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Abstract — This study is devoted to determining the eigenvalues and eigenfunctions of a discon-
tinuous Sturm-Liouville Problem. By modifying the finite difference method, we have developed a
numerical approximation to the eigenvalues and eigenfunctions.
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1 Introduction

Many physical systems are connected to a Sturm-Liouville problem. The computation of eigenvalues of
Sturm-Liouville problems is therefore important to many problems in Mathematical Pyhsics. Sturm-
Liouville systems arise from vibration problems in continuous media with non-uniform properties, such
as the propagation of sonar in water and the seismic waves in the Earth [4]. In the classical sense, the
Sturm-Liouville problem is replaced by a first order differential equation that is solved using Shooting
methods. Added in this class are the Priifer phase methods ( [5] and [8]). In the recent years,
pursued with considerable success by a number of researchers including Pruess ( [9], [10]) and Paine
and de Hoog [7], a simpler problem is constructed by replacing the coefficients in the Sturm-Liouville
problem by piecewise constants. Anderssen and de Hoog [6] extend the results to the Liouville normal
form with general boundary conditions. Moreover, some important results in this field have also been
obtained for discontinuous Sturm-Liouville systems. It should be mentioned that O. Sh. Mukhtarov
and his colleagues [1, 2, 3] have constructed boundary value problems with discontinuities where an
eigenparameter appears not only in the differential equation, but also in the boundary and transmission
conditions.

The main goal of this study is to extend the finite difference method to a particular discontinuous
Sturm-Liouville problem.

Specifically, we shall compute approximations to the eigenvalues and eigenfunctions of a problem
with the following transmission and boundary conditions:
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y” +dy = 0 z€[0,¢) U (c, 7 (1)
y(0) = y(m)=0 (2)
Tyler) = 7v2yle-) (3)

1.1 Finite Difference Method

Under certain conditions, we can use Taylor’s formulae:

y(x +h) =y(x) +y'(2)h + y/;(!x)h2+~~ (4)
and .y
oo —n) = y(a) —y/@n+ L2 )
Combining the two, we get
y(@ +h) +y(e —h) = 2y(z) +y" (2)h?, (6)

discarding all higher-order terms. Thus, to approximate y”(x), we can use the difference equation

Substituting this approximation into the Sturm-Liouville equation (1.1), we get

y(r —h) —2y(x) + y(z + h)

- ¥ ~ (). 3)
We now partition the interval [0, 7] into 0 = 29 < 1... < z§y < Tn4+1 = 7 nodes, where z; = jh and
h = §55. We seek a solution to the Sturm-Liouville problem on these nodes. Naturally, we let

y(zo) = y(0) =0
and

y(@n1) =y(m) =0

However, the solution is unknown at the interior points z;, j = 1,2,..., N.
By evaluating the difference equation 8 at x;, we obtain

—h72[y(w; — h) = 2y(;) + y(o; + )] = Ay(x;).

Because h is the increment between consecutive points on our partition, z; —h = x;_; and xz; + h =
x;41. Hence,
—h72 [y(wj—1) = 2y(a;) +y(w00)] = Ay(z;).

We now replace y(z;) with y; and iterate the equation

—h2lyio1 — 2y + Y] = My (9)

in order to find an approximate solution to the Sturm-Liouville problem.

It must be noted that y(x;) represents the ezact value of the Sturm-Liouville solution evaluated
at x;, while the variable y; represents the approximation to y(z;) at x;.

For j = 1, equation 9 becomes

—h7%[yo — 2y1 + 2] = A (10)
Similarly, for j = 2, 3, and 4, we get
—h7 2y — 2y +ys] = Aye,
—h7 2y —2ys +ya] = Ays,

—h7?[ys = 2ys+ys] = Aya
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Finally, for j = N, we get
—h7%[yn—1 — 2yn + Yn+1] = AYn. (11)

However, the boundary conditions require

Yo = y(z0) = y(0) =0,
yn+1 =y(xng1) = y(m) =0,

so equation 10 becomes —h 2 [—2y1 —|—y2] = Ay;. Similarly, equation 11 becomes —h 2 [yN_l —2yN] =
Ayn. The full set is a system of N equations in N unknowns.

22y —h %y, = Ay,

—h72y; +2h 2y —hT2ys = Ay,

—h72ys +2h2ys —h 2y, = Ay,
—h_2y3 =+ 2h_2y4 — h_2y5 = /\y4, (12)

—h2yn_1+2h%yy = Ayn.

This system can be written in matrix form as

[2h=2 —h2 0 0 0 (1 Y1
—h72 272 —h72 0 0 Yo Yo
0 —h72 2n72 —p2 0 Y3 Y3
0 0 —h2 2n2 0 i | = A |y (13)
L 0 0 0 0 2h=% | [y~ YN
By denoting
[2h=2 —h2 0 0 0 ] (1]
—h™2 2n2 —p2 0 Yo
0 —h2 2n2 —np2 0 L |
M=1 o 0 —h=2 2n2 0 and §= |y,
0 0 0 0 272 | yN

the system (13) can be written in the form

1.2 Neumann Conditions

Let us consider the same Sturm-Liouville equation, but this time attach a Neumann condition at the
right endpoint.

—y"(x) = My(z),  y(0)=0, ' (m)=0 (14)

Since we still have —y”(z) = Ay(z), we can re-use equation (9), repeated here for convenience.

—h 72 [yj—1 — 2y + Y1) = Ay

Because of the Neumann condition 3/(7) = 0, we do not know the value of the solution at the right
endpoint (i.e., we do not know y(m)). Therefore, if we partition the interval as above, we will need to
compute y1, yo, ..., ynv+1 instead of y1, y2, ..., yn. Solving this system requires the addition of an
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extra equation for the variable yn41. The resulting system looks like this:

—h™2[yo — 2y1 + y2] = Ay1,

-2

K2 [y1 — 2y + y3] = Aye,
K2 [y2 — 2ys + ya] = Ays,

—h 7 [ys — 2ys + y5| = Ay47 (15)
h? }

Ya —2ys + ys| =

—h72[yn—2 — 2yn41 + Ynt2] = AYnt1-

However, this gives us N + 1 equations in N + 3 unknowns. Because of the Dirichlet condition at the
left endpoint, we know that
Yo = y(zo) = y(0) = 0.
This condition eliminates the unknown yo. However, we will need to obtain an estimate for yy 2.
We can use a forward difference equation to approximate the first derivative:

vy yl@+h) —y(z)
(o) m =

Using h as the step size in our partition of [0, 7], we have

vy Y(@ien) — ()
y'(x5) = %

Using y; as an approximation of y(z;), we can write
r Yi+1 — Y5

n=T
or equivalently

Yj+1 = y; + hyj.
For j = N + 1, this gives us the equation yny2 = yn41 + hyly,. However, the Neumann condition
on the right endpoint of [0, 7] is

Ynt1 =Y (@n41) =y'(m) = 0.

Thus, we get yn12 = yn+1-
Substituting yo = 0 and yn42 = yn+1 into the first and last equations respectively of system (15)
gives us N + 1 equations in N + 1 unknowns:

—h7? =2y + o] = Ay
=2 [y1 — 2y2 + y3] = Ay
h™2[y2 — 2ys + 4] = Ays
—h7?[ys — 2ys + y5) = Aua
h=%[ys — 2ys + yﬁ} = A\ys

—h 2 [yn — yN+1} = AYN+1-

This system can be written in matrix form.

2h=2 —p2 0 0 Y1 Y1
~h=2 2n72 p72 0 Yo Y2
0 —h7% 2p72 0 ys | =x| ¥ |. (16)

0 0 0 o B2 |yna YN+1
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By denoting

oh=2 —h2 0 0

—h2 2p=2 _p2 0 (&

0 —h2 2p°2 0 Y2
N=1o0 0 —h? 0 and §= | ¥

ST T S

the system (16) reduced to the form

2 A Numerical Method for Solving Discontinuous
Sturm-Liouville Problems

We now consider the Sturm-Liouville equation described in (1)- (3), which holds over the finite interval
[0, 7] except at one inner point ¢ € [0, 7.

First, we partition the interval [0, 7] such that z;_1 < ¢ < z; as in Figure 1. We then use equation
(9) to find an approximate solution at those points to the left of ¢: yo,y1,...,y;-1 at zo,z1,..., 21
by . Once y;_1 is known, the transmission condition (3) gives us a value for y;:

Y5 = —Yj5—
J " Jj—1

at x;, on the right-hand side of c¢. Finally, with y; known, the values y;41,...,¥n at 2;41,...,2, can
be calculated from equation (9).
To generalize this solution, consider the new variable Y:

‘ o
v, =% I# (17)
J 2 .

wYi-u J=7

where
J* = min{k|zr > c}.

System (12) then becomes

—h7?[Yy_1 — 2Yy + Yy 41| = AYy.
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for j =1,..., N. The matrix form of this system is written as follows:

r2 -1 0 0 0 0 71T1vi] Y,

-1 2 -1 0 0 0 Y, Y,
0o -1 2 —% 0 0 Ys Ys

p2| 0 0 -2 - 0 1 Ya] =x|Ya (18)
0 O 0 -2 0 Ys Y5
2
Lo 0 0 0 0 2 | LYn] RE

3 Numerical Illustration

Example 3.1. For N = 30, % = % and z9 < ¢ < x3, we consider the discontinuous Sturm-Liouville

problem:
—y"(x) = Ay(z) xe[0,c) U (c, 7] (19)
y(0) =y(m) =0
Y2y(cy) = nyle-)
By applying the transformation (17) we obtain the following system of linear equations:
—hT Yy —2Y1 + Yo| = AY;
—h~ [Yl —2Y5 + Y3] Yo
~h2[ Ry, oy, + Y4] -
!
~h 2[Ry, - 2y4 +Y5) =
V2
—h~ [Y4—2Y5+Y6] =
—h™2[Yag — 2Ya9 + Y31] = AY3o
This system can be written as the following matrix equation:
r2 -1 0 0 0 0 7T1v] (Y7 ]
-1 2 -1 0 0 0 Y, Y,
0 -1 a - 07 0 Y3 Y;
2 2
0 0 0 no2 0 Ys Y5
72
L0 0 0 0 0 2 | [Ya0] | Y30 |

For this system, the following MatLAB commands generate approximations to the eigenvalue and the
eigenfunctions, as shown in Figure 2.

vV =
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Figure 2: The first two eigenfunctions
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Columns 1 through 5 Columns 29  through 30
-0.0253 0.0487 0.0703 -0.0917  0.1146 -0.2098 -0.2036
-0.0504 0.0954 0.1341 -0.1685  0.2005 0.1848 0.2154
-0.0749 0.1382 0.1857 -0.2181  0.2359 0.0470 -0.0243
-0.1974 0.3508 0.4404 -0.4645  0.4242 -0.4525 -0.3794
-0.1215 0.2054 0.2345 -0.2088  0.1350 0.1522 0.2250
-0.1430 0.2269 0.2273 -0.1515  0.0239 0.0922 -0.0483
-0.1630 0.2392 0.1993 -0.0696 -0.0932 -0.2334 -0.1739
-0.1814 0.2417 0.1529  0.0235 -0.1868 0.1134 0.2322
-0.1979 0.2343 0.0926 0.1129  -0.2335 0.1335 -0.0718
-0.2124 0.2173 0.0238 0.1839  -0.2215 -0.2310 -0.1563
-0.2247 0.1914 -0.0473  0.2251  -0.1539 0.0700 0.2371
-0.2347 0.1576 -0.1140  0.2299  -0.0476 0.1694 -0.0946
-0.2423 0.1174 -0.1702 0.1973 6 0.0707 -0.2191 -0.1370
-0.2474 0.0724 -0.2108 0.1328 0.1712 0.0236 0.2396
-0.2499 0.0245 -0.2321  0.0468 0.2287 0.1983 -0.1164
-0.2499 -0.0245 -0.2321 -0.0468  0.2287 -0.1983 -0.1164
-0.2474 -0.0724 -0.2108 -0.1328  0.1712 -0.0236 0.2396
-0.2423 -0.1174 -0.1702 -0.1973  0.0707 0.2191 -0.1370
-0.2347 -0.1576 -0.1140 -0.2299 -0.0476 -0.1694 -0.0946
-0.2247 -0.1914 -0.0473 -0.2251  -0.1539 -0.0700 0.2371
-0.2124 -0.2173 0.0238 -0.1839 -0.2215 0.2310 -0.1563
-0.1979 -0.2343 0.0926 -0.1129 -0.2335 -0.1335 -0.0718
-0.1814 -0.2417 0.1529 -0.0235 -0.1868 -0.1134 0.2322
-0.1630 -0.2392 0.1993 0.0696  -0.0932 0.2334 -0.1739
-0.1430 -0.2269 0.2273  0.1515 0.0239 -0.0922 -0.0483
-0.1215 -0.2054 0.2345  0.2088 0.1350 -0.1522 0.2250
-0.0987 -0.1754 0.2202  0.2322 0.2121 0.2262 -0.1897
-0.0749 -0.1382 0.1857  0.2181 0.2359 -0.0470 -0.0243
-0.0504 -0.0954 0.1341  0.1685 0.2005 -0.1848 0.2154
-0.0253 -0.0487 0.0703  0.0917 0.1146 0.2098 -0.2036

The eigenvalues are
n 1 2 3 | 29 30
An | 0.9991 | 3.9863 | 8.9309 385.4923 | 388.4795
The first two eigenfunctions are shown in Figure 2.
Example 3.2. For N = 30, % = % and x5 < ¢ < x3, we consider the same discontinuous Sturm-

Liouville problem with a Neumann boundary condition:

—y"(z) = My(z)

xz €[0,¢) U (c, ]

(21)
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y(0) =y (1) =0
Y2y(cy) = nyleo)

By applying the transformation (17) we obtain the following system of linear equations:

~hT2 [ 2Y1 + Y
—h~ [Y1—2Y2+ Y3

ga!

—n2 Ly, —2Y4+Y5
V2

]

]

—h~ [72Y2—2Y5,+ i)
]

—h~ [Y4—2Y5+Y6]

—h7?[Y30 + Ya1] = AYa

The matrix form is

r2 -1 0 0 0 0 0 Y; Y;
-1 2 -1 0 0 0 0 Ys Y,
0 -1 27 ~-n (L 0 0 Ya Ys
2 b2
- 0 0 L2 -2 9 0 Y, ) Y,
0 0 0o - 2 -1 0 Ys | =2 | Y5
0 0 0 0 -1 2 0 Ys Ys
L0 0 0 0 0 0 1 ] | Ya1) | Y31 |

The following commands were used to generate the eigenvalues and eigenfunctions.

vV =
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Columns 1 through 5 Columns 29  through 30
0.0257 -0.0483  -0.0673 0.0844 0.1018 ... 0.0468 0.0248
0.0511 -0.0945  -0.1282 0.1548  0.1773 ... -0.0917 -0.0494
0.2281 -0.4102  -0.5310  0.5979  0.6209 ... 0.3989 0.2205
0.1001 -0.1732  -0.2091 0.2105 0.1831 .. -0.1689 -0.0968
0.1232 -0.2023  -0.2213 0.1866  0.1120 ... 0.1979 0.1192
0.1449 -0.2229  -0.2127 0.1316 0.0119 .. -0.2190 -0.1404
0.1651 -0.2341  -0.1839 0.0545 -0.0913 ... 0.2313 0.1601
0.1835 -0.2353  -0.1377 -0.0316 -0.1709 ... -0.2342 -0.1782
0.2000 -0.2267  -0.0785 -0.1125 -0.2063 ... 0.2278 0.1946
0.2144 -0.2084 -0.0119 -0.1745 -0.1884 ... -0.2121 -0.2089
0.2265 -0.1814 0.0558 -0.2075 -0.1218 .. 0.1879 0.2212
0.2362 -0.1466 0.1183 -0.2058 -0.0237 ... -0.1561 -0.2312
0.2434 -0.1057 0.1696 -0.1697 0.0805 ... 0.1180 0.2389
0.2480 -0.0603 0.2048 -0.1053 0.1639 ... -0.0752 -0.2442
0.2500 -0.0124 0.2207 -0.0234 0.2049 ... 0.0294 0.2470
0.2493 0.0361 0.2157  0.0625 0.1930 ... 0.0294 0.2470
0.2460 0.0830 0.1903 0.1379 0.1312 .. -0.0640 0.2451
0.2401 0.1264 0.1469  0.1904 0.0355 ... 0.1077 -0.2404
0.2316 0.1645 0.0896 0.2110 -0.0694 ... -0.1472 0.2333
0.2207 0.1956 0.0238  0.1964 -0.1564 ... 0.1806 -0.2239
0.2075 0.2185 -0.0442  0.1490 -0.2029 ... -0.2068 0.2122
0.1920 0.2321 -0.1081 0.0768 -0.1970 ... 0.2247 -0.1984
0.1746 0.2360 -0.1617 -0.0083 -0.1402 ... -0.2335 0.1825
0.1552 0.2298 -0.2000 -0.0920 -0.0471 ... 0.2329 -0.1648
0.1342 0.2140 -0.2194 -0.1603 0.0581 ... -0.2229 0.1454
0.1118 0.1890 -0.2181 -0.2019 0.1483 ... 0.2040 -0.1246
0.0883 0.1562 -0.1961 -0.2097  0.2002 ... -0.1768 0.1025
0.0637 0.1167 -0.1556  -0.1826  0.2003 ... 0.1425 -0.0794
0.0385 0.0722 -0.1003 -0.1249 0.1487 ... -0.1024 0.0555
0.0129 0.0248 -0.0356 -0.0464 0.0586 ... 0.0583 -0.0310
-0.0128 -0.0238 0.0325 0.0398 -0.0466 ... -0.0117 0.0062

The eigenvalues are
n 1 2 3| . 29 30
An | 1.032 | 4.1148 | 9.2101 | .... | 385.5555 | 388.4954

The first two eigenfunctions are shown in Figure 3.

4 Conclusion

We have described a numerical method for approximating the eigenvalues and eigenfunctions of a
discontinuous Sturm-Liouville problem. Since the present method gives real and positive eigenvalues
at all nodes, if higher accuracy is required we can simply increase the number of nodes N.
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Figure 3: The first two eigenfunctions with a Neumann boundary condition
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