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1 Introduction

The following inequality holds for any convex function f define on R and a,b € R, with a < b

f(a;b)<bia/01f<x>dw<w 1)

both inequalities hold in the reversed direction if f is concave.

The inequality (1) is known in the literature as the Hermite-Hadamard’s inequality. The Hermite-
Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows
easily from Jensen’s inequality. The classical Hermite-Hadamard inequality provides estimates of the
mean value of a continuous convex function f : [a,b] — R.

In this paper, Firstly we defined for bounded positive selfadjoint operator p-convex functions in
Hilbert space, secondly established some new theorems for them and finally Hermite-Hadamard type
inequalities for product two bounded positive selfadjoint operators p-convex set up in Hilbert space.

In the paper [1] Dragomir et al. consider P(I). This class is defined in the following way.

Definition 1.1. [1] We say that f : I — R is a P-function, or that f belongs to the class P(I), if f
is a non-negative function and for all z,y € I, « € [0, 1], we have

flox+ (1 —a)y) < flz)+ f(y).

For some results about the class P(I) see, e.g., [2] and [3].

** Edited by Oktay Muhtaroglu (Area Editor) and Naim Cagman (Editor-in-Chief).
* Corresponding Author.



Journal of New Theory 4 (2015) 74-79 75

2 Preliminary

First, we review the operator order in B(H) and the continuous functional calculus for a bounded
selfadjoint operator. For selfadjoint operators A, B € B(H) we write, for every € H

A< B(or B> A)if(Ax,z) < (Bzx,x)(or (Bxz,z) > (Azx,x))

we call it the operator order.

Let A be a selfadjoint linear operator on a complex Hilbert space (H,{.,.)) and C(Sp(A)) the C*
-algebra of all continuous complex-valued functions on the spectrum A. The Gelfand map establishes
a x-isometrically isomorphism ® between C'(Sp(A)) and the C*-algebra C*(A) generated by A and
the identity operator 1y on H as follows [6].

For any f,g € C(Sp(A)) and any «, 8 € C we have

i. ®(af+Bg) = a®(f)+B2(g) ;
ii. ®(fg) =2(f)®(9) and &(f*) = (f)";
iii. || (I = IlfIl := suprespea|F )] 5
iv. ®(fo) =land ®(f;) = A, where fo(t) = land f1(t) =t, for t € Sp(A)
If f is a continuous complex-valued functions on C(Sp(A)), the element ®(f) of C*(A) is denoted
by f(A), and we call it the continuous functional calculus for a bounded selfadjoint operator A.
If A is bounded selfadjoint operator and f is real valued continuous function on Sp(A), then
f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e f(A) is a positive operator on H. Moreover,

if both f and g are real valued functions on Sp(A) such that f(t) < g(¢) for any ¢ € Sp(A), then
f(A) < f(B) in the operator order B(H).

A real valued continuous function f on an interval I is said to be operator convex (operator
concave) if

F((L=MA+AB) < (Z)(1 =) f(A) + Af(B)

in the operator order in B(H), for all A € [0, 1] and for every bounded self-adjoint operator A and B
in B(H) whose spectra are contained in I.

3 Operator p-convex Functions in Hilbert Space

The following definition and function class are firstly defined by Seren Salas.

Definition 3.1. Let I be interval in R and K be a convex subset of B(H)™. A continuous function
f: I — Ris said to be operator p-convex on I, operators in K if

flaAd+ (1 -a)B) < f(A)+ f(B) (2)

in the operator order in B(H), for all a € [0,1] and for every positive operators A and B in K
whose spectra are contained in I .

In the other words, if f is an operator p-convex on I, we denote by f € S,0.
Lemma 3.2. If f belongs to S,0O for operators in K, then f(A) is positive for every A € K.
Proof. For A € K, we have

A
s =s(5+

This implies that f(A) > 0.
Moslehian and Najafi [4] proved the following theorem for positive operators as follows :

Theorem 3.3. [4] Let A, B € B(H)*. Then AB+ BA is positive if and only if f(A+B) < f(A)+f(B)
for all non-negative operator functions f on [0, c0).

4

2) < F(4) + £(4) = 2f(A).
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Dragomir in [5] has proved a Hermite-Hadamard type inequality for operator convex function
as follows:

Theorem 3.4. [5] Let f : I — R be an operator convex function on the interval I. Then for all
selfadjoint operators A and B with spectra in I we have the inequality

U(57)=) Bl ) ()]
[ ((1=as10))a

[ (A42) ) (10

IN

Let X be a vector space, x,y € X,z # y. Define the segment
[z,y] := (1 —t)x + ty;t € [0, 1].
We consider the function f : [z,y] :— R and the associated function
g(z,y) : [0,1] = R
9(z,y)(t) == f((1 = t)z +ty), t € [0, 1].

Note that f is convex on [z,y] if and ounly if g(x,y) is convex on [0,1]. For any convex function
defined on a segment [z,y] € X, we have the Hermite-Hadamard integral inequality

= 1 flz) + fy)
(55Y) < [ - e ar< 104

which can be derived from the classical Hermite-Hadamard inequality for the convex g(x,y) : [0,1] — R.

Lemma 3.5. Let f : I C R — R be a continuous function on the interval I. Then for every two
positive operators A, B € K C B(H)" with spectra in I the function f € S,0 for operators in

[A,B] := (1 - t)A+tB;t € [0,1]
if and only if the function ¢, 4 5 : [0,1] — R defined by
¢enB = (f(1-t)A+tB)x,z)
is operator p-convex on [0, 1] for every x € H with ||z| = 1.
Proof. Since f € 5,0 operator in [A, B, then for any t1,t € [0,1] and a € [0, 1] we have

pr,a8(ats + (1 = a)tz)

(f((1 = (at1 4+ (1 — a)ta) A+ (aty + (1 — @)ta)B)z, x)
(fal1—t)A+t:B]+ (1 — a)[(1 — t2)A + to2B))z,z)
(F(A—t)A+tB)z,z) + f((1 — t2) A+ t2B)z, x)
0, 4,8(t1) + ¢z,4,B(t2)

IA A

Theorem 3.6. Let f € S,0 on the interval I C [0,00) for operators K C B(H)". Then for all
positive operators A and B in K with spectra in I, we have the inequality

;f<A;B> s/o f(tA+ (1 —t)B)dt < [f(A) + (B)] (3)
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Proof. For x € H with ||z|| = 1andt € [0, 1], we have
(1=t)A+tB)z,x) = (1 — t){Az,x) + t(Bz,z) € I, (4)

Since <A$7x> € Sp(A) C I'and <Bm,x> € Sp(B) C I.
Continuity of f and 4 imply that the operator-valued integral fol f (tA +(1- t)B) dt exists.

Since f is operator p-convex, therefore for ¢ in [0,1], and A, B € K we have
F(EA+ (L= 0)B)dt < f(A) + f(B) (5)
Integrating both sides of 5 over [0, 1] we get the following inequality
1
| #ea+a-oB)d < a)+ 1(8)
0

To prove the first inequality of 3, we observe that

f(A“;B> <ftA+ (1 —t)B)+ f((1 —t)A+tB) (6)

Integrating the inequality 6 over ¢ € [0, 1] and taking into account that

/1f(tA+ (1—t)B)dt = /1f((1 —t)A+tB)dt
0 0

then we deduce the first part of 3.

4 The Hermite-Hadamard Type Inequality for the
Product Two Operators p-convex Functions

Let f,g € S,O on the interval in I. Then for all positive operators A and B on a Hilbert space H
with spectra in I, we define real functions M (A, B) and N(A, B) on H by

M(A, B)(x) = (f(A)z, z)(g(A)x, x) + (f(B)z, z)(g(
N(A, B)(x) = (f(A)z, z)(g(B)x, x) + (f(B)z, z)(9(A)

Theorem 4.1. Let f,g € S,0 be on the interval I for operators in K C B(H)*. Then for all positive
operators A and B in K with spectra in I, we have the inequality

B)z,x) (z € H),
A)x,z) (x € H).

/1<f(tA + (1 =t)B)z,2)(g(tA+ (1 — t)B)z,z)dt
0

< M(A,B)+ N(A,B)
hold for any x € H with ||z|| = 1.

Proof. For x € H with ||z|]| =1 and t € [0, 1], we have

((A+ B)z,z) = (Az,z) + (Bz,z) € I, (7)

since (Az,z) € Sp(A) C I and (Bz,z) € Sp(B) C I.
Continuity of f, g and 7 imply that the operator-valued integrals

1 1 1
/ f(tA+ (1 —t)B)dt, / g(tA+ (1 —1t)B)dt and / (fg)(tA+ (1 —t)B)dt
0 0 0

exist.
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Since f,g € S,0, therefore for ¢ in [0,1] and z € H we have
(f(tA+ (1 =t)B)z,z) < (f(A) + f(B)z,x) (8)

(g(tA+ (1 —t)B)x,z) < (9(A) + g(B)z, ). (9)

From 8 and 9, we obtain

(f(tA+ (1 = t)B)z,2)(g(tA+ (1 - ) B)z,z) < (f(A

(10)
Integrating both sides of 10 over [0, 1], we get the required inequality 7.

Theorem 4.2. Let f,g belong to S,0 on the interval I for operators in K C B(H)". Then for all
positive operators A and B in K with spectra in I, we have the inequality

neosEE.
< /01<f(tA + (1 - )B)a,2)(g(tA + (1 — t)B)z, )dt
+M(A, B) + N(A, B) (12)

hold for any x € H with ||z|| = 1.

Proof. Since f,g € S,0, therefore for any ¢ € I and any x € H with ||z|| = 1, we observe that

H(AEBY,, ALBY
B Efgmi (1)— t)Z<j g1 —2t)A)+ tB>>x x>
— 2 2 )

X<g(tA+ (;—t)B N (1 —t);1+tB>$7x>

IN

{(f(tA + (1 =t)B))+ (f((1 —t)A+tB))

x(g(tA+ (1 —1t)B)) + (g((1 —t)A + tB)>}

< {{ ftA+(1-1)B ><g(tA+(1—t)B)w7w>]
+[(F (1= DA+ tB)e,2)(g((1 - )4 + tB)z,2)]
+[ra Byz,x)] x [lg(A)z,2) + (9(B)z, )]
+[(r(a m,xﬁ x [{g(A)z,2) + <g(B)x,x>}}
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+
2

+

(f(tA+ (1 —t)B)z,x)g(tA+ (1 — t)B)z, x}}
(F(1=B)A+tB)z, 2){g((1 — H)A+ tB)a:,xﬂ
[(F(A),2) (g(A)z, )| +2|(£(B)a,a)(g(B)z,x)|
+2[(f(A)a,2)(g(B)a,2)] + 2|(f(B)w, ) (g(A)z, 2)] }

By integration over [0, 1], we obtain

(552 )m) (o557 ) o)
< /O1 [(F((1 = )4+ tB)z, 2)g(tA + (1 — ) B)w, )

+(f(tA+ (1 —t)B)z,z){g((1 —t)A + tB)x,x)}dt
+2M (A, B) + 2N (A, B)

This implies the inequality 11.
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