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Abstract 

Myelitis is a neurodegenerative disease positioned in the spinal cord, with multiple 

sclerosis (MS) being a common subtype. Radiological indicators enable the diagnosis 

of these diseases. This study proposes a classification framework to detect myelitis, 

MS, and healthy control (HC) groups using magnetic resonance imaging (MRI) 

images. The feature extraction step involves applying the fast Fourier transform 

(FFT) to MRI images. FFT is important because it converts spatial data into the 

frequency domain, making it easier to identify patterns and abnormalities that 

indicate these diseases. Then, statistical features (mean, minimum, maximum, 

standard deviation, skewness, kurtosis, and total energy) are extracted from this 

frequency information. These features are then used to train support vector machine 

(SVM), k-nearest neighbor (KNN), and decision tree algorithms. In multi-class 

classification (myelitis vs. MS vs. HC), the proposed method achieves a classification 

accuracy of 99.31% with SVM, with average precision, recall, and F1-score values 

of 99.27%, 99.21%, and 99.24%, respectively, indicating effective classification 

across all classes. In the binary class classification (HC vs. MS, MS vs. myelitis, HC 

vs. myelitis), the SVM achieves an outstanding classification accuracy of 99.36%, 

99.71%, and 100% respectively. This study highlights the efficiency of FFT-based 

feature extraction in forming detection patterns for classifying HC, MS, and myelitis 

classes. 
 

 
1. Introduction 

 

Myelitis is a neurodegenerative disorder caused by 

inflammation of the myelin sheath surrounding the 

nerves in the spinal cord. The disease can cause motor 

symptoms, sensory symptoms, and autonomic 

involvement [1]. Various presentations are depending 

on the site of inflammation [2], [3]. Since multiple 

sclerosis (MS) is in the common myelitis subgroup, it 

is important to distinguish between myelitis-non-MS 

and MS in the diagnosis of the disease. In some cases, 

it has been observed that myelitis has been observed 

to be the first sign of MS and may progress to MS [4]. 

Radiological differentials are known to be more 

useful in diagnosing the disease [3]. Automatic 

analysis of radiological images obtained by magnetic 

resonance imaging (MRI) based on artificial 
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intelligence helps experts in useful aspects such as 

shortening the diagnosis time and early diagnosis of 

the disease. 

Looking at the studies on automatic diagnosis 

based on artificial intelligence in the context of 

neurological diseases, we can see that a wide range of 

topics have been addressed from the past to the 

present. Some studies use spatial features extracted by 

applying wavelet transform to MRI images [5]-[8]. 

The histogram of oriented gradients (HOG) method 

has been used to discriminate different structures 

based on texture shape or gradient change 

representations in images [9]-[11]. Transfer learning, 

a type of deep learning, has been used for both feature 

extraction and classification of raw data in some 

studies [12]-[15]. In addition to these, there are 

studies on neurological disease diagnosis by using 
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various models of deep learning models as classifiers 

[16]-[19]. Finally, studies using deep learning models 

as a feature extraction method followed by traditional 

machine learning algorithms as classifiers are also 

common [20]-[22]. 

This paper presents a classification 

framework for the detection of myelitis, MS, and 

healthy control (HC) classes. For the first step of 

feature extraction, which is the most important pre-

step of classification, it is proposed to apply the fast 

Fourier transform (FFT) to the MRI dataset and 

extract statistical features from the frequency 

spectrum. The Fourier transform provides frequency 

information about the signal to which it is applied, 

allowing the analysis of the image in frequency 

domain. Then, the machine learning algorithms are 

fed by the feature set created by extracting statistical 

features (mean value, minimum value, maximum 

value, standard deviation, skewness, kurtosis, and 

total energy) from the resulting two-dimensional FFT 

output. Support vector machine (SVM), k-nearest 

neighbor (KNN), and decision tree algorithms are 

used as classifiers in the study. Multi-class 

classification based on three classes (HC vs. MS vs. 

myelitis) and binary class classification (MS vs. 

myelitis, HC vs. MS, HC vs. myelitis) are evaluated 

and analyzed. Since, to the author’s knowledge, no 

study has applied a fast Fourier transform to MRI 

images in this manner. Therefore, this study makes a 

significant and valuable contribution to the literature, 

demonstrating high classification success using FFT. 

 

2. Material and Method 

 

The classification framework for myelitis, MS and 

healthy control groups proposed in the study is 

depicted in Figure 1. Detailed information about the 

stages is presented following sections. 

 
2.1. Dataset 

 

A public dataset downloaded from the Kaggle website 

is used in the study [20]. The myelitis dataset consists 

of a total of 2,746 spinal MRI images categorized into 

myelitis-non-MS patients, MS patients, and a healthy 

control group. Detailed information about the dataset is 

provided in Table 1. 

 

 

 

 

Figure 1. Proposed process of the paper. 
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Table 1. Details about dataset 

Class 
Number of 

images 

The class 

percentages 

Myelitis 706 25.71% 

MS 667 24.29% 

Healthy Control 1,373 50% 

Total 2,746 100% 

 

The dataset consists of spinal MRI images. 

To differentiate between HC, MS, and myelitis 

classes, the presence of spinal lesions and, if present, 

vertebral lengths are analyzed. Therefore, spinal MRI 

images are used in both sagittal and axial planes. 

Sample images from the dataset are shown in Figure 

2. 

  

  

  

(a) (b) 

Figure 2. Dataset sample images on (a) sagittal (b) axial 

planes 

 

2.2. Proposed Approach 

 

2.2.1. Feature extraction model based on FFT 

 

Since the presence and length of lesions in MRI data 

vary, it is proposed that these patterns are preserved 

when the images are transformed into the frequency 

domain. Subsequently, fast Fourier transform (FFT) 

is applied to the MRI images. The Fourier transform 

captures the signal’s frequency spectrum, enabling 

analysis and signal processing [23]. This transform 

provides frequency components of the signal, applied 

in two dimensions to the image to obtain horizontal 

and vertical spatial frequencies. In the resulting 

Fourier-transformed matrix, spectral components are 

concentrated based on where meaningful information 

is located, either at low or high frequencies [24]. 

In this study, frequency spectrum is extracted 

from MRI images using 2-D FFT. After applying 2-D 

FFT, a complex value matrix is obtained. The 

magnitude spectrum for each image is then calculated 

by taking the absolute value of this matrix. The 

different MRI data, which are shifted in the spatial 

domain, display different phase angles in the 

frequency domain [25]. By using absolute values, the 

spectrum remains unaffected by these shifts, 

effectively eliminating spatial differences in the MRI 

images. The steps involved in applying 2-D FFT are 

outlined below [26]: 

 

Step 1. 2-D FFT application: 

 

𝐹𝑇𝑝,𝑞 = 

∑ ∑ (𝑒−
2𝜋𝑖
𝑀  )

𝑗

(𝑒−
2𝜋𝑖
𝑁  )

𝑘

𝑋𝑗+1,𝑘+1

𝑁−1

𝑘=0

𝑀−1

𝑗=0

 

(1) 

 

Step 2. Absolute value calculation of the 

matrix obtained with 2D FFT: 

 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑝,𝑞  =  |𝐹𝑇𝑝,𝑞| (2) 

 

Figure 3 illustrates how the Fourier transform 

utilizes both the spatial arrangement and pixel values 

within the image. 

 

 

Figure 3. Histogram and FFT representation of a myelitis 

MRI image (first row) and the same image with pixels 

shuffled (second row) 
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Figure 3 displays an original myelitis image 

and the same image with shuffled pixels, their 

respective histograms, and the FFT results. The 

histograms of these images remain unchanged 

because the pixel values do not change. However, the 

FFT output differs as it utilizes spatial frequencies of 

pixels. This figure also illustrates the FFT’s capability 

to extract meaningful information across pixel 

relationships. 

 

2.2.1. Machine Learning with FFT 

 

Machine learning methods rely on effective feature 

engineering techniques to achieve high performance, 

as they involve extracting underlying patterns from 

the data. In this study, frequency components are 

extracted using FFT, and their statistical features—

mean value, minimum value, maximum value, 

standard deviation, skewness, kurtosis, and total 

energy— are utilized as inputs for machine learning 

algorithms. The equations for the skewness, kurtosis, 

and total energy features are provided below as (3), 

(4), and (5) respectively: 

 

Skewness =  
𝐸(𝑥−𝜇)3

𝜎3  (3) 

Kurtosis = 
𝐸(𝑥−𝜇)4

𝜎4  (4) 

Total energy =∑ 𝑥2 (5) 

 

In the equations, x is the vector form of the 

magnitude spectrum matrix. 𝜇 is the mean of x, 𝜎 is 

its standard deviation. E(n) is the expected value of 

the quantity n. The total energy magnitude is the sum 

of the squares of all values in the vector form of the 

magnitude spectrum matrix. 

Support vector machine, k-nearest neighbor, 

and decision tree algorithms are used as machine 

learning classifiers. Each classifier is fed using seven 

normalized features extracted from the images and 

along with class labels for myelitis, MS or HC. As a 

result, the trained models are then used to predict 

classes for a test set that it is not previously seen. 

Through 10-fold cross-validation, every data point in 

the dataset is included in the test set at least once, 

ensuring robust validation of the proposed method 

generalization ability. 

 

3. Experimental Results 

 

In the study, multi-class classification is performed 

for HC vs. MS vs. myelitis, alongside binary class 

classification for HC vs. MS, MS vs. myelitis, and HC 

vs. myelitis. The results of these classifiers are shown 

using the confusion matrices, where the values in the 

diagonal represent the number of instances correctly 

classified by the respective class. The confusion 

matrices used in the study are illustrated in Figure 4. 

 

(a) 

 

(b) 

   
 

Figure 4. Confusion matrices for (a) multi-class and (b) 

binary class classification 

 

Evaluation metrics are calculated with true 

positive (TP), false negative (FN), false positive (FP), 

and true negative (TP) values in the confusion matrix 

 

3.1. Evaluation Metrics 

 

The performance of the classifiers is evaluated by 

calculating accuracy, precision, recall, and F1-score 

values using the confusion matrix. The equations for 

these metrics are provided in (6) - (9) respectively: 

 

Accuracy =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (6) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

F1-score =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

 

When calculating the multi-class 

classification results, the accuracy metric is 

determined by the proportion of correctly predicted 

instances represented on the diagonal of the confusion 

matrix. Precision and recall metrics are computed 

class-wise using TP, FN, and FP values. This means 

that each class in the matrix is assumed to be a 

positive class respectively when calculating the 

metrics. Classifier comparisons are based on average 

precision and recall values. 
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3.2. Results for Machine Learning Models 

 

Using FFT, frequency components are extracted and 

the images are re-visualized in the frequency domain. 

The resulting images from applying FFT to the HC, 

MS, and myelitis classes are shown in Figure 5. 

 

 

Figure 5. The example images and their FFT results in 

the dataset 

 

After applying the FFT process, seven 

statistical features are extracted from each image. As 

a result, the dataset consisting of 2,746 images is 

transformed into a 2746x8 numerical matrix, 

including class labels. The training and testing phases 

of the classifiers are performed using 10-fold cross-

validation. SVM, KNN, and decision tree classifiers 

are used as machine learning algorithms. By trial-and-

error, the hyperparameters for SVM are set to use a 

cubic kernel and a box constraint level of 1. For KNN, 

the number of neighbors is set to 1, with the Euclidean 

distance metric. Lastly, the decision tree is configured 

with 100 splits and Gini’s diversity index as the split 

criterion.  

 

3.3. Multi-class Classification Results for HC, 

MS, and Myelitis Classes 

 

The confusion matrices obtained by SVM, KNN, and 

decision tree classifiers for multi-class classification 

over HC, MS, and myelitis are illustrated in Figure 6. 

 

 

Figure 6. Confusion matrices of (a) SVM, (b) KNN, and 

(c) Decision Tree classifiers on multi-class classification 

 

The diagonal values in Figure 6 indicate the 

number of correctly predicted instances, while 

outliers represent misclassified data points. 

Confusion matrix values indicate that the 

misclassification values in HC and myelitis classes 

are very low, and there are difficulties in 

distinguishing between MS and myelitis classes for 

all classifiers. The total misclassification costs are 

visualized in Figure 7. 

 

Figure 7. Total misclassification costs of the classifiers 
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Figure 7 shows that SVM has the lowest error 

with a misclassification value of 19. On the other 

hand, decision tree has a cost of 51, while KNN has a 

cost of 70.  

In Table 2, the evaluation metrics calculated 

from the confusion matrices generated by the 

classifiers are presented, and precision, recall, and F1-

score metrics are calculated for each class 

individually. Additionally, average precision, recall, 

and F1-score values are provided to compare the 

overall performance of the classifiers. Accuracy is 

presented as a single value, calculated based on the 

classifiers’ correct predictions of the class labels. 

Overall, the SVM classifier achieves the highest 

classification rate with 99.31% accuracy, along with 

an average precision of 99.27%, average recall of 

99.21%, and average F1-score of 99.24%. The KNN 

classifier achieves 97.45% accuracy, with average 

precision, recall, and F1-score values of 97.19%, 

97.49%, and 97.34% respectively. The decision tree 

obtains an accuracy of 98.14%, along with average 

precision, recall, and F1-score values of 97.81%, 

98.16%, and 97.98% respectively. 

 

Table 2. Multi-class classification evaluation results 

Classifiers Classes Evaluation metrics (%) 

  Precision Recall F1-score Accuracy 

SVM Healthy Control 99.42 99.56 99.49 

99.31 
MS 98.94 98.20 98.57 

Myelitis 99.44 99.86 99.65 

Average values 99.27 99.21 99.24 

KNN Healthy Control 98.16 97.23 97.69 

97.45 
MS 93.83 95.80 94.81 

Myelitis 99.57 99.43 99.50 

Average values 97.19 97.49 97.34 

Decision 

Tree 

Healthy Control 99.12 98.03 98.57 

98.14 
MS 95.99 97.00 96.50 

Myelitis 98.32 99.43 98.87 

Average values 97.81 98.16 97.98 

 

 

Figure 8. Confusion matrices of (a) SVM, (b) KNN, and (c) Decision Tree classifiers on binary class classification 
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3.4. Binary Class Classification Results  

 

In addition to multiclass classification, the 

performance of the FFT method on binary 

classification is evaluated. This analysis involves 

using the feature set created in the study to classify 

between two classes. Binary class classification is 

performed for HC vs. MS, MS vs. myelitis, and HC 

vs. myelitis. The confusion matrices generated by 

SVM, KNN, and decision tree classifiers are shown 

in Figure 8. 

According to Figure 8, among 2,040 images, 

SVM has 13 misclassification cost, the KNN has a 

cost of 63, and the decision tree has a cost of 48 for 

HC vs. MS classification. Among 1,343 images for 

MS vs. myelitis classification, SVM has 4 

misclassification cost, the KNN has a cost of 6, and 

the decision tree is a cost of 19. Among 2,079 images 

for HC vs. myelitis classification, SVM has zero 

misclassification cost, the KNN has a cost of 1, and 

the decision tree is a cost of 8. Visual representations 

of misclassification costs are illustrated in Figure 9. 

 

 

Figure 9. Confusion matrices of (a) SVM, (b) KNN, and 

(c) Decision Tree classifiers on binary class classification 

 

The calculated evaluation metrics are detailed 

in Table 3. The results demonstrate that SVM 

achieves the highest accuracy values across all binary 

classifications. It gets an accuracy of 99.36% for HC 

vs. MS, 99.71% for HC vs. MS, and 100% for HC vs. 

MS. KNN also shows successful evaluation metrics, 

performing better than the decision tree in all 

categories except HC vs. MS classification. These 

results indicate that FFT combined with statistical 

features exhibits superior performance as a feature 

extraction method, resulting in minimal 

misclassification costs, particularly with the SVM 

classifier. Notably, SVM achieves perfect predictions 

for HC vs. myelitis classes. The general results 

obtained can be summarized as follows: (1) Proposed 

FFT+statistical features model achieves the highest 

successful results on HC and myelitis classes, (2) the 

highest misclassification cost is observed between 

HC and MS classes, (3) SVM displays the highest 

evaluation metric results, (4) the decision tree 

outperforms KNN in predicting HC and MS classes. 

 

4. Discussion 

 

4.1. Analysis of the proposed approach’s 

performance results 

 

The dataset for myelitis, MS, and healthy control 

classes, consisting of axial and sagittal MRI images, 

is re-visualized in the frequency domain using FFT. 

Subsequently, seven statistical features—mean value, 

minimum and maximum values, skewness, kurtosis, 

and total energy—are extracted from the frequency 

spectrum. 

Multi-class classification and binary class 

classification are performed and the results are 

analyzed separately. According to the results obtained 

by SVM, KNN, and decision tree classifiers, it is 

observed that the MRI data in the frequency domain 

with FFT preserved the distinctive features of the 

classes. Among the classifiers, the SVM achieves the 

highest accuracy. While calculating the evaluation 

metrics, each class is selected as a positive class in 

turn, and class-wise metrics are averaged to analyze 

the method’s success. In the classification of the three 

classes, the SVM algorithm correctly classified 2,727 

data out of 2,746 images, misclassifying 19 images. 

As a result, SVM achieves 99.31% accuracy, 99.27% 

precision, 99.21% recall, and a 99.24% F1-score. The 

decision tree performs better than KNN, with an 

accuracy of 98.14%. When analyzed on the class-wise 

basis, the decision tree is particularly successful in 

classifying healthy control and MS classes, while 

KNN shows higher success in myelitis classification. 

Another outcome of the study is the relatively lower 

classification success in the MS class. Nevertheless, 

the feature set generated by the proposed method 

enables SVM and KNN to effectively discriminate 

healthy control and myelitis classes, achieving a 

satisfactory success rate.  

When the FFT method is applied to MRI data, 

low-frequency components are located in the center 

of the spectrum, providing information about the 

overall structure of the image. High-frequency 

components, which spread out to the edges, represent 

distinctive details, thereby analyzing intensity 

variations between pixels. 
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Table 3. Binary class classification evaluation results 

Classifiers Classes Evaluation metrics (%) 

  
Precision 

(average) 

Recall 

(average) 

F1-score 

(average) 
Accuracy 

SVM HC vs. MS 99.29 99.26 99.28 99.36 

MS vs. myelitis 99.71 99.70 99.71 99.71 

HC vs. myelitis 100 100 100 100 

KNN HC vs. MS 96.23 96.82 96.51 96.91 

MS vs. myelitis 99.56 99.56 99.56 99.56 

HC vs. myelitis 99.93 99.96 99.95 99.95 

Decision 

Tree 

HC vs. MS 97.10 97.60 97.34 97.65 

MS vs. myelitis 98.62 98.61 98.61 98.62 

HC vs. myelitis 99.54 99.61 99.57 99.62 

 

(a) 

 

(b) 

 

Figure 10. Visual comparison of evaluation metrics for (a) multi-class (b) binary class classification 
 

The results of both multi-class and binary 

class classification show high accuracies for the 

healthy control and myelitis classes, with relatively 

lower accuracies for MS. This is likely due to the 

vertebral length of the lesions in the spinal cord; more 

extensive lesions cause stronger pixel intensity 

changes, making the easier for the FFT to distinguish. 

An analysis of the binary class classification results 

reveals that the most confusion for the classifiers 

occurs between healthy control and MS classes. In 

contrast, SVM and KNN almost perfectly detects 

healthy control and myelitis classes, achieving 100% 
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and 99.95% accuracy, respectively. These results 

imply that the FFT combined with statistical features 

effectively extracts image patterns and preserves the 

distinguishing features between classes. As a result, 

balanced evaluation metrics are achieved without any 

class dominance. Figure 10 shows summarized 

visualizations of performance metrics for multi-class 

and binary class classification. 

Figure 10(a) illustrates for multi-class 

classification that the proposed FFT+statistical 

features model shows the highest success with SVM 

for HC vs. myelitis. The classifiers achieve lower 

classification success for HC vs. MS among all binary 

class classification. The proposed method achieves 

over 96.5% classification success in all classifiers for 

all binary classes. Figure 10(b) illustrates for binary 

classification that SVM achieves over 99% success in 

all metrics. Decision tree obtains better results than 

KNN, and all classifiers gets balanced/proportional 

success in all metrics. 

 

4.2. Comparative analysis with other studies and 

alternative dataset 

 

In order to detect myelitis, MS, and healthy control, 

the performance of the FFT+statistical features 

method proposed in this study is compared with 

another study [20], which utilizes on the same dataset 

(Myelitis Dataset).  

Additionally, the proposed FFT+statistical 

features model is applied to another dataset from 

Kaggle [27], containing MRI data of MS and healthy 

control classes. This dataset comprises both axial and 

sagittal images, totaling 3,427 images, including 

1,411 MS images and 2,016 healthy control images 

(MS Dataset). All the steps applied to the Myelitis 

dataset are also applied to this MS dataset, and the 

results obtained by SVM are listed in Table 4. 

 

 

Table 4. Overall performance comparison with other studies 

 

Figure 11. Evaluation metrics comparisons with other studies and datasets 
 

According to Table 4, the method proposed in 

this paper achieves higher success in all metrics 

across both datasets. As shown in Figure 11, the bar 

graph illustrates that the proposed method in this  

 

 

study outperforms the other studies on all evaluated 

metrics. 
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  Accuracy Precision Recall F1-score 

Myelitis Dataset 

(HC vs. MS vs. myelitis) 

Tatli et al. [20] 97.63 97.23 97.23 97.23 

The proposed model 99.31 99.27 99.21 99.24 

MS Dataset 

(HC vs. MS) 

Macin et al. [27] 98.22 99.27 96.39 97.81 

Ekmekyapar and Taşcı [28] 98.02 98.31 97.63 97.94 

The proposed model 99.91 99.93 99.89 99.91 
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5. Conclusion 

 

In this study, it is proposed that visualizing myelitis, 

MS, and HC MRI images in the frequency domain 

using FFT is preserve important patterns in statistical 

features of these images, aiding in class detection. The 

effectiveness of the proposed feature extraction 

method is tested using classifiers. SVM, KNN, and 

decision tree, which are commonly used machine 

learning algorithms in biomedical image 

classification, are employed to detect myelitis, MS, 

and healthy control classes. According to the results, 

SVM achieves 99.31% correct classification accuracy 

for multiclass classification after applying the FFT 

method to MRI images. The method’s average 

precision (99.27%), recall (99.21%), and F1-score 

(99.24%) values indicate balanced classification 

across all classes. Additionally, for binary class 

classification, the proposed FFT+statistical features 

combination demonstrates superior performance with 

the SVM classifier, achieving 99.36% accuracy (HC 

vs. MS), 99.71% accuracy (MS vs. myelitis), 100% 

accuracy (HC vs. myelitis). These results show that 

the statistical features of the FFT-transformed images 

effectively formed patterns that characterize the 

classes, confirming their utility as a highly successful 

feature extractor. As a future work, the FFT method 

can be applied to different biomedical data sets, or its 

performance can be analyzed by combining it with 

deep learning models. 
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