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Abstract — In this paper, we first define operators m-convex functions for positive, bounded, self-
adjoint operators in Hilbert space via m-convex functions. Secondly, we establish some new theorems
for them. Finally, we obtain the Hermite-Hadamard type inequalities for the product two operators

m-~convex functions in Hilbert space.

Keywords — The Hermite-Hadamard inequality, m-convex functions, operator m-convex functions,

selfadjoint operator, inner product space, Hilbert space.

1 Introduction

The following inequality holds for any convex function f define on R and a,b € R, with

H(0) < 7 [ e < LOHI0 "

both inequalities hold in the reversed direction if f is concave.

The inequality (1) is known in the literature as the Hermite-Hadamard’s inequality.
The Hermite-Hadamard’s inequality may be regarded as a refinement of the concept
of convexity and it follows easily from Jensen’s inequality. The classical Hermite-
Hadamard inequality provides estimates of the mean value of a continuous convex
function f : [a,b] — R. In this paper, Firstly we defined for bounded positive self-
adjoint operator m-convex functions in Hilbert space, secondly established some new
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theorems for them and finally Hermite-Hadamard type inequalities for product two
bounded positive selfadjoint operators m-convex set up in Hilbert space.

2 Preliminary

First, we review the operator order in B(H) and the continuous functional calculus for
a bounded selfadjoint operator. For selfadjoint operators A, B € B(H) we write, for
every x € H

A< B(or B> A)if (Az,z) < (Bx,z)(or (Bz,z) > (Ax,x))

we call it the operator order.

Let A be a selfadjoint linear operator on a complex Hilbert space (H,(.,.)) and
C(Sp(A)) the C* -algebra of all continuous complex-valued functions on the spectrum
A. The Gelfand map establishes a #-isometrically isomorphism ® between C'(Sp(A))
and the C*-algebra C*(A) generated by A and the identity operator 15 on H as follows
[1].

For any f,g € C(Sp(A)) and any a, 3 € C we have
i. ®(af +Bg) =a®(f)+ L(g) ;
ii. ®(fg)=2(f)®(9) and ®(f*) = P(f)";
iii. [P =[] == supespa| ()] ;
iv. d(f,) = Land ®(f,) = A, where fo(t) = 1and fi(t) =, for t € Sp(A)

If f is a continuous complex-valued functions on C(Sp(A), the element ®(f) of
C*(A) is denoted by f(A), and we call it the continuous functional calculus for a
bounded selfadjoint operator A.

If A is bounded selfadjoint operator and f is real valued continuous function on
Sp(A), then f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e f(A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp(A) such that
f(t) < g(t) for any t € Sp(A), then f(A) < f(B) in the operator order B(H).

A real valued continuous function f on an interval I is said to be operator convex
(operator concave ) if

S =XNA+AB) < (2)(1 = A)f(A) + Af(B)

in the operator order in B(H), for all A € [0,1] and for every bounded self-adjoint
operator A and B in B(H) whose spectra are contained in 1.

We denoted by B(H)™ the set of all positive operators in B(H).

G.H. Toader [2] defines the m-convexity, on intermediate between the usual convex-
ity and starshaped property.

Definition 2.1. [2] The function f : [a,b] — R is said to be m-convex, where m € [0, 1],
if for 2,y € [a,b] and t € [0,1] we have f(tz +m(1 —t)y) < tf(x) +m(l—1)f(y)

Denote by K,,(b) the set of the m-convex functions on [a,b] for which f(0) < 0.
Note that, for m = 1, we recapture the concept of convex functions defined on [a, b]
and for m = 0 we get the concept of starshaped functions on [a,b]. We recall that

f :[a,b] — R is starshaped if f(tx) < tf(z), for all t € [0,1] and z € [a, b].
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3 The Hermite-Hadamard Type Inequalities for Op-
erator m-convex Functions in Hilbert Space

3.1 Operator m-convex Functions in Hilbert Space

The following definition is firstly defined by Yeter Erdas

Definition 3.1. Let I be an interval in R and K be convex subset of B(H)". A
continuous function f : I C [0,00) — R is said to be operator m-convex on I for
operators in K if

FA+m(1 — t)A) < LF(A) +m(1 —t)f(A)

in the operator order in B(H)™T, for all m,t € [0,1] and for every positive operators A
and B in K whose spectra are contained in I.

Lemma 3.2. If f is operator m-convex on [0, 00) for operator in K, then f(A) is positive
for every A € K.

Proof. For A € K, we have
tA+m(l —t)A+ (1 —t)A+mtA
s = 1 j U
FEA+m(1 —t)A+ (1 —t)A + mtA)
F(A) +m(1 = ) F(A) + (1= D) F(A) + mif(A)
F(A) +mF(A) = mEf(A) + F(A) — LF(A) + mif(A)f(A)
F(A)m +1)
mf(A)
This implies that f(A)

Moslehian and Naj
follows:

Theorem 3.3. [3] Let A,B € B(H)". Then AB + BA is positive if and only if
f(A+ B) < f(A) + f(B) for all non-negative operator functions f on [0, c0).

I IA IA
~ o+

ININA

>0
afi [3] proved the following theorem for positive operators as

Dragomir in [4] has proved a Hermite-Hadamard type inequality for operator convex
function as following

Theorem 3.4. [4] Let f : I — R be an operator convex function on the interval I.
Then for all selfadjoint operators A and B with spectra in I we have the inequality

U= )al (5) o (57)
g/olf((l—t)AthB))dt

ALB) | HA 1B
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Let X be a vector space, x,y € X,z # y. Define the segment

[z,y] = (1 —t)z +ty;t € [0,1].

We consider the function f : [z,y] :— R and the associated function
9(,y): [0,1] = R

g(z,y)(t) == f((1 = t)z + ty), ¢ € [0,1].

Note that f is convex on [z,y] if and only if g(x,y) is convex on [0,1]. For any
convex function defined on a segment [z,y] € X, we have the Hermite-Hadamard
integral inequality

f(x_gy) S/0 f<<1_t)$+ty)dt§w

which can be derived from the classical Hermite-Hadamard inequality for the convex
g(z,y): [0,1] — R.

Lemma 3.5. Let f: I C [0,00) — R be a continuous function on the interval I. Then
for every two positive operators A, B € K C B(H)* with spectra in I the function f is
operator m-convex for operators in

[A,B] ={(1—-t)A+mtB:t € [0,1]}
if and only if the function ¢, 45 : [0, 1] — R defined by

@r,a8(t) = (f((1 —t)A+mtB)r,x)
is m-convex on [0, 1] for every € H with ||z|| = 1.

Proof. Let f be operator m-convex for operators in [A, B] then for any ¢;,t, € [0, 1]
and A,y > 0 with A +~v =1 we have

Ve aB(M1+7t2) = (f(1 — (M1 +7t2)A) + m(Aty + vt2)B)z, x)
= (f(AMA+~vA — XAty — yAty + mAt, B + mytaB)x, x)
= (fO\(1 = t1)A+mt,B] +[(1 — t2) A + mtyB))z, x)

< Appap(t)esans(ts)

showing that ¢, 4 p is a m-convex function on [0,1]. Let now ¢, 4 5 be m-convex
on [0,1], we show that f is operator convex for operators in [A, B]. For every C :=
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(1 —t;)A+ mt;B and D := (1 — t3) A 4+ mty B we have

(f(A=XNC+mAD)x,x) = (f((1=AN)[1—t)A+mtB]

+mA[(1 = ) A + mty B))z, )

= (f(A—t, A+ mt,B — MA+ Xy A —mA\, B
+mAA — mM A + m* Aty B)x, x)

— (A1 = ty) = ANA(L = t1) + mAA(1 — ty)
+mt, B +m*Aty B — mAt, B)z, x)

= (f(-M(1 —t)A+mtB) + A(l — t;)
+mity B+ mA(A(1 — ty) + mtyB))z, z)

= (ST =N = t)A+mt,B)
+mA((1 — ta) A + mtyB))z, z)

< (L=N(C)x, z) + mA(f(D)z, )

Theorem 3.6. Let f : I — R be an operator m-convex function on the interval
I C [0, 00) for operators in K C B(H)". Then for all positive operators A and B in K
with spectra in I we have the inequality

A+ B
2

oA )

IN

/0 [tf(A) +m(1 —1t)f(A) +tf(B) +m(l —t)f(B)|dt
< (m+1)(f(A)+ f(B))
Proof. For x € H with ||z|| =1 and t € [0, 1], we have

([tA4+m(1 —t)Blz,z) = t(Az,z) + m(1l — t)(Bzx,x) € I (2)
since (Az,z) € Sp(A) C I and (Bz,z) € Sp(B) C I, (2) imply that the operator-
valued integral fol f(tA + (1 —t)B)dt exists. Since f is operator m-convex, therefore
for t in [0,1] and A, B € K we have

ftA+m(1 = 1)B) < tf(A)+m(l—1)f(B) (3)
integrating both sides of (3) over [0, 1] we get the following inequality
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/O1 [f(tA+m(1 . t)B)}dt < /01 [tf(A) Fm(1— ) f(B)|dt

= f(A)+mf(B) - f(B)

A+ B

= J(A)+ (m = DB

)
B tA+m(l—-t)A+(1—-t)A+mtA+tB+m(l —t)B+ (1 —t)B+ mtB
N f( 2(m +1) )

HA+B)+m(l—t)(A+ B) + (1 —t)(A+ B) + mt(A+ B)
f 2 )

IN

IN

tf(A) +tf(B) +m(1 —1)f(A) +m(1 —1)f(B) + f(A) + f(B)

CLF(A) — tF(B) + mtf(A) + mtf(B)
_ (m+1)[f(A)+f(B)]/0 F(EA +m(1 — t)B)dt
_ /lf((l—t)A+mtB)dt

4 The Hermite-Hadamard Type Inequalites for Prod-
uct Two Operators m-convex Functions

Let f : I — R be operator m-convex and g : I — R operator m-convex function on the
interval I. Then for all positive operators A and B on a Hilbert space H with spectra
in I, we define real functions K (A)(z), L(A, B)(z), R(A, B)(z), S(B)(z), M (A, B)(x),
N(A,B)(x) on H by

K(A)(z) (f(A)z, x)(g(A)z, x)
L(A, B)(z) (f(A)x, x)(g(B)z,z)
R(A,B)(x) = (f(B)z,z)(g9(A)x, )
S(B)(x) = (f(B)x,z)(g(B)z,)
M(A, B)(x) = (f(A)z,x)(g(A)z, z) + (f(B)z, z)(g(B)z,z)
N(A,B)(x) = (f(A)z,x){g(B)x,x) + (f(B)z,z){g(A)z, ).

Theorem 4.1. Let f : I — R be operator mi-convex and g : I — R operator mo-
convex function on the interval I for operators in K C B(H)". Then for all positive
operators A and B in K with spectra in I, the inequality

/01 [(f(tA +mi(1—t)B)x,x){g(tA+ mo(1l —t)B)x,x)|dt
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< () (720 4 () - (e

Proof. For x € H with ||z|| =1 and ¢ € [0, 1] we have

([tA+m(1l —t)Blx,x) = t(Az,x) + m(1l — t)(Bx,x) € I (4)

since (Ax,z) € Sp(A) C I and (Bx,z) € Sp(B) C I. Continuity of f, g and (4) imply
that the operator valued integrals fol f(tA+my(1—1t)B)dt, fol g(tA+my(1—t)B)dt and
fol(fg)(tA +m(1 —t)B)dt exist. Since f, g are operator convex, therefore for ¢ € [0, 1]
and t € [0, 1] we have

(A +mi(1 =t)B)x,x) < t(f(A)x,x) +mi(1 = 1)(f(B)z, )

(gtA+my(1 —t)B)x,x) < Hg(A)z,z) +ma(1 —1){g(B)z, )

(CreA+mi(1 = 0By, )) ((gtA + ma(1 — t)B)a, )
< (f(A)z, 2)(g(A)z, 2) + tma(1 = )(f(A)z, 2){g(B)z, ) (5)
Hm (1 =)(f(B)z, z){g(A)z, x)

+mima(1 = 1)*(f(B)z, z)(9(B)z, )

Integrating both sides of (5) over [0, 1], we get the following inequality

/01 [(f(tA F (1 — ) B)a, ) (g(tA + ma(1 — t)B)z, @} dt <

K msL m1R> <m1m25>
(5)+ (57)+ (5 ;
Theorem 4.2. Let f : I — R be operator mi-convex and g : I — R operator ms-

convex function on the interval I for operators in K C B(H)*. Then for all positive
operators A and B in K with spectra in I, the inequality

(55 mate(5 )

[1 —mime My + Mo

: 2| M (A, B) ()N (4, B)(x)
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Since f is operator m-convex and ¢ is operator ms-convex, for any ¢ € I and any
xr € H with ||z|| = 1 we observe that

IN

()

< ([Ef(A) +ma(1 =) f(A) + Lf(B) + ma(1 = 1) f(B)]z, )

o442y

< ([tg(A) +ma(1 = 1)g(A) + tg(B) + ma(l — t)g(B)lz, z)

((F57)m) (0557 )

2 (f(A)z,2)(g(A)z, x) + tma(1 — 1) (f(A)z, 2)(g(A)z, )

t(f(A)z,z)(g(B)z, z)
tm2<1 - t)(f(A)J],ZE)(g(B):L’, l‘>

tma(1 = t)(f(A)z,2)(g(A)z, 2) +mama(1 = 1)*(f(A)z, 2){g(A)z, )
tmy (1 = )(f(A)z, 2)(g(B)z,x) +mamy(1 — t)*(f(A)z, 2)(g(B)z, z)

t*(f(B)z,x)(g(A)z, x) + tma(1 — t)(f(B)z, x){g(A)z, x)
t2(f(B)a,x){g(B)z, ) + tma(1 — t)(f(B)z,z)(g(B)z, )
tma(1 = t)(f(B)z, 2){g(A)z, ) + mama(1 — t)*(f(B)z, 2){g(A)z, z)

tma(1 = t)(f(B)z, 2){g(B)z, z) + mima(1 — )*(f(B)z, z)(g(B)z,z)

Integrating both sides of (6) over [0, 1] we get the following inequality

and this finishes the proof.
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