines location information of major fast food restaurants with Google Maps,

enabling users to see where they can find their preferred meal in a specific locality.

The rapid growth of mashups has led to the widespread belief that anyone can develop them. There is

a common perception that users can remix meta-applications from web resources with minimal

computing skills. This belief is being tested through the research reported in this paper.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

114

The experiment and evaluation described in this paper were designed to assess this hypothesis and

measure the performance of end-user mashup application development. Two different APIs, the Flickr

and Google Maps APIs, were remixed to create a meta-application. Participants were tasked with

building their own high-level meta-application using one of three mashup tools: Yahoo! Pipes, Intel

Mash Maker, or Dapper. After completing the task, participants were given questionnaires to evaluate

their experience. The questionnaire aimed to capture users' ideas and opinions on mashup application

development, as well as assess the ease of use of the mashup tools. The evaluation focused on

exploratory questions such as:

• What were users' general impressions of the mashup development paradigm?

• What did users think about mashup application development in terms of ease of use,

programming concepts, and the knowledge required to use these tools?

• Given that mashup tools are intended to assist end-user development, what factors

influenced their choice of the selected mashup tool?

The paper begins with a review of mashup development in the context of the evolution of the web as

discussed in Section 2. Section 3 outlines the requirements for developing the meta-application. Section

4 details the experiment format, followed by Section 5, which specifies the meta-application's function

and architecture. Section 6 presents the evaluation and results of the experimental research, and Section

7 provides discussions and conclusions.

2. MASHUP AND WEB EVOLUTION

Following Web 1.0, referred to as static HTML for publishing and downloading Web page content, the

evolution to Web 2.0 and Web 3.0, with their improved functionalities, is the reason why mashups have

become possible and popular [10]. Web 2.0 refers to interoperable, interlocking types of services where

websites provide components rather than finite, one-stop experiences, encouraging end-user

programming (EUP) and meta-application development [11]. Users in this paradigm are therefore free

to combine online services in any way they choose. Compared with Web 1.0, Web 2.0 introduced social

networking sites like Flickr, which allow many people to build communities, upload, and share content

they have created in an interactive and collaborative manner. On Web 2.0 platforms, users are no longer

just passive readers while surfing the Internet to search for information and retrieve data; they also help

create content by blogging personal and personalized information easily and seamlessly through the

functionality offered by Web 2.0 platforms and multimedia applications [9]. In "What is Web 2.0?"

O'Reilly [11] explicitly identified remixable data sources and the right to remix, enabling users to create

hybrid meta-applications through data reuse, web services, micro-applications, and their APIs.

The evolution of the World Wide Web (WWW) never stops. With the term "Semantic Web," which started

with Web 2.0 and grew progressively through ontology and knowledge-based inference, the web has

matured and is now referred to as Web 3.0. In 1999, Tim Berners-Lee, the inventor of the first World

Wide Web, expressed the vision of the Semantic Web as an intelligent agent [13]. It was to be a web of

data that could be processed directly and indirectly by machines. Terms like Web 1.0, Web 2.0, Web 3.0,

and Web 4.0 are versions of web technology growth areas coined by the W3C (World Wide Web

Consortium). Web 4.0, defined as the Mobile Web, is not necessarily a new version but an alternative to

Web 3.0, designed to adapt to mobile environments. Web 4.0 connects all devices in both the real and

virtual world in real time, while still heavily relying on Web 2.0 and Web 3.0 technologies. Web 5.0, the

open, linked, and intelligent "emotional web," has yet to make a significant impact on the application

and programming scene [14]; we are not there yet!

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

115

For example, searching for Web 3.0 and Web 4.0 separately on Google results in an astounding total of

about 1.77 billion search results in just 0.54 seconds for Web 3.0, and about 4.9 billion search results in

0.51 seconds for Web 4.0 [15]! This demonstrates the powerful search capabilities of Google, which can

return vast amounts of related content in a very short time. However, it does not provide users with

substantive, sophisticated help since one must click and open each link to determine its relevance. Users

often experience information overload, feeling that they are receiving lots of useless information.

Although search results can be refined with more precise queries, the intelligence required for this task

lies with the end-user, rather than the search system performing more sophisticated, semantically-aware

searches assisted by ontologies. This is one key problem that Web 3.0 aims to solve.

Web 3.0, as described by Wikipedia, encompasses a set of methods and technologies designed to enable

machines to understand the meaning, or semantics, of information on the World Wide Web [15].

Building on this definition and through a more comprehensive analysis, Table 1(a) highlights the

evolution of technology, applications, and challenges by comparing and contrasting the characteristics

of Web 1.0, Web 2.0, and Web 3.0. Meanwhile, Table 1(b) elaborates on the distinctions in their features,

technologies, applications, and impacts, aligning these with modern trends in Web 3.0, such as

blockchain, the Metaverse, and semantic capabilities.

Table 1(a). Comparison of different versions of web technology

Versions vs. Properties Web 1.0 Web 2.0 Web 3.0

Timeline 1991–2003 Since 2004
The term became famous in 2006 and is still evolving

to date.

Type of functions Read–only
Read–write–

publish

Semantic Web: AI-driven context and decentralized

systems.

Buzzword Online
AJAX

RSS

Interactive 3D content, Blockchain, Dapps,

Metaverse.

Pros
Human Computer

Interactive (HCI)

Facilitate

collaboration &

sharing between

users

Allows seamless sharing and integration of

information across data domains. Richer semantic

functionality and decentralized systems. Offer a

richer set of facilities & remix options.

Cons
Limited average

Internet user’s role

Information

overload

Security concerns: private data, copyright issues, and

high complexity.

Outcomes Dot (.) com boom

Services like

YouTube,

Facebook,

Wikipedia,

Folksonomies,

TikTok, etc.

Contextual search, Semantic reasoning, Ontology-

based support, Blockchain apps, NFTs, DAOs,

Metaverse.

Examples Static websites
Blogs, Wikis, Social

media platforms.

Decentralized Finance (DeFi), NFTs, Ethereum-based

Dapps, Decentraland.

Key Technologies
HTML, HTTP, Static

pages

AJAX, APIs,

Dynamic content.

Blockchain, Smart Contracts, AI, Linked Data,

Decentralized Storage (IPFS).

Notable Features
Limited

interactivity

User-generated

content,

Collaboration.

Decentralization, Semantic Web, AI, Ownership of

data, Privacy-centric systems.

Table 1(b): Overview of Web 3.0 Features, Technologies, Applications, and Impacts

Category Key Technologies Description Examples

Blockchain
Decentralized, secure data storage and transaction

technology.
Ethereum, Bitcoin

Smart Contracts
Self-executing contracts coded directly onto blockchain

networks.

Solidity-based contracts,

Hyperledger Fabric

Decentralized Storage
Distributed systems for censorship-resistant and secure

data storage.
IPFS, Filecoin

Interoperability
Seamless interaction between different blockchain

networks and platforms.
Polkadot, Cosmos

Applications

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

116

Decentralized Apps (Dapps)
Applications built on blockchain with no centralized

authority.

Uniswap, OpenSea, Lens

Protocol

Decentralized Finance (DeFi)
Blockchain-based financial systems eliminating

intermediaries.
Aave, Compound, MakerDAO

Metaverse
Immersive virtual environments combining AR, VR, and

blockchain.
Decentraland, The Sandbox

NFTs Digital tokens proving ownership of unique assets.
CryptoPunks, Bored Ape Yacht

Club

Decentralized Autonomous

Organizations (DAOs)

Community-driven organizations governed by

blockchain-based smart contracts.
MakerDAO, ConstitutionDAO

Web3 Identity
User-centric identity systems promoting privacy and

self-sovereignty.

Ethereum Name Service (ENS),

Spruce

Features

User-Centric
Empowering individuals to own and control their digital

identities and assets.
Web3 wallets like MetaMask

Semantic Web
Leveraging AI and ontologies to enable machines to

"understand" and connect data meaningfully.
RDF, OWL, SPARQL

Trustless Systems
Reducing reliance on intermediaries via cryptographic

verification and consensus mechanisms.

Proof of Work (PoW), Proof of

Stake (PoS)

Impacts

Economic Decentralization
Allowing individuals to monetize digital assets without

centralized oversight.

Artists earning royalties via

NFTs

Global Inclusion
Expanding access to digital tools and services,

especially in underserved areas.

Blockchain-based remittance

systems

Data Ownership and Privacy
Users reclaim control of their data, reducing

exploitation by large platforms.

Decentralized social platforms

like Mastodon

In summary:

Mashups are applications created by combining data, services, or functionalities from multiple sources

into a single tool or interface. They became popular with Web 2.0, which introduced user-friendly,

interactive web technologies that allowed non-programming users to assemble and customize

applications without needing deep technical expertise. Tools like Google Maps APIs and drag-and-drop

platforms enabled this democratization of app development.

With the advent of Web 3.0 (focused on the semantic web, decentralization, and AI), Web 4.0 (integration

of IoT and smart systems), and discussions of Web 5.0 (emphasizing human-AI symbiosis and emotional

computing), the scope for mashups has evolved significantly. Today, users can leverage no-code/low-

code platforms powered by AI to build highly sophisticated applications. For instance, AI tools can

interpret user needs, connect APIs, and structure workflows with minimal human intervention.

Thus, mashups in the Web 3.0, 4.0, and 5.0 eras are not only possible but more accessible than ever,

thanks to advancements in AI, semantic technologies, and no-code platforms, enabling seamless

development by non-programming users.

3. GUIDELINES AND REQUIREMENTS FOR META-APPLICATION DEVELOPMENT

3.1 Preamble

Meta-application development represents the next frontier of software engineering, integrating a variety

of services and applications to form more complex and dynamic systems. These applications combine

functionalities from multiple domains, often in ways that were previously unimaginable. This approach,

fostered by Web 2.0 and beyond, brings about several requirements and challenges that developers

need to address to build efficient, robust, and user-centric meta-applications.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

117

3.1.1. Interoperability and integration

The primary requirement in meta-application development is seamless interoperability and integration

between disparate systems. Meta-applications often involve the combination of services and

components from various domains, including databases, web services, APIs, and cloud platforms.

Developers must ensure that these components can communicate effectively, which often involves

working with APIs, middleware, and other integration technologies. This ensures that different systems

can exchange data and functionality in a manner that is transparent to the user.

Interoperability also extends to platforms and devices. For example, a meta-application might aggregate

data from a social media platform, weather service, and an IoT device. Ensuring that these services

function cohesively in real-time without compatibility issues is one of the key challenges of meta-

application development [12].

3.1.2. Scalability and flexibility

Scalability is a crucial requirement for meta-applications, as they are expected to handle growing

amounts of data and increasing numbers of users without compromising performance. This involves

designing the application to be flexible enough to scale horizontally across servers or to integrate new

services or functionalities seamlessly.

Web 3.0 technologies such as blockchain and decentralized storage systems require meta-applications

to be scalable, as they often involve complex data structures and large-scale distributed systems. In this

context, flexible architecture and dynamic resource allocation play a vital role in ensuring the application

can handle growth while maintaining efficiency.

3.1.3. Security and privacy

As meta-applications aggregate and process large amounts of user data from various sources, security

and privacy become critical concerns. Developers must implement robust authentication and

authorization mechanisms to ensure that only authorized users can access specific features. Furthermore,

data encryption is essential for protecting sensitive information, especially when dealing with personal

data, financial transactions, or medical records.

Meta-applications built on decentralized technologies such as blockchain must also consider the

implications of distributed data storage. While decentralized systems often offer increased security,

developers must account for risks such as data breaches, fraud, and other malicious activities.

Implementing mechanisms such as end-to-end encryption, zero-knowledge proofs, and secure multi-

party computation can help mitigate these risks and ensure data privacy [13].

3.1.4. Usability and user experience (UX)

Meta-applications often combine services from different domains, so providing a smooth, intuitive user

experience is essential. This requires careful design and attention to how users interact with the

application. A well-designed meta-application should allow users to easily navigate between integrated

services without confusion or disruption.

Developers must focus on creating user interfaces (UIs) that are simple and consistent, even when they

incorporate complex backend functionalities. The rise of low-code/no-code platforms, which enable

non-technical users to build applications, further emphasizes the importance of creating highly intuitive

UIs. This trend in Web 3.0 technologies means that the integration of AI and machine learning (ML) to

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

118

enhance user experience and provide personalized services is becoming a key feature of meta-

applications [14].

3.1.5. Data management and semantics

Effective data management is at the heart of meta-application development. Meta-applications need to

handle data from multiple sources, often in varying formats and structures. Developers must ensure that

the data is cleaned, transformed, and stored in a manner that is useful and accessible.

Web 3.0's focus on the semantic web emphasizes the need for meta-applications to interpret and link

data meaningfully. Ontologies and data schemas play a critical role in structuring and linking data across

different domains. The use of machine learning algorithms and AI to extract valuable insights from this

data is a major development area. Meta-applications must be capable of utilizing this data efficiently

and offering rich semantic search capabilities to improve user interactions [15].

3.1.6. Real-time processing and updates

Given the dynamic nature of meta-applications, real-time processing is another vital requirement. As

these applications often aggregate live data from multiple sources—such as IoT sensors, user-generated

content, or streaming services—developers must ensure that the application is capable of processing

and displaying this data without latency. This requires integrating real-time data processing capabilities,

such as WebSockets or server-sent events, into the architecture.

Furthermore, meta-applications should be able to provide real-time updates or notifications to users

when critical events occur, such as changes in data or the availability of new content. In the context of

decentralized applications (dApps) or blockchain-based applications, developers must ensure that

updates are broadcasted securely across the network in a timely manner.

3.1.7. Cost efficiency and sustainability

As meta-applications typically rely on various third-party services, cloud storage, or decentralized

networks, cost efficiency is an important consideration. Developers must optimize the use of resources,

minimize redundant operations, and choose scalable cloud services to ensure the application is cost-

effective over time. This includes optimizing the storage and computing needs of blockchain-based

applications or distributed ledgers, which often come with high operational costs.

Moreover, as the impact of software development on the environment becomes a growing concern,

developers must take sustainability into account. This may involve leveraging energy-efficient data

centers, reducing the energy consumption of decentralized systems, or optimizing computational tasks

to reduce their carbon footprint.

3.1.8. Cross-platform compatibility

Given the increasing diversity of devices and operating systems used by consumers, cross-platform

compatibility is an essential requirement for meta-application development. Meta-applications need to

operate smoothly on desktops, mobile devices, and even wearable technologies, which can have varying

screen sizes, processing power, and input methods.

Using responsive design techniques, progressive web apps (PWAs), and ensuring that the application is

compatible across different operating systems such as iOS, Android, and Windows is crucial for

maximizing the reach of the meta-application. Developers must also consider accessibility standards to

ensure the application is usable by individuals with disabilities.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

119

In conclusive summary, Meta-application development presents several unique requirements, from

ensuring interoperability and security to managing large volumes of data effectively. The evolution of

the web, particularly Web 3.0 and beyond, introduces both challenges and opportunities, including the

integration of decentralized technologies, real-time data processing, and enhanced user experiences

through AI and semantic web technologies. By focusing on these core requirements, developers can

create sophisticated, scalable, and user-centric meta-applications that leverage the full potential of

modern web technologies.

3.2 Assessments Based on Precise Experimental Requirements

To assess the requirements for End-User Programming (EUP) application development, meta-

applications were created by integrating different sets of APIs and data sources from the following

categories:

Flickr's Geotagged Photos: Photos can be searched by keywords or labels that users add to a photo,

making it easier to find.

Google Maps APIs: A series of predefined standards and interfaces used by developers to access Google

Maps and create Google Map-related applications.

Firefox: A free and open-source web browser. New functions can be added through extensions, created

by third-party developers. Firefox's wide selection of extensions has attracted many users.

The core of a mashup meta-application is the assembly of data from multiple data sources.

There are two common patterns in mashup meta-application development: without a tool and

with a tool.

3.2.1. Without a tool

A meta-application developed without a tool refers to the direct integration of APIs from different

websites. In this case, the Flickr APIs and the Google Maps APIs were mashed up together. All procedures

were completed in a PHP implementation environment, and developers were required to have a

programming background in order to analyze and handle the different APIs.

3.2.2. With a tool

A meta-application developed with a tool refers to the use of widgets or other substitute methods to

facilitate programming solutions. Users need to understand the working philosophies of mashup tools

before using them.

Thus, to create the mashup meta-application, users have two alternative options to meet their different

needs: using suitable mashup tools if they are novice or non-programmers, or using traditional APIs if

they are familiar with programming and API development.

4. EXPERIMENTAL SETUP

To evaluate the process of developing mashup meta-applications, the experiment introduced two

options for participants to create their own applications. The experiment aimed to compare the

experiences and outcomes of developing a mashup meta-application with and without the use of

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

120

mashup tools. The primary procedures, shown in Figure 1, were planned and implemented in four

distinct steps:

Meta-Application Creation Using APIs and Programming Languages: In this step, participants were tasked

with integrating Flickr APIs and Google Map APIs using programming languages such as PHP and

JavaScript. This approach required participants to manually code the interaction between the APIs to

create a mashup. The objective was to provide insight into the challenges and complexities involved

when using traditional methods (i.e., without a mashup tool) and to assess how well participants with

varying levels of programming skills could manage this task.

Introduction to the Meta-Application Concept: To ensure that participants had a basic understanding of

what they were tasked with, a brief introduction to the concept of mashups and the specific meta-

application being developed was provided. This introduction included an explanation of how different

data sources, such as Flickr and Google Maps, could be combined to create a cohesive user experience.

The goal was to ensure that participants understood the functional aspects of the meta-application

before beginning their work.

Demonstration of Mashup Tools: To assist participants in understanding the potential of mashup

development tools, related demonstration videos were shown. These videos focused on the features and

functions of the selected mashup tools (Yahoo! Pipes, Intel Mash Maker, and Dapper). Each tool was

introduced with a focus on how its drag-and-drop interface, widget-based architecture, and API

integration capabilities could simplify the process of mashup development. The aim was to provide

participants with a clear understanding of how these tools could make the development process more

accessible, especially for those with limited programming skills.

Creation of Meta-Applications Using Mashup Tools: In this final step, participants were asked to create

their own mashup meta-application using one of the mashup tools they preferred or found easiest to

understand. They were given the freedom to choose from the three tools presented, based on their

individual preferences or prior experience. This phase allowed the researchers to compare how

participants interacted with the mashup tools versus traditional API coding, measuring the ease of use,

speed of development, and functionality of the final product.

The objective of the experiment was to assess the usability and effectiveness of mashup tools in

simplifying the development of meta-applications, particularly for end-users without programming

backgrounds. By comparing the results of these two development approaches, the study aimed to

determine whether mashup tools truly offered a viable solution for non-programmers to create complex

web applications efficiently.

Figure1 procedure of the experiment setup

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

121

5. META-APPLICATION SPECIFICATION

The primary function of the meta–application is to enable users to search for geotagged photos on Flickr

and display them on a map. These photos are tagged with geographical coordinates, such as longitude

and latitude. When an end–user interacts with the map—by panning, zooming, or adjusting the zoom

level—the map's southwest and northeast corners are dynamically updated. Similarly, when a new search

for geotagged photos is performed, the application displays the resulting images on the map. This

process ensures that the photos are shown in a synchronized and visually appealing manner, maintaining

an effective and user-friendly interface.

5.1. Integrate Flickr with Google Map

As a meta–application designed to evaluate mashup tools, it was essential that the application be a

simple yet common example of mashup development, meeting the core requirements of integrating

data from at least two different sources. Furthermore, the functionality of the meta–application needed

to be accessible and straightforward enough for average users to navigate effectively.

To achieve this, Google Maps and Flickr were chosen as the data sources for the meta–application due

to their widespread use and the following considerations:

According to statistics from Programmable Web [6], [19], by the end of 2010, 30% of the tracked mashup

applications were based on Google Maps. Google Maps was one of the first platforms to offer publicly

accessible APIs for mashup development, making them one of the most widely adopted and utilized

APIs due to their early launch, exposure, and utility.

Flickr, which was originally developed by Ludicorp and later acquired by Yahoo!, is considered a highly

mashup-friendly platform. It facilitates the creation of meta–applications due to several features it offers,

such as XML (eXtensible Markup Language), XML Web services, tagging, and Ajax (Asynchronous

JavaScript and XML). Flickr’s ability to handle asynchronous data retrieval via Ajax without disrupting the

page’s current behavior makes it an excellent candidate for mashup development. These features

seamlessly integrate, enabling developers to leverage new technologies to create sophisticated

applications [10].

The functional architecture of the meta–application is designed to retrieve results for Flickr geotagged

photos using the Flickr APIs, which are then displayed in the browser through XHR (XMLHttpRequest)

and a server-side proxy. This proxy acts as an intermediary to bridge client-side scripts with the Flickr

server. Figure 2 illustrates the communication process between the browser and the Flickr server via the

proxy server.

Figure 2 Communication between browser & flickr server via proxy server

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

122

In terms of structure, the meta–application falls under the category of basic mashups since it integrates

data from only two sources: Google Maps and Flickr. The user interface is dynamic and visually engaging,

combining geographical data with photo information. After finalizing the application’s core functionality,

it was introduced to the participants, who were tasked with integrating the meta–application using one

of the available mashup tools. Following this, participants completed a related questionnaire to assess

the ease of use and effectiveness of the mashup tools in the development process.

5.2. Mashup tools Specification

Three Mashup tools–Yahoo! Pipes, Intel Mash Maker and Dapper were selected:

Dapper: The company behind Dapper (a tool for creating APIs from websites) was based in Berkeley,

California, USA. It was acquired by Yahoo! in 2010.

Yahoo! Pipes: This was developed by Yahoo!, which is headquartered in Sunnyvale, California, USA.

Yahoo! Pipes was an online service for data mashups.

Intel Mash Maker: This experimental tool was developed by Intel Corporation, headquartered in Santa

Clara, California, USA.

These mashup tools were selected and given to the respondents to implement the integrated mashup

application. The selection of these was based for the differences in their user interface, functionality and

data acquisition capabilities. The interfaces of these three mashup tools are shown in Figure1. Table 2

shows the basic information of the selected mashup tools in a comparative manner with their respective

URLs.

Table 2. Review of Three Selected Mashup Tools

Name Services offered URL

Dapper Nontechnical interface platform http://open.dapper.net/dapperDemo/

Yahoo! Pipes Individual programming environment http://pipes.yahoo.com/pipes/

Intel Mash Maker Copy–and–paste Web content http://mashmaker.intel.com/web/

The study's methodology included purposive sampling and structured training. Purposive sampling

involved selecting participants with relevant experience or interest in using mashup tools, while

structured training ensured that all participants had the necessary knowledge to use the tools effectively.

This approach helped maintain transparency and rigor in the study’s design, as recommended by

research guidelines.

6. EVALUATION AND RESULTS

6. 1. Participant’s portfolio

Forty (40) participants were selected from different disciplines and provided training on the concept of

mashups. Thirty (30) of them successfully created or attempted to create a meta–application and

completed the questionnaire afterward. The general characteristics of the participants are summarized

in Table 3.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

123

Table 3. General Characteristics of the Participants

Parameters Characteristic Number Distribution (%)

Age

20–25 9 30%

25–30 12 40%

30–35 9 30%

Education Level

Undergraduate 10 33%

Postgraduate 14 46%

PhD 4 13%

MBA 2 8%

Gender
Male 23 77%

Female 7 23%

Most participants were postgraduate university students, aged between 20 and 35 years. This age group

represents over half of the internet population and is typically more active and technically sophisticated

compared to other adult internet user groups [12] [22]. Thirty percent (9) of the participants had at least

one year of experience in web development and worked in ICT at a technical level.

Table 4 highlights the varying levels of prior experience in web development. Although 17% (5) of

participants frequently developed web applications, 43% (13) had never developed a web application

before.

Table 4. Participants Web Application Development Experience

Web Developing Experience Numbers of Participants Distribution Percentages

Frequently used 5 17%

Few used 12 40%

Never used 13 43%

Table 5 shows participants were classified into two general categories based on their programming skill

levels: 37% (11) non–programmers and 63% (19) programmers. Only 6% (2) participants considered

themselves experts in programming, which aligns with their demographic profile as highlighted earlier.

Table 5. Programming Skill Level of the Participants

Programmer / Developer Types Level of Programming Number of Participants Distribution Percentages

Non–programmer Non–programmers 11 37%

Programmer

Beginner 8 27%

Average 9 30%

Expert 2 6%

The results were generated through comparing and analysing the differences between programmers

and non–programmers in their understanding of the performance of mashup development and mashup

tools. When asked to report the level of their programming skills, only 6% (2) considered themselves

expert. This was consistent with their demographic profiles introduced earlier.

Table 5 shows the participants who were divided into two general categories according to their

programming skill level: 37% (11) non–programmer and 63% (19) programmers.

6.2. Motivation and Confidence

After attending the step–by–step training on mashup development and tools, participants were asked

about their motivation and confidence in creating a mashup. The results indicate the following: 60% (18)

of the participants found Web mashups easy to understand. 27% (8) remained neutral, while 13% (4)

expressed a negative attitude toward mashups.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

124

As exposed by [13], [20] that mashup tools were easy to create by showing the demonstration videos

on mashup creation, 90% (27) of participants expressed curiosity and interest in the process, while 73%

(22) believed that mashup tools were easy to understand.

The data collected on participants' confidence in creating the meta–application is shown in Table 6.

Table 6. Non–programmer & Programmer Confidence on Developing the Meta–application

Confidence in Developing Meta-applications Non-programmer Programmer

Positive in Confidence 0 32% (6)

Neutral in Confidence 36% (4) 53% (10)

Negative in Confidence 64% (7) 15% (3)

From Table 6, it is clear that programmers felt significantly more confident about creating the meta–

application compared to non–programmers. None of the non–programmers reported positive

confidence in completing the meta–application. Meanwhile, among the programmers, 32% (6) felt

confident, and 53% (10) were unsure. A higher proportion of non–programmers (64%, 7) felt negative

about their ability to develop the application.

Overall, the results also indicate that programmers’ confidence was obviously higher than non–

programmers and non–programmers generally lacked confidence in developing the meta–application.

The fact is that the programming level is still considered as a key factor which influences the confidence

of participants in their subconscious.

6.3. Mashup Tools with Selection Distribution

Following an introduction to the basic characteristics of Yahoo! Pipes, Intel Mash Maker, and Dapper,

participants were asked to choose their preferred mashup tool. The results are shown in Table 7.

Table 7. Distributions of Mashup Tools Selection by Participants

Mashup Tools Numbers of

Participants

Distribution Percentages

Dapper 13 44%

Yahoo! Pipes 15 50%

Intel Mash Maker 0 0%

Others 2 6%

An interesting observation is that none of the participants selected Intel Mash Maker, as they preferred

not to use plug-ins in their web browsers. Many participants believed that plug-ins would slow down

their browsing experience. Yahoo! Pipes was the most popular choice, with 50% (15) of participants

selecting it, followed by Dapper at 44% (13).

6.4. Average Time Spent

The time spent on mashup tools encompassed both learning the basic infrastructure and prototyping

the meta-application mashups. This process reflected the fundamental cognitive learning curves and

challenges associated with using mashup tools from an end-user’s perspective, as illustrated in Figure 3.

To validate the experimental process, a pilot study was conducted with two students: one programmer

and one non-programmer. This approach provided a balanced control, capturing both technical and

non-technical perspectives.

Each student underwent a 1-hour training session that involved viewing a demonstration video

explaining the features and functionality of mashup tools in meta-application development.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

125

Subsequently, they spent approximately 1 hour familiarizing themselves with the tools’ functions and

another hour developing a mashup meta-application. The combined 3-hour duration was established

as the benchmark for this experiment, providing a structured framework for evaluating the learning and

development phases. This benchmark also helped standardize the evaluation process, ensuring

consistency across participants regardless of their programming background.

Figure 3 Contrary results on confidence and developing the meta–applications

Yahoo! Pipes, which was chosen by the majority of the users in this research study, took, on average,

about 4 hours to complete—much longer than expected. On the other hand, users selecting Dapper

spent an average of 4 hours just analyzing the interface and working philosophy alone, compared to the

allotted time of 3 hours.

6.5. Variables Examined Mashup Tools

After the participants chose their preferred mashup tool and attempted to create the meta-application,

63% (19) experienced difficulties using the mashup tool. Among these 19 participants, 37% (7) were

unable to solve the problems. The remaining 17% (11) found the mashup tools easy to handle and

operate, without encountering any serious barriers that might delay or block the creation of the meta-

application. Table 8 shows the evaluation criteria and variables used to assess the ease of use of the

mashup tools.

Table 8. Evaluated Variables of Mashup Tools

Evaluation Criteria as Measurement

Variables

Overall Opinion

Offered

Number of

Samples

Distribution

Percentages

V1: Easy to get started Agree 19 63%

V2: Friendly interface Agree 18 60%

V3: Facilitate EUP Agree 19 63%

V4: Getting real-time hints and help Agree 9 30%

V5: Seeing related videos and publications

for help

Agree 18 60%

V6: Searching out similar applications for

help

Agree 14 47%

V7: Prefer pure programming than Mashup

tools

Agree 9 30%

The data captured shows that 63% (19) of participants were able to apply the mashup tools directly and

easily without any difficulties. 60% (18) had a positive opinion about the user-friendly interface provided

by the three mashup tools, and 63% (19) believed that the mashup tool development paradigm was

capable of facilitating end-user programming.

Expectation

Results

0%

10%

20%

30%

40%

Non-programmerProgrammer

32%

36%
40%

Expectation Results

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

126

However, only 30% (9) of participants felt they received timely help when using the mashup tools. One

user noted that the current mashup tools lacked real-time hints and assistance, which was seen as a key

factor influencing efficiency and confidence in end-user application development. The search function,

used to find similar applications, was ignored by nearly 53% (16) of participants when creating the meta-

application. Fortunately, 60% (18) participants sought help through related videos and documentation.

Although 63% (19) of participants found it difficult to handle the mashup tools, 30% (9) still agreed that

this programming paradigm is easier than writing pure programming code.

6.6. Lack of Confidence

As the previous figures showed in the motivation and confidence section, 32% (6) participants had

confidence in completing the meta–application. In fact, there were 40% (7) programmers who completed

the meta–application. The completion rate of non–programmers was 36% (4). It was quite contrary with

their preceding expressions of confidence that none of them had confidence in the completion of the

meta–application. Figure 3 shows that the overall results were better than expected in the numbers

completing the meta–application.

6.7. Ease of Use Assessed

The findings underscore significant challenges faced by participants in utilizing mashup tools effectively

within the constraints of the experiment. Only 37% (11) of participants managed to complete the meta-

application within the allocated 60 minutes, highlighting the difficulty of the task. The pre- and post-

experiment questionnaire results, detailed in Table 9, further reveal a striking gap between participants’

expectations and their actual experiences with the tools.

Notably, 60% (18) of participants initially believed developing a meta-application would be

straightforward. However, post-experiment results showed a stark contrast: 63% (19) reported that even

creating a simple meta-application was challenging. This reversal in perception strongly indicates that

the mashup tools were not as intuitive or user-friendly as participants had anticipated.

The data also emphasize a broader issue: 27% (8) of participants who initially found the tools easy to

understand ultimately failed to complete the task. Furthermore, a significant 67% (20) stated that the

tools were too complicated to use effectively for developing a meta-application. These findings reveal a

fundamental disconnect between the design of mashup tools and the actual needs and capabilities of

end-users, suggesting the need for more accessible interfaces, better training resources, or both. The

outcomes highlight the importance of addressing these usability challenges to enhance the practical

application and adoption of mashup tools.

Table 9. Before & after questionnaire results of mashup

Questions Before Experiment Questions After Experiment

60% (18) participants considered Web

mashup to be easy to understand.

27% (8) participants who thought mashup was easy but finally

failed in the building task.

73% (22) of participants considered mashup

tools to be easy to understand.

43% (13) EUPs were unable to complete the mashup building

task.

-- oOo --

63% (19) of the participants had difficulties & among them 37%

(7) were unable to solve the problem at hand.

60% (18) of the participants thought the mashup development

process required programming support.

Most participants attributed their failure to the difficulties encountered in searching for and obtaining

useful information or solutions within the allotted time, either through their own initiative, from fellow

colleagues, or from other online developers, as also pointed out by [18].

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

127

Figure 4 Before and after results on assessment of mashup and mashup tools

Figure 4 graphically illustrates the significant discrepancy between the anticipated usability of mashup

tools and their actual outcomes. The sizable gap between the expected usability of mashup tools and

the final results highlights the need for further investigation into more advanced end-user mashup and

meta-mashup development techniques and technologies, along with easy-to-use supporting tools.

7. DISCUSSION AND CONCLUSION

Web mashups, facilitated by mashup tools, were perceived as a rapid and easy method for end-user

development of meta-applications, particularly by non-programmers or those with basic ICT skills. With

the rapid evolution of web technologies—from Web 1.0 to Web 2.0 and now Web 3.0—there are

ongoing movements within W3C and related organizations that highlight the potential for providing

users with unprecedented opportunities for customizing web content through context-aware and

semantically rich scenarios. This progression is likely to extend beyond Web 4.0 and Web 5.0, which are

often referred to as the intelligent or emotional web, and will eventually be fully utilized by new

applications supported by easy-to-use API programming [23].

The results based on the existing Web 2.0 technologies show that users’ motivations and confidence in

engaging with web content remixing are fairly well understood. Remixing made participants rethink the

role of web technology in the context of mashup application development, which many initially viewed

as a domain for experienced programmers. However, they felt excited, curious, and engaged when they

realized that anyone—regardless of technical expertise—could become the owner of web resources,

rather than leaving this role to just skilled programmers and service providers. With the advent of Web

3.0 and Web 4.0 technologies, such as the semantic web and ontologies, the development of meta-

applications has become considerably easier.

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

128

The results of the experiments further revealed that participants selected mashup tools based on simple

criteria and their previous experiences. They preferred using online mashup tools over browser plug-ins

and extensions. However, the overall findings indicate that mashup development, even with mashup

tools, is still a challenge for non-programmers who lack sufficient ICT skills. Even 50% of the

programmers among the respondents, who were confident in completing the task, failed due to the

complexity of concepts and the availability of underlying APIs and new paradigms [23]. Users are seeking

simple, easy, and stable mashup tools that are intuitive and easy to use in real time. The tools must not

only have a user-friendly interface but also feature characteristics that fully support rapid and effortless

end-user development.

Recent research by Lian & Tang [22] has explored the challenges and non-trivial issues related to APIs

for mashups. They suggested that API recommendations for mashup creation should be based on neural

graph collaborative filtering, rather than just using content-based APIs. However, this approach requires

further experimental validation and research.

Mashup development should be presented as a simple, process-oriented technology to encourage

novice users to adopt it and inspire them to create more complex meta-applications with ease and

confidence. The lessons learned from this study suggest that more advanced and user-friendly mashup

tools should be developed and made available if this technology is to gain widespread adoption and

popularity. The findings of this study emphasize the need for experts, researchers, and developers within

the web technology and programming communities to make the process truly user-friendly, as users are

often not experts.

Acknowledgment

The author expresses heartfelt gratitude to Professor Ahmed Patel and Na Liu for meticulously validating

the technical accuracy and diligently proofreading this manuscript.

REFERENCES

[1] Datareportal. Global Digital Insights [Internet]. Datareportal; [cited 2024 Jun 6]. Available from:

https://datareportal.com/global-digital-

overview#:~:text=Internet%20use%20around%20the%20world,500%2C000%20new%20users%20each%20day

[2] Patel A, Khan MJ. Evaluation of service management algorithms in a distributed web search system. Comput

Stand Interfaces. 2007;29(2):152–60. Available from: https://doi.org/10.1016/j.csi.2006.03.002

[3] Schmidt N, Patel A. Design and implementation of a distributed search and advertising system. Proceedings of

the 7th International Conference on Information Integration and Web Based Applications & Services (iiWAS

2005); 2005 Sep 19–21; Kuala Lumpur, Malaysia. Available from:

https://api.semanticscholar.org/CorpusID:1102286

[4] Westagilelabs. Web development trends [Internet]. Westagilelabs; [cited 2024 Jun 6]. Available from:

https://www.westagilelabs.com/blog/what-is-going-to-be-new-web-development-trends-in-2022/

[5] Aghaee S, Pautasso C. End-user programming for web mashups. In: Harth A, Koch N, editors. Current Trends in

Web Engineering. ICWE 2011. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2011. p. 347–

51. Available from: https://doi.org/10.1007/978-3-642-27997-3_38

[6] Programmableweb.com. Mashup timeline [Internet]. Programmableweb; [cited 2024 Jun 6]. Available from:

http://www.programmableweb.com/

[7] Tang M, Xia Y, Tang B, Zhou Y, Cao B, Hu R. Mining collaboration patterns between APIs for mashup creation in

web of things. IEEE Access. 2019;7:14206–15. Available from: https://doi.org/10.1109/ACCESS.2019.2894297

[8] Gao Y. Design and implementation of end-user programming tools for web mashups [master’s thesis].

Edmonton: University of Alberta; 2019. Available from: https://era.library.ualberta.ca/items/d27775ea-4c5e-

4299-9132-14dc9c911445

https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,500%2C000%20new%20users%20each%20day
https://datareportal.com/global-digital-overview#:~:text=Internet%20use%20around%20the%20world,500%2C000%20new%20users%20each%20day
https://doi.org/10.1016/j.csi.2006.03.002
https://api.semanticscholar.org/CorpusID:1102286
https://www.westagilelabs.com/blog/what-is-going-to-be-new-web-development-trends-in-2022/
https://doi.org/10.1007/978-3-642-27997-3_38
http://www.programmableweb.com/
https://doi.org/10.1109/ACCESS.2019.2894297
https://era.library.ualberta.ca/items/d27775ea-4c5e-4299-9132-14dc9c911445
https://era.library.ualberta.ca/items/d27775ea-4c5e-4299-9132-14dc9c911445

Computers and Informatics

C&I, 2024, 4(2), https://doi.org/10.62189/ci.1516319

129

[9] Liu N, Patel A, Latih R, Mulla R, Shukur Z, Wills C. A study of mashup as a software application development

technique with examples from an end–user programming perspective. J Comput Sci. 2010;6(11):1406–15.

Available from: https://doi.org/10.3844/jcssp.2010.1406.1415

[10] Rognsoy TM. Using ERP mashups to improve business processes. Glob J Enterp Inf Syst. 2017;9(3):1–15. Available

from: https://gjeis.com/index.php/GJEIS/article/view/302

[11] O’Reilly T. What is Web 2.0? [Internet]. O’Reilly Media; [cited 2024 Jun 6]. Available from:

http://oreilly.com/web2/archive/what-is-web-20.html

[12] Cake M. Web 1.0, Web 2.0, Web 3.0 and Web 4.0 explained [Internet]. Marcus Cake; [cited 2024 Jun 6]. Available

from: http://www.marcuscake.com/key-concepts/internet-evolution

[13] Berners-Lee T, Fischetti M, Dertouzos ML. Weaving the web: the original design and ultimate destiny of the

World Wide Web by its inventor. HarperOne; 1999. ISBN: 9780062515872. Available from:

https://www.amazon.com/Weaving-Web-Original-Ultimate-Inventor/dp/0062515861

[14] Flatworldbusiness. Web 1.0 vs Web 2.0 vs Web 3.0 vs Web 4.0 vs Web 5.0 – a bird’s eye on the evolution and

definition [Internet]. Flatworldbusiness; [cited 2024 Jun 6]. Available from:

https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-

eye-on-the-definition/

[15] Wikipedia. Semantic Web [Internet]. Wikipedia; [cited 2024 Jun 6]. Available from:

https://en.wikipedia.org/wiki/Semantic_Web

[16] Daniel F, Gaedke M, editors. Rapid mashup development tools: Second international rapid mashup challenge,

RMC 2016 proceedings, Lugano, Switzerland, June 6, 2016. Springer; 2017. ISBN 9783319531748. Available from:

https://www.researchgate.net/publication/321531132_Rapid_Mashup_Development_Tools_Second_Internation

al_Rapid_Mashup_Challenge_RMC_2016_Lugano_Switzerland_June_6_2016_Revised_Selected_Papers

[17] Pomonis T, Christodoulou SP, Gizas AB. Towards Web 3.0: a unified development process for web applications

combining semantic web and Web 2.0 technologies. Eng Manag Rev. 2013;2(2):1–12. Available from:

https://ia801703.us.archive.org/30/items/EMR026/EMR026.pdf

[18] Na L. Evaluation of mashups from end-user application development perspective [master’s thesis]. Bangi:

Universiti Kebangsaan Malaysia; 2011. Available from:

https://ptsldigital.ukm.my/jspui/handle/123456789/476510

[19] Programmableweb.com. Mashup dashboard [Internet]. Programmableweb; [cited 2024 Jun 6]. Available from:

http://www.programmableweb.com/

[20] Jones S, Fox S. Generations online [Internet]. Pew Internet & American Life Project; [cited 2024 Jun 6]. Available

from: http://pewresearch.org/pubs/1093/generations-online

[21] Cappiello C, Daniel F, Matera M, Picozzi M, Weiss M. Enabling end-user development through mashups:

requirements, abstractions and innovation toolkits. In: End-User Development. Berlin, Heidelberg: Springer;

2011. p. 9–24. Available from: https://doi.org/10.1007/978-3-642-21530-8_3

[22] Lian S, Mingdong T. API recommendation for mashup creation based on neural graph collaborative filtering.

Connect Sci. 2021;34(1):124–38. Available from: https://doi.org/10.1080/09540091.2021.1974819

[23] Maaradji A, Hacid H, Soukane A. From service composition to mashup editor: a multiperspective taxonomy.

Future Internet. 2023;15(2):59. Available from: https://doi.org/10.3390/fi15020059

https://doi.org/10.3844/jcssp.2010.1406.1415
https://gjeis.com/index.php/GJEIS/article/view/302
http://oreilly.com/web2/archive/what-is-web-20.html
http://www.marcuscake.com/key-concepts/internet-evolution
https://www.amazon.com/Weaving-Web-Original-Ultimate-Inventor/dp/0062515861
https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-eye-on-the-definition/
https://flatworldbusiness.wordpress.com/flat-education/previously/web-1-0-vs-web-2-0-vs-web-3-0-a-bird-eye-on-the-definition/
https://en.wikipedia.org/wiki/Semantic_Web
https://www.researchgate.net/publication/321531132_Rapid_Mashup_Development_Tools_Second_International_Rapid_Mashup_Challenge_RMC_2016_Lugano_Switzerland_June_6_2016_Revised_Selected_Papers
https://www.researchgate.net/publication/321531132_Rapid_Mashup_Development_Tools_Second_International_Rapid_Mashup_Challenge_RMC_2016_Lugano_Switzerland_June_6_2016_Revised_Selected_Papers
https://ia801703.us.archive.org/30/items/EMR026/EMR026.pdf
https://ptsldigital.ukm.my/jspui/handle/123456789/476510
http://www.programmableweb.com/
http://pewresearch.org/pubs/1093/generations-online
https://doi.org/10.1007/978-3-642-21530-8_3
https://doi.org/10.1080/09540091.2021.1974819
https://doi.org/10.3390/fi15020059

