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1. Introduction 

 
BCK-algebras form an important class of logical algebras introduced by Iseki [5,6,7] and 

were extensively investigated by several researchers. The class of all BCK-algebras is a 

quasivariety. Iseki posed an interesting problem (solved by Wronski [13]) whether the class 

of BCK-algebras is a variety. In connection with this problem, Komori [9] introduced a 

notion of BCC-algebras and Dudek [1] redefined the notion of BCC-algebras by using a dual 

form of the ordinary definition in the sense of Komori. Dudek and Zhang [2] introduced a 

new notion of ideals in BCC-algebras and described connections between such ideals and 

congruences. C.Prabpayak and U.Leerawat ([11], [12]) introduced a new algebraic structure 

which is called KU-algebra. They gave the concept of homomorphisms of KU - algebras and 

investigated some related properties. These algebras form an important class of logical 

algebras and have many applications to various domains of mathematics, such as, group 

theory, functional analysis, fuzzy sets theory, probability theory, topology, etc. Coding 

theory is a very young mathematical topic. It started on the basis of transferring information 

from one place to another. For instance, suppose we are using electronic devices to transfer 

information (telephone, television, etc.). Here, information is converted into bits of 1’s and 

0’s and sent through a channel, for example a cable or via satellite. Afterwards, the 1’s and 
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0’s are reconverted into information again. Due to technical problems, one can assume that 

while the bits are sent through the channel, there is a positive probability p that single bits 

are being changed. Thus the received bits could be wrong. The idea of coding theory is to 

give a method of how to convert the information into bits, such that there are no mistakes in 

the received information, or such that at least some of them are corrected. On this account, 

encoding and decoding algorithms are used to convert and reconvert these bits properly. One 

of the recent applications of BCK-algebras was given in the Coding theory [3,8 ,12]. In 

Coding Theory, a block code is an error-correcting code which encodes data in blocks. In 

the paper [8], the authors  introduced the notion of BCK-valued functions and investigate 

several properties. Moreover,they established block-codes by using the notion of BCK-

valued functions. they show that every finite BCK-algebra determines a block-code 

constructed a finite binary block-codes associated to a finite BCK-algebra.  In [3,12] 

provided an algorithm which allows to find a BCK-algebra starting from a given binary 

block code. 

 

In [12] the authors presented some new connections between BCK- algebras and binary 

block codes. 

 

In this paper, we apply the code theory to KU- algebras and obtain some interesting results. 

 

 

2. Preliminaries 
 

Now, we will recall some known concepts related to KU-algebra from the literature which 

will be helpful in further study of this article. 

 

Definition 2.1 [10,11] Algebra(X, ∗, 0) of type (2, 0) is said to be a KU -algebra, if it 

satisfies the following axioms: 

 

( 1ku )  xx 0  

( 2ku )    0yx ,0)()(  zxzy 0)*()*(  yzxz  

( 3ku )  )()( zxyzyx   

( 4ku )  0)]()[()(  zxzyyx , 

 

Example 2.2 Let X = {0, 1, 2, 3, 4} in which * is defined by the following table  

 

* 0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 2 3 4 

2 0 1 0 3 3 

3 0 0 2 0 2 

4 0 0 0 0 0 
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It is easy to show that X is KU-algebra.  

 

In a KU-algebra, the following identities are true : If we put in (ku4) y = x = 0 we get                             

(0 * 0) *  [ (0 * z) * (0 * z) ] =0  and it follows that : (Ku5)   z * z = 0 , if we put y = 0  in  (ku4), 

we get (p1) z * (x * z ) = 0 . 

 

A subset S of KU-algebra X is called sub-algebra of X if x * y   S, whenever x, y   S.  

 

A non empty subset A of a KU-algebra X is called a KU-ideal of X if it satisfies the 

following conditions:  

 

(I1) 0   A,   

(I2) x * (y * z)A , y  A implies x * z   A , for all x , y , zX .  

 

Lemma 2.3 [9] In a KU-algebra (X, *, 0), the following hold: 

 

x ≤  y imply  y * z  ≤  x * z . 

 

Lemma 2.4 [10] If X is KU-algebra then y * [(y * x) * x] = 0. 

 

 

3. KU-valued Functions 
 

In what follows let A and X denote a nonempty set and a KU-algebra respectively, unless 

otherwise specified. 

  

Definition 3.1 A mapping  XAA :
~

 is called a KU-valued function (briefly, KU-

function) on A . 

 

Definition 3.2 A cut function of A
~

, for Xq  is defined to be a mapping 

 

}1,0{:
~

AAq  such that  0*)(
~

1)(
~

)(  qxAxAAx q .        

  

Obviously, qA
~

 is the characteristic function of the following subset of A , called a cut subset 

or a q-cut of A
~

:  0*)(
~

::)(
~

 qxAAxxAq . 

 

Example 3.3 Let A ={x, y, z} and let X = {0, a, b, c, d} is a KU-algebra with the following 

Cayley table: 

 

* 0 a b c d 

0 0 a b c d 

a 0 0 b b a 

b 0 a 0 a d 

c 0 0 0 0 a 

d 0 0 b b 0 
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The function XAA :
~

given by 









cba

zyx
A
~

  is a KU-function on A , and its cut 

subsets are  

 

     xAAAyAxAA dcba  ,,,,0 . 

 

Lemma 3.4  On KU-algebra (X; *; 0). We define a binary relation   on X by putting x  y 

if and only if y*x = 0. Then (X;  ) is a partially ordered set and 0 is its smallest element. 

 

Proof. Let X  be KU-algebra  Xcba  ,, , we have 

 

1.   is reflexive as .aa   

2. if abba  , ,then ba  . Hence   is anti-symmetric. 

3. if cbba  ,  ,then we want to prove that .ca   

 

Since 0)()()(0  abacbcacac   ,we have ,0 caac  then   is 

transitive. Hence ),( X  is partial order set. 

 

Proposition 3.5 Every KU-function XAA :
~

on A  is represented by the infimum of the 

set   1)(,  xAXq q  , that is   1)(
~

,inf)(
~

:  xAXqxAXx q . 

 

Proof. For any  Ax . Let XqxA )(
~

 , then XqxAsoandqxA q  1)(
~

0*)(
~

.  

 

Assume that  XrforxAr 1)(
~

 , then qreirqrxA  .,*0*)(
~

. 

 

Since  1)(
~

,  xAXrq r , for XrAx  , ,it follows  that   

 

 1)(
~

,inf)(
~

 xAXrqxA r . 

 

This completes the proof. 

 

Proposition 3.6 Let XAA :
~

be a KU-function on A  . If 0* pq  for all ,, Xqp   

 we get qp AA  . 

 

Proof. Let ,, Xqp  be such that 0* pq  and pAx  , then  0*)(
~

pxA  

 

Using ( 1ku ) and ( 2ku ), we have 

 

)*)(
~

()*)(
~

(*)*(0

)KU ( 2

qxAPxApq 

  
, and so qAx . Therefore qp AA  . 

 

This completes the proof. 
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Proposition 3.7 Let XAA :
~

be KU-function on A . Then  

 

                             
)(

~
)(

~)(
~

)(
~

)(,(
yAxA

AAyAxAAyx    

 

Proof.  (1) The sufficiency is obvious. Assume that 
)(

~
)(

~
yAxA

AA   for all Ayx , . Then  

 

0*0*
)(

~
)(

~
)(

~
)(

~ 
yAxAxAyA

AAorAA . 

 

Thus  

 

   
)(

~
)(

~ 0)(
~

*)(
~

,0)(
~

*)(
~

,
yAxA

AyAzAAzxAzAAzA   

 

Corollary 3.8 Let XAA :
~

be KU-function on A . Then 

 

)0)(
~

*)(
~

)(,(
)(

~
)(

~
xAyA

AAyAxAAyx  . 

 

Proof.  Straightforward. 

 

For a KU-function XAA :
~

, consider the following sets: 

 

   XqAAXqAA qxqx  :
~~

,: . 

 

Proposition 3.9 Let XAA :
~

be KU-function on A . Then 

 

 YqAAXY qYqq   :)( ):inf(  . 

 

Proof. Let ):inf(,)( YqqAxXY  . We have 

 

 

  proof.  thecompletes This.:

))(()0*)(
~

)((0:inf*)(
~

):inf(

YqAx

AxYrrxAYrYqqxAAx

q

rYqq



 


 

 

Corollary 3.10 Let XAA :
~

be KU-function on A , where X  is a bounded 

KU-algebra, then   

 

XS    ,  SqAA qSqq  :):inf(   . 

 

Corollary 3.11 Let XAA :
~

be KU-function on A , assume that for any XY  , there 

exists a infimum of Y such that ( Yqp  , ) , we have Xqp AAA  . 

 

The following example shows that the converse of the corollary 3.10 may not true in 

general. 

 



Journal of New Theory 6 (2015) 43-53                                                                                                               48 

 

 

 

 

Example 3.12. Let    dcbaXletandsetabeyxA ,,,,0,   be a KU-algebra with the 

following Cayley table: 

 

 

 

 

 

 

 

 

 

The function XAA :
~

given by    









ba

yx
A
~

 is a KU-function on A , then 

 

 x y 

     a b 

0

~
A  0 0 

aA
~

 1 0 

bA
~

 0 1 

cA
~

 1 1 

dA
~

 1 0 

 

And its cut subsets are  

 

0A ,  xAa  ,  yAb   ,  yxAc ,   ,  xAd   

 

Note that      Xba AyxAA      , but  ba,inf  does exists in X . 

 

Proposition 3.13 Let XAA :
~

be KU-function on A , then  

 

  AXqAq   

 

Proof. Obviously,   AXqAq  .For every Ax , let XqxA )(
~

.Then qAx  and 

hence  

 

 XqAx q   . Thus  XqAA q    .  

 

Therefore the result is valid. 

 

Proposition 3.14 Let XAA :
~

be KU-function on A , then 

 

  ))(( Xqq AAxAAx    

 

* 0 a b c d 

 0     0 a b c d 

 a 0 0 b b a 

 b 0 a o a d 

 c 0 0 0 0 a 

 d 0 0 b b 0 
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Proof. Note that for any 1)(
~

,  xAAxAx qq  ,   

 

From Proposition 3.7 we get the following  

 

      qxAqqqqq AAxAAAxA
q


1)(

~
inf

1)(
~

 . 

 

This completes the proof. 

 

Let XAA :
~

be KU-function on A  and   be a binary operation on X defined by  

 

)(, qp AAqpXqp  . Then    is clearly an equivalence relation on X. 

 

Let  AxsomeforqxAXqAA  )(
~

)(
~

 and for Xq ,  0*](  qxXxq  . 

 

Proposition 3.15 For a KU-function XAA :
~

on A , we have 

 

)(
~

]()(
~

]((, AAqAApqpXqp    

 

Proof. We have qp AAqp   

                         

 
   

).(
~

]()(
~

](

]()(
~

]()(
~

0*)(
~

0*)(
~

)(

AAqAAp

qxAAxpxAAx

qxApxAAx

 





  

 

This completes the proof. 

 

Example 3.16 Let  9,......,3,2,1;  naX n  and define a binary operation   on X as follows 

)(),( kjiji aaaXaa  , where ),(
),(

jiand
ji

j
k   is the least common divisor of 

jandi  . Then ),;( iaX   is a KU-algebra. Its Cayley table is as follows: 

 

  1a  2a  3a  4a  5a  6a  7a  8a  9a  

1a  1a  2a  3a  4a  5a  6a  7a  8a  9a  

2a  1a  1a  3a  2a  5a  3a  7a  4a  9a  

3a  1a  2a  1a  4a  5a  2a  7a  8a  3a  

4a  1a  1a  3a  1a  5a  3a  7a  2a  9a  

5a  1a  2a  3a  4a  1a  6a  7a  8a  9a  

6a  1a  1a  1a  2a  5a  1a  7a  4a  3a  

7a  1a  2a  3a  4a  5a  6a  1a  8a  9a  

8a  1a  1a  3a   1a  5a  3a  7a  1a  9a  

9a  1a  2a  1a  4a  5a  2a  7a  8a  1a  
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Let   edcbaA ,,,,  and XAA :
~

be a KU-function defined by 

 











21764

~

aaaaa

edcba
A . 

 

Then 

 

 

* a 

4a  

b 

6a
 

c 

7a
 

d 

1a  

e 

2a  

1

~
aA

 
0 0 0 1 0 

2

~
aA

 
0 0 0 1 1 

3

~
aA

 
0 0 0 1 0 

4

~
aA

 
1 0 0 1 1 

5

~
aA

 
0 0 0 1 0 

6

~
aA

 
0 1 0 1 1 

7

~
aA

 
0 0 1 1 0 

8

~
aA

 
1 0 0 1 1 

9

~
aA

 
0 0 0 1 0 

 

 

and cut sets of Ã are as follows:  

 

 dAAAA aaaa 
9531

~~~~
,  edAa ,

~
2
 ,  edaAA aa ,,

~~
84
 ,  edbAa ,,

~
6
 ,  dcAa ,

~
7
 . 

 

 

4. Codes Generates by KU-functions 
 

Let   yxAyx 


;   ; for any Ax , 


x is called equivalence class containing x . 

 

Lemma 4.1 Let XAA :
~

be a KU- function on A . For every Ax , we 

have  


 xxA inf)(
~

, that is  )(
~

xA  the least element of the   to which it belongs. 

 

Proof. Straightforward. 

 

Let  nA ,.....,3,2,1  and X  be a finite KU-algebra. Then every KU-function   

 

XAA :
~

on A  determines a binary block code V  of length n in the following way: To 

every 


x , where Ax , there corresponds a codeword nx xxxV .....21  
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Such that  

 

 1,0)(
~

 jandAiforjiAxx xji . 

 

Let nx xxxV .....21 ,  ny yyyV .....21  be two code words belonging to a binary block-codeV . 

 

Define an order relation  c   on the set of code words belonging to a binary block- code V  

as follows: niforyxVV iiycx ,....,2,1  …… (4.1) 

 

Example 4.2 Let  cbaX ,,,0  be a KU-algebra with the following Cayley table: 

 

     

 

 

 

 

 

 

Let XXA :
~

be a KU-function on X  given by 

 











cba

cba
A

0

0~
. Then 

 

 

 

 

 

 

 

 

 

 

 1001,1110,1100,1000V . See Figure (1) 

 

 
 

* 0 a b c 

0 0 a b c 

a 0 0 a c 

b 0 0 0 c 

c 0 a b 0 

xA
~

 0 a b c 

0

~
A  1 0 0 0 

aA
~

 1 1 0 0 

bA
~

 1 1 1 0 

cA
~

 1 0 0 1 

),( V  ),( X  
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Generally, we have the following theorem. 

 

Theorem 4.3 Every finite KU-algebra X determines a block-code V  such that   

),( X  is isomorphic to ),( cX  . 

 

Proof. Let  niaX i ,......,3,2,1;   be a finite KU-algebra in which 1a  is the least element 

and let XXA :
~

be identify KU-function on X .The decomposition of A
~

 provides a 

family XqAq 
~

 which is the desired code under the order    

 

niforyxVV iiycx ,....,2,1  

 

Let  XqAXf q  ;
~

:  be a function defined by qAqf
~

)(  for all Xq .By lemma 4.1, 

every  class contains exactly one element .So, f is one to one. Let Xyx ,  be such 

that yxeiaxy  .* 1
.   Then yx AA  (by Proposition 3.5), which means that yx AA

~~
 .  

 

Therefore f is an isomorphism.  

 

This completes the proof. 

 

Example 4.4  Consider a KU-algebra  9,......,3,2,1;  naX n which is considered in 

example 3.15. 

 

Let XXA :
~

be a KU-function on X given by 

 











987654321

987654321~

aaaaaaaaa

aaaaaaaaa
A . 

Then  

 

* 
1a  2a  3a  4a  5a  6a  7a  8a  9a  

1

~
aA

 
1 0 0 0 0 0 0 0 0 

2

~
aA

 
1 1 0 0 0 0 0 0 0 

3

~
aA

 
1 0 1 0 0 0 0 0 0 

4

~
aA

 
1 1 0 1 0 0 0 0 0 

5

~
aA

 
1 0 0 0 1 0 0 0 0 

6

~
aA

 
1 1 1 0 0 1 0 0 0 

7

~
aA

 
1 0 0 0 0 0 1 0 0 

8

~
aA

 
1 1 0 1 0 0 0 1 0 

9

~
aA

 
1 0 1 0 0 0 0 0 1 

 

Thus    
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 V= {100000000, 110000000, 101000000, 110100000, 100010000, 11100100,100000100, 

110100010, 101000001}. See Figure (2) 

 

 

                                 ),( X                                         ),( V  
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