
 669 

Yuzuncu	Yil	University	Journal	of	Agricultural	Sciences,	Volume:	34,	Issue:	4,	31.12.2024 

 Yuzuncu Yil University  
Journal of Agricultural Sciences 

(Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi) 
https://dergipark.org.tr/en/pub/yyutbd  

ISSN: 1308-7576 e-ISSN: 1308-7584 
Research Article	

Use of YOLOv5 Trained Model for Robotic Courgette Harvesting and Efficiency Analysis 

Erhan KAHYA*1 

1Tekirdağ Namık Kemal University, Vocational School of Technical Sciences, Department of Electronics and 
Automation, Control and Automation Technology Programme, Tekirdag, Türkiye 

1https://orcid.org/0000-0001-7768-9190 

*Corresponding author e-mail: ekahya@nku.edu.tr 

 

Article Info Abstract: The utilization of machine learning in vegetable harvesting not only 
enhances efficiency and precision but also addresses labor shortages and improves 
overall agricultural productivity. In this study, a machine learning method was 
developed for harvesting courgette fruit. Courgette is a fruit that can take a long 
time to select and harvest in the agricultural area where it is grown. The YOLOv5 
models (nano, small, medium, and large) were used as a deep learning method. 
All metric values of the models were analyzed. The most successful model was 
the one trained with the YOLOv5m algorithm using 20 batches and 160 epochs 
with 640x640 images. The results of the model scores were analyzed as 
"metrics/precision", "metrics/recall", "metrics/mAP_0.5" and "metrics/mAP_0.5: 
0.95". These metrics are key indicators that measure the recognition success of a 
model and reflect the performance of the respective model on the validation 
dataset. The metrics data of the "YOLOv5 medium" model proved to be higher 
compared to the other models. The measured values were YOLOv5m = size: 
640x640, batch: 20, epoch: 160, algorithm: YOLOv5m. It was concluded that 
"YOLOv5m" is the best recognition model that can be used in robotic courgette 
harvesting to separate the courgette from the branch. 
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1. Introduction  

Agriculture is the most important factor required for our survival since the existence of 
humanity. Food production and consumption are of great cultural and economic importance. As the 
world population increases and resources decrease, the need for new and innovative approaches to the 
agricultural sector is increasingly perceived. Although this rapid population growth suppresses food 
production, new technologies are also being developed to increase productivity and use resources more 
sustainably. Deep learning, one of the new technologies, has started to play an important role in the 
agricultural sector and offers pioneering innovations in many areas of the agricultural sector. This 
developed technology increases productivity and allows us to use resources more sustainably. In the 
future, technologies such as deep learning and artificial intelligence will be important tools to meet the 
food needs of the world’s population, while contributing to making agriculture more efficient, profitable, 
and environmentally friendly. Deep learning is a machine learning method developed to solve complex 
problems using artificial neural networks and large data sets. The working principle of this method is 
that it imitates the way the human brain works and analyzes the data using multilayered artificial neural 

https://orcid.org/0000-0001-7768-9190
https://doi.org/10.29133/yyutbd.1517109


YYU J AGR SCI 34 (4): 669-689 
Kahya / Use of YOLOv5 Trained Model for Robotic Courgette Harvesting and Efficiency Analysis 

670 

networks. Deep learning has found its place in many different areas of application. It is especially used 
in areas such as image and sound recognition, natural language processing, automatic driving, medical 
diagnosis, and robotics (Deng et al., 2014). This method uses a deep neural network to understand the 
complexity and structure of the data. These layers interact with each other to learn the characteristics of 
the data and create more complex representations. Deep learning methods perform the learning process 
using large data sets. These datasets usually consist of labeled data and are used for the deep learning 
model to predict accurate results. The model analyzes the data, learns the characteristics, and predicts 
the results. Then, the predictions are compared with the actual results, and the weights are updated to 
correct the errors of the model. Deep learning has several advantages over other machine learning 
methods. These are that it has more layers to better understand the complexity of the data and can 
produce more general and generalizable results using large data sets. Due to these advantages, deep 
learning is rapidly developing in the field of machine learning and is actively used by many researchers 
and industry experts (Deng et al., 2014). This method provides a powerful tool to solve complex 
problems and is expected to become more widespread in the future. Deep learning is a technological 
application with great potential in many areas in the agricultural sector. With the use of this technology, 
we can increase productivity, improve product quality, and optimize resource use. Image processing is 
widely used in autonomous harvesting robots and disease detection. The YOLOv5 model, which is one 
of the deep learning models, has high accuracy rates in object detection and has the potential to be used 
in agricultural applications.Redmon et al. (2017) and Redmon et al. (2018) showed in their studies that 
YOLOv5 models were generally an effective method for object detection and were constantly being 
improved. Bai et al. (2023) and Du et al. (2022) stated that YOLOv5 models could also be used 
successfully in non-agricultural applications. These studies showed that the YOLOv5 models were 
generally an effective method of object detection and could be used in different areas. Zhu et al. (2018) 
examined the usability of deep learning methods in the classification of courgettes. In this study, 
courgette images were classified using the AlexNet deep learning model. Experimental results showed 
that the deep learning method had a higher accuracy rate than other methods. Xiao et al. (2023) examined 
the use of deep-learning models in courgette harvesting. In their study, they focused on object detection 
and recognition techniques for courgette harvesting robots based on digital image processing and 
traditional machine learning techniques. They stated that deep learning models could be used effectively 
to detect and classify courgettes. In their study, Arad et al. (2020) placed an RGB-D camera on an 
industrial arm with six degrees of freedom. The robot they designed was tested and verified in current 
greenhouses. At the end of the trials, an average cycle time of 24 seconds per fruit and a harvest success 
rate of 61% were achieved under optimal crop conditions. Mao et al. (2020) developed a recognition 
algorithm for cucumber harvesting robots. In this study, they performed the identification of cucumbers 
on seedlings using color analysis. As a result of the study, they found the correct recognition rate to be 
more than 90%, the false recognition rate to be lower than 22% and the true error rate to be more than 
4%. Droukas et al. (2023) stated in their research on robotic harvesting systems and enabling 
technologies, especially the deep learning method would provide great convenience in the autonomous 
running of robotic systems.Gholipoor et al. (2019) conducted a prediction study by planting the seeds 
of 692 local genotypes in their study titled Fruit Yield Prediction in Pepper using an artificial neural 
network. In the study, they found that ANN achieved the highest accuracy as a result of the yield 
prediction. Wang et al. (2013) added PCNN to the system to solve the grayscale in determining the 
location of the cucumber. They found the success rate at 82.9%. They stated that successful results could 
be achieved by using deep learning techniques in the detection of plant diseases. Barman et al. (2024) 
investigated the potential of deep transfer learning techniques for the early detection of diseases in rice plants. As a 
result of their study, they found that ResNet and MobileNet models are able to detect diseases with higher accuracy 
than other architectures. Altınbilek et al. (2022) developed a CNN model to implement two important diseases in 
paddy rice (rice blast and blight) using deep learning extractions. The developed model classified the diseases with a 
high accuracy rate of 91.70%. Atalay et al. (2017) showed that plant diseases were detected using deep-
learning algorithms from images of plant leaves. In this study, the classification of plant diseases was 
carried out using deep features obtained from images of plant leaves. Deep learning algorithms can help 
early diagnosis of plant diseases by automatically extracting features from images of plant leaves. The 
classification of agricultural products is also an application that can be achieved with deep learning. 
İmak et al. (2023) extracted features from vine leaf images using deep learning algorithms and classified 
leaf types using these features.In the agricultural sector, the use of deep learning methods to identify the 
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growth stages of sunflower plants has contributed to improved efficiency and productivity in agriculture 
by enabling autonomous irrigation, fertilization, and harvesting systems (Karahanlı et al, 2024). In 
addition, computer vision methods used in precision agriculture are utilized in various areas of the 
agricultural sector and play a significant role in the agricultural digital transformation. These 
technologies are used in various ways to increase agricultural productivity, utilize resources more 
efficiently, and support sustainable agricultural practices. The use of computer vision technologies 
contributes to the development of more efficient, sustainable, and intelligent practices in the agricultural 
sector. Images captured by drones and sensors in agricultural fields can be analyzed using computer 
vision techniques to identify plant species and increase agricultural productivity (Nath, 2024). 
Computerized image processing techniques are also used for early detection and management of plant 
diseases. Image analysis and artificial intelligence algorithms can identify disease symptoms on plant 
leaves and thus prevents the spread of diseases (Wang et al., 2022). Computer vision technologies that 
use cameras integrated into agricultural machinery can detect plant diseases, enabling early intervention 
and increased productivity (Kini et al., 2023). Computer vision systems integrated into agricultural 
robots can automatically recognize fruits and perform harvesting (Rudenko et al., 2023). In addition, the 
use of computational imaging technologies for weed and pest detection in agricultural areas can enable 
more precise and effective application of pesticides (Kaldarova et al., 2023). Bati et al. (2023) 
investigated the performance of the YOLOv5s model for the identification of individual cattle. Their 
research emphasised that the YOLOv5s model has significantly improved the performance of the model 
by increasing its effectiveness in automatic cattle identification systems. 

Computer vision methods are used to detect and control pests in agricultural areas. Image 
analysis enables the identification of harmful organisms and targeted interventions against these 
organisms (Alam et al., 2022). Computer vision technologies are used to monitor and analyze plant 
growth processes. Characteristics such as plant growth rate, number of leaves, and flowering periods 
can be monitored using computer vision methods (Štaka et al., 2023). Computer vision techniques are 
used for estimating the productivity of crops and to manage the timing of harvesting. Image analysis 
and data processing algorithms are significant tools for determining the quantity and quality of crops 
(Xu et al., 2023). Computer vision technologies are also used to determine irrigation needs and optimize 
irrigation systems in agricultural areas. Plant water requirements can be determined for efficient water 
use through image analysis and data processing methods (Chen et al., 2022). Computer vision systems 
integrated into agricultural robots can automatically recognize fruits and perform harvesting (Rudenko 
et al., 2023). In addition, the use of computer vision technologies for weed and pest detection in 
agricultural areas can enable more precise and effective application of pesticides (Kaldarova et al., 
2023). 

The common features of the systems performed are deep learning models. The most important 
and primary input element for robotic harvesting systems to be designed is that the deep learning 
network finds the product to be harvested on the branch or seedling. Deep learning models are effective 
for object detection in agricultural applications. These models possess the capability to be utilized in 
agricultural applications due to their rapid processing capabilities and high accuracy rates. However, 
factors such as size, diversity, hyperparameters, and running parameters of the data set should be 
considered to select the most appropriate model for each application. Also, speed performance should 
be considered in agricultural applications because fast object detection may be more important for some 
applications. 

YOLOv5 is a deep learning framework specifically developed for the tasks of object detection 
and classification. It utilizes a convolutional neural network (CNN) architecture to recognize and 
classify objects present in images. In this model, images are first passed through a series of convolution 
and activation layers, and then the images are scaled to adjust for the different sizes and properties of 
the objects to be detected. The model uses “estimators” of special structures to predict object bounding 
boxes in images. Each estimator is designed to detect objects at a specific scale and location. These 
estimators allow the neural network to detect objects at different scales. Estimators generate probability 
values for each class and then classify objects into different classes. In this way, multiple objects can be 
detected in an image, and accurate class labels and bounding box predictions can be obtained for each 
object. The YOLOv5 model can be implemented in Python using the PyTorch library and can be 
customized through experimentation using data from experiments. Consequently, the objective of this 
study was to assess and analyze the effectiveness of a YOLOv5-trained model in the robotic harvesting 
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of courgettes. 

2. Material and Methods  

2.1. Preparation of the data set 

Images captured in both the greenhouse and the field were employed in the development of the 
courgette dataset for object detection and analysis in this study. Specifically, the research utilized 
photographs taken during the harvesting and growth phases within a producer greenhouse located in 
Naip Village, Tekirdağ Province, Türkiye. Figure 1 shows the sample photographs. A total of 120 
images were used in this study conducted for object detection. These 120 images contain photographs 
of more than one courgette. 

 

   
Figure 1. Examples of photos taken in the producer's greenhouse in Tekirdağ Naip Village (Original). 

2.2 Labeling 

In order for an object recognition model to be trained effectively on a data set, the objects to be 
recognized in this data set must be appropriately labeled. In the context of deep learning, the labeling of 
objects is a fundamental aspect that significantly influences the accuracy and effectiveness of the model. 
This process is crucial for the training, evaluation, and improvement of deep learning models. The 
precision and consistency of the labels have a direct impact on the overall performance of the model. 
High-quality labeling ensures that the training data is reliable so that the model can accurately identify, 
classify, differentiate, and learn from different objects. In addition, labeled data is crucial for assessing 
the accuracy of the model’s predictions. Labeling objects facilitates the identification of key features 
and thus improves the effectiveness and efficiency of the model. In this study, each of the 120 images 
was labeled with bounding boxes around the courgettes and assigned to the object class “courgette”. 
The open-source community offers a wide range of programs, websites, and tools for image labeling. 
Among these, Roboflow is a notable tool that is often used in object recognition projects. Roboflow 
offers a comprehensive platform that provides users with important resources to convert raw images 
into a specially trained computer vision model suitable for various applications. It also simplifies the 
processes of field selection, labeling, and class assignment of images. The website’s graphical user 
interface greatly simplifies the labeling process, as shown in Figure 2. 

 

  

Figure 2. Labeling screen. 
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The basic operations of the program are carried out via the left and right areas of the displayed 
visual interface. The image is labeled using the marking tool, which is activated via the “Bounding Box 
Tool” option in the right-hand menu. Once the bounding box area corresponding to the object is defined, 
the class name for the identified object must be assigned. In this project, we have chosen the class name 
“courgette”. As the training of the associated object recognition model is based on these annotated 
images, it is important that the selection process accurately captures the object. The primary features 
defined in the training class are based on the color and shape attributes observed in the images during 
the labeling phase. In the testing phase, the goal is to identify images that most closely match the defined 
features within the courgette class. After the selection and labeling process, the output format for the 
annotations was selected from the 'Generate' tab in the main menu. For this project, the YOLO option 
was selected, which is suitable for the intended model. Once these steps were completed, the images 
were automatically processed and saved. When you access the text file associated with an image 
containing the labeled object classes, the system retrieves both the class information and the coordinates 
of the annotations. 

2.3 Selection of training models 

In this study, the open-source YOLOv5 family, part of the broader YOLO model series 
developed using the CNN approach, was selected for implementation. The YOLOv5 model is preferred 
due to its considerable advantages over two-level network models such as RCNN, especially in terms 
of accuracy and speed compared to previous versions. As described in the previous sections, the 
YOLOv5 framework includes several sub-models. The YOLOv5s (small), YOLOv5n (nano), 
YOLOv5m (medium), and YOLOv5l (large) variants were used for deep learning training. The images 
from the training set that were used to train the model are shown in Figure 2. 

2.4. Initiation of training 

To start the training process for the courgette recognition model, the directory containing the 
YOLOv5 model was opened on the computer and an executable Python editor was started. The script 
train.py, which is located in the main directory and facilitates the training of YOLOv5, was prepared for 
execution. This Python script can be customized using various parameters. In this project, the parameters 
and configurations specified in the following code were selected specifically for the courgette fruit.  

python train.py --img 640 --batch 20 --epochs 160 --data dataset.yaml --weights yolov5n.pt  
python train.py --img 640 --batch 20 --epochs 160 --data dataset.yaml --weights yolov5s.pt  
python train.py --img 640 --batch 20 --epochs 160 --data dataset.yaml --weights yolov5m.pt  
python train.py --img 640 --batch 20 --epochs 160 --data dataset.yaml --weights yolov5l.pt 
 img: The YOLOv5 model adapts the size of the images for training to a specific pixel size. The 

default setting is 640x640 pixels, which was also selected for this implementation. 
Batch: This parameter defines the number of data point batches that the graphics processing unit 

(GPU) will process simultaneously during model training. 
Epochs: This refers to the total number of times the entire training dataset is presented to the 

neural network during which the weights of the model are adjusted. 
Data: This specifies the path to the “.yaml” file that contains the overall path and class 

information for the dataset. 
Weights: This specifies the location of the weighting file that contains the training coefficients 

to be used in the training process of the model. 
Once these lines of code have been successfully executed, the training process for the model is 

started. The program first checks the YOLOv5 files and searches for updates. Training is then carried 
out over the specified number of epochs. 

3. Results 

To evaluate the performance of the learning results, metrics such as true positive, false positive, 
false negative, and true negative accuracy values were used. These metrics evaluate the effectiveness of 
the classification model and include accuracy, precision, recall, and F1 score. The true positive value 
indicates the correct prediction of the positive class by the model, while the true negative value reflects 
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the accurate prediction of the negative class. Conversely, the false positive value means that the positive 
class was incorrectly predicted, and the false negative value means that the negative class was incorrectly 
predicted. Accuracy is a measure of the success of the model and is calculated based on the rate of 
correct predictions for all samples. Precision indicates the percentage of results that were correctly 
classified, while recall measures the proportion of true positives that were correctly identified. The F1 
score is the harmonic mean of precision and recall. The formulas for these metrics are explained below. 
Accuracy refers to the proportion of correct classifications or predictions concerning the entire data set. While 
an accuracy metric close to 1 can be considered an indicator of success, it is insufficient to rely solely on this 
metric for a comprehensive evaluation. 

 
Accuracy = !"#!$

(!$#&$#!"#&")
         (1) 

 
The error rate is the rate of frequency of incorrect classifications/predictions in the problem.  
 

Error	Rate = &"#&$
(!$#&$#!"#&")

	𝑜𝑟	(1 − Accuracy)	      (2) 
 
Precision is the rate from the positive predictions made in the problem to the positive ones, in 

other words, the correct ones.   
 

Precision = !$
(&$#!$)

            (3) 
 
Recall measures the proportion of actual positive observations that were correctly identified by 

the model. 
 

Recall = !$
(!$#&")

          (4) 
 
F1 score: This metric serves as an alternative to precision and is crucial for the interpretation 

and understanding of the problem at hand. It represents the harmonic mean of the precision and recall 
values. 

 F1	Score = ()$*+,-.-/0	
$*+,-.-/0#2+,344

         (5) 
 
Examination of the results of YoloV5 algorithms according to error matrix metrics 
 
The analysis graphs of how the performance of YOLOv5 models changed over time over the 

F1 score are shown in Figure 3. The F1 score serves as a harmonic mean of the precision and sensitivity 
metrics (recall) for YOLOv5 models. The F1-score of YOLOv5 models shows a general upward trend 
over time. This showed that the precision and sensitivity values of YOLOv5 models generally improved 
and therefore their overall performance increased. However, the fact that the F1 score fluctuated 
throughout the training process indicated that YOLOv5 models experienced performance changes at 
certain stages or on certain subsets of data. However, the overall upward trend indicated that the model 
generally improved. Consequently, all YOLOv5 models showed a decrease in loss values and 
improvement in metrics throughout the training process. However, performance increased as model size 
increased. The YOLOv5 medium model came to the forefront as the most successful model. The 
analyzed YOLOv5 medium model showed generally good performance. The F1 score of the YOLOv5 
medium model was increasing and it was observed that it reached a certain saturation point. 
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Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5n 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5s 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5m 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5l 
 

 

Figure 3. F1 performance score graphs of Yolov5 models. 

Figure 4 shows the analysis graphs representing the precision values obtained in the object 
recognition tasks with YOLOv5 models. Precision is defined as the ratio of true-positive predictions to 
the sum of true-positive and false-positive predictions and serves as a critical metric for evaluating the 
accuracy of the model. When the Precision graph of the YOLOv5 medium model was examined, it was 
seen that the model’s precision score was generally high and showed a slightly increasing trend over 
time. Precision is a metric that evaluates the classification performance of a model. A high precision 
score here indicated that most of the examples that the model classified as positive were correct. 
Fluctuations observed during the training process may indicate that the model misclassified some 
samples. The generally high level of precision and the slight increase trend indicated that the model 
generally made correct positive predictions. 
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Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5n 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5s 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5m 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5l 
 

 
Figure 4. Analysis graphs of precision values obtained in object detection of the YOLOv5 models. 
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Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5n 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5s 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5m 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5l 

 

Figure 5. Analysis graphs of the recall values obtained in the detection of objects in the YOLOv5 
models. 

The analysis graphs representing the recall values of the object recognition of the YOLOv5 
models are shown in Figure 5. The recall value is defined as the ratio between true positive recognition 
and the sum of true positive and false negative recognition and is used to evaluate the performance 
accuracy of the model. When the Recall graph of the YOLOv5 medium model was examined, it was 
seen the Recall score of the model generally increased over time. The recall metric expresses how well 
the model detects true positive examples. The model’s increasing Recall score indicates that it can detect 
positive examples more accurately over time. However, the fluctuations seen during the training process 
indicate that there are changes in the performance of the model on certain stages or subsets of data. It is 
understood that the ability of the YOLOv5m model to better detect positive examples generally 
increased and the model started to make more correct positive detections over time. The overall increase 
in Recall values indicated that the model's inclusion performance improved. 
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Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5n 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5s 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5m 
 

 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: 
YOLOv5l 
 

 

Figure 6. Analysis graphs of precision and recall values obtained in object detection of the YOLOv5 
models. 

Figure 6 shows a graphical analysis of the precision and recall values associated with the 
YOLOv5 models in the context of object recognition. Precision and recall are important metrics that 
evaluate the performance of a model in terms of accuracy and inclusivity. The “Precision-Recall” graph 
for the YOLOv5m model shows that the model generally reaches a favorable balance. This observation 
suggests that the model has both a strong ability to produce accurate positive predictions and an effective 
ability to identify a significant proportion of positive instances. The high values of both metrics imply 
that the overall performance of the YOLOv5m model is commendable. The analysis concludes that the 
majority of objects recognized by the model were correct and that it successfully identified a significant 
number of objects. 

 



YYU J AGR SCI 34 (4): 669-689 
Kahya / Use of YOLOv5 Trained Model for Robotic Courgette Harvesting and Efficiency Analysis 

679 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5n 

 
Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5s 

 
Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5m 

 
Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5l 

 
Figure 7. Graphs of error rates and performance values of YOLOv5 models. 

Figure 7 shows the graphical representation of the error rates and performance metrics for the 
YOLOv5 models. In the context of deep learning, the loss function, which is determined in the last layer 
of a neural network, quantifies the discrepancy between the model's predictions and the actual values. 
The observations indicate that the error rates of the YOLOv5m model generally decrease over time, 
suggesting that the model improves its performance during the training process, resulting in predictions 
that are closer to the actual values. In addition, a decrease in the values of val/box_loss, val/dfl_loss, 
and val/cls_loss was observed, implying that the YOLOv5m model has strong generalization capabilities 
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in the validation dataset. The results show that the YOLOv5m model consistently evolved in a positive 
direction, such that errors decreased as training progressed. Detailed statistics obtained by adding a 
column at the end of each training epoch are shown in Tables 1, 2, 3, and 4 (for clarity, only the first 
three and last three training epochs are included for each model). 

Table 1. Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5n 

Epoch 0 1 2 … 159 
train/box_loss 0.11534 0.11127 0.11388    ... 0.02448 
train/obj_loss 0.04471 0.04842 0.04304   … 0.01839 
train/cls_loss  0 0 0 … 0 
metrics/precision 0.00133 0.001 0.00166   … 0.89887 
metrics/recall 0.22222 0.16667 0.27778   … 0.61111 
metrics/mAP_0.5 0.00113 0.00079 0.00138   … 0.77906 
metrics/mAP_0.5:0.95 0.00023 0.00017 0.00032   … 0.54423 
val/box_loss 0.12682 0.12475 0.12191   … 0.02695 
val/obj_loss 0.02545 0.02413 0.02240   … 0.01312 
val/cls_loss  0 0 0  … 0 
x/lr0 0.0991 0.09729 0.09549   … 0.00022 
x/lr1 0.0001 0.00029 0.00049   … 0.00022 
x/lr2 0.0001 0.00029 0.00049   … 0.00022 

Table 2. Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5s 

Epoch 0   1   2     … 159 
train/box_loss 0.12277 0.12329 0.12112   … 0.021183 
train/obj_loss 0.036358 0.038643 0.035678  … 0.015321 
train/cls_loss 0 0 0  … 0 
metrics/precision 0.0048613 0.003927 0.0026778   … 0.82107 
metrics/recall 0.055556 0.22222 0.44444   … 0.76541 
metrics/mAP_0.5 0.0037031 0.0036202 0.0039904   … 0.83393 
metrics/mAP_0.5:0.95 0.0008226 0.0009349 0.0007792   … 0.63445 
val/box_loss 0.12434 0.12307 0.12045   … 0.026205 
val/obj_loss 0.029808 0.028709 0.027439  … 0.011324 
val/cls_loss 0 0 0  … 0 
x/lr0 0.0991 0.097298 0.095494  … 0.0002238 
x/lr1 0.0001 0.0002981 0.0004938   … 0.0002238 
x/lr2 0.0001 0.0002981 0.0004938   … 0.0002238 

Table 3. Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5m 

Epoch 0 1 2  …  159 
train/box_loss 0.1108 0.1123 0.1082   … 0.0175 
train/obj_loss 0.0343 0.0379 0.0346   … 0.0134 
train/cls_loss 0 0 0  … 0 
metrics/precision 0.0023 0.0026 0.0033   … 0.8813 
metrics/recall 0.3888 0.4444 0.5555   … 0.8888 
metrics/mAP_0.5 0.0021 0.0023 0.0030   … 0.8493 
metrics/mAP_0.5:0.95 0.0004 0.0004 0.0006   … 0.7365 
val/box_loss 0.1020 0.1000 0.0966   … 0.0201 
val/obj_loss 0.0255 0.0250 0.0246   … 0.0089 
val/cls_loss 0 0 0  … 0 
x/lr0 0.0991 0.0972 0.0954   … 0.0002 
x/lr1 0.0001 0.0003 0.0005   … 0.0002 
x/lr2 0.0001 0.0003 0.0005   … 0.0002 

 

 



YYU J AGR SCI 34 (4): 669-689 
Kahya / Use of YOLOv5 Trained Model for Robotic Courgette Harvesting and Efficiency Analysis 

681 

Table 4. Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5l 

Epoch   0  1   2  …  159 
train/box_loss 0.1169 0.11307 0.11292  … 0.015369 
train/obj_loss 0.036053 0.040098 0.036604   … 0.011766 
train/cls_loss 0 0 0              … 0 
metrics/precision 0.004063 0.003 0.0026667  … 0.89094 
metrics/recall 0.44444 0.5 0.44444  … 0.94444 
metrics/mAP_0.5 0.039699 0.039337 0.036866   … 0.9528 
metrics/mAP_0.5:0.95 0.009723 0.010574 0.0087236  … 0.85202 
val/box_loss 0.10852 0.10577 0.10071  … 0.015674 
val/obj_loss 0.024017 0.023684 0.023542   … 0.0068746 
val/cls_loss 0 0 0  … 0 
x/lr0 0.0991 0.097298 0.095494   … 0.0002238 
x/lr1 0.0001 0.0002981 0.0004938  … 0.0002238 
x/lr2 0.0001 0.0002981 0.0004938  … 0.0002238 

 
The explanations of the parameters and metrics in the columns in the statistics table are as 

follows: 
Train/box_loss: It is the loss in the box estimation in the training data of the model. Box 

estimation refers to the ability to predict the positions of objects and their information (such as x and y 
coordinates, width, and height of area) in an object detection model. 

Train/obj_loss: It is the loss of object recognition in the model training data. Object recognition 
refers to the ability of the corresponding object detection model to correctly classify objects in an image. 

Train/cls_loss: It is the loss of classification in the model training data. Classification refers to 
the ability of the object detection model to accurately predict the classes of objects in images. For single-
class models, this loss is expected to be 0. 

Metrics/precision: It is the accuracy rate that expresses the rate at which the model correctly 
predicts the prediction of objects in an image. 

Metrics/recall: It is the rate that expresses the success of the model in detecting all objects in an 
image. 

Metrics/mAP_0.5: It is the mean precision of the model. Evaluate the performance of the model 
by comparing the correct and incorrect predictions. This metric has a threshold value of 0,5, which 
indicates that the accuracy of the model predictions should be greater than half. 

Metrics/mAP_0.5:0.95: It is the mean average precision of the model calculated according to a 
certain accuracy limit (between 0.5 and 0) 

Val/box_loss: It is the box prediction loss in the model validation data. 
Val/obj_loss: It is the loss of object recognition in the model validation data. 
Val_cls_loss: It is the classification loss in the model validation data. This loss is expected to be 

0 in models that are validated over a single class. 
X/lr0: It is the first learning rate as the optimization parameter of the model. The learning rate 

determines how drastically the model's weight values updated during training will change. A low 
learning rate causes the model to learn more slowly, whereas a high learning rate causes the model to 
learn faster. 

X/lr1 and x/lr2: These parameters are the model optimization parameters, similar to the x / lr0 
parameter, and are used to update the weight values during training. 

The primary differences among these models are rooted in their size and complexity, which in 
turn influence their speed and overall performance. Below is a comparative analysis based on the 
training outcomes. 

3.1. Yolov5 NANO 

The mean precision (mAP@0.5) was determined as 0.77906 in the last epoch, indicating the 
accuracy of the model in terms of object detection. The precision and recall were 0.89887 and 0.61111, 
respectively, indicating a relatively high number of true positives but potentially more false negatives. 
Losses (train/box_loss, train/object_loss, val/box_loss, val/object_loss) decreased significantly 
throughout the epochs, indicating that the model was learning and improving. In the YOLOv5n model, 
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it is observed that the values of lr0, lr1, and lr2 provide a higher learning rate at the beginning of the 
learning process, while the learning rate decreases as the epochs progress. Especially, low learning rate 
in the last epochs will enable the model to produce more accurate results without overfitting. 

3.2. Yolov5 SMALL 

The mean precision value (mAP @ 0.5) was 0.83393 in the last epoch. It performed better than 
the Nano model. The precision of the last epoch and the recall of the last epoch were 0.82107 and 
0.76541, respectively. This indicated a balanced performance between true positives and false negatives. 
The model showed a decrease in loss values over time. This indicated that the learning phase of the 
model improved. In the YOLOv5s model, the decrease in the values of lr0, lr1, and lr2 as the epochs 
progress, while providing fast learning at the beginning, allows the model to make more fine and careful 
adjustments later. It plays an important role in improving the overall accuracy and performance of the 
model. 

3.3. Yolov5 MEDIUM 

The mean precision (mAP @ 0,5) was 0.84938 in the last epoch. This indicated that it performed 
better than both the Nano and Small models. The precision and recall of the last epoch were 0,88139 
and 0.88889, respectively. The model showed superior performance in identifying true positives and 
minimizing false positives and negatives. According to these values, it is understood that the loss values 
will decrease more significantly over time and there will be efficient learning and possibly better 
generalization. It is seen that the YOLOv5m model is more successful than lr0, lr1, and lr2, especially 
in the identification of complex and large objects. It is understood that the low learning rate in the last 
epochs contributes to the high accuracy of the model. 

3.4. Yolov5 LARGE 

The mean precision (mAP@0,5) was 0.015674 in the last epoch. This value was lower than the 
other three values of the model epoch. The last epoch precision and recall were 0.89904 and 0.94444 
respectively. Given the performance metrics of the other models, it was expected that this model 
(mAP@0.5) would have higher precision and higher recall. It is acknowledged that the training process 
may be slower and require more computational resources. In the YOLOv5s model, a decrease in the 
values of lr0, lr1, and lr2 was observed over the epochs. This initial decrease in values facilitates fast 
learning and is crucial for improving the overall accuracy and performance of the model. When 
evaluating the four models, the YOLOv5m model was identified as the model with the highest 
performance in terms of mAP @ 0.5, lr0, lr1, and lr2 as well as precision and recall among the models 
with complete datasets. However, the balance between speed and accuracy must be considered when 
choosing the right model for a particular task. 

3.5. Comparison of model algorithms 

In the four trained models; the YOLOv5n algorithm, the YOLOv5s algorithm, the YOLOv5m, 
and the YOLOv5l algorithm are used. The comparison of these algorithms is indicated in Table 5. The 
metric data of YOLOv5m and the differences of other models from these data are shown in Table 6. 

Table 5. Comparison of algorithm values 

 
 
 

Model Size 
(pixels) 

 mAPval 

  50-95 
mAPval 

50 

Speed 
CPU b1 

(ms) 

Speed 
V100 b1 

(ms) 

Speed 
V100 b32 

(ms) 

Params 
(M) 

FLOPs 
@640 (B) 

YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5 
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5 
YOLOv5m 640 45.4 64.1 24 8.2 1.7 21.2 49.0 
YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1 
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Table 6. The metric data of YOLOv5m and the difference of other models from these data 

 
While the accuracy of correct predictions and the average performance of the models in object 

recognition are crucial for evaluating their effectiveness, these metrics alone are not sufficient. The 
number of missed predictions in both the training and validation datasets are also important factors in 
evaluating model performance. The parameters train/cls_loss and val/cls_loss, which represent the 
classification losses during training and validation, are particularly important for models that need to 
recognize a large number of object classes. The analysis of the values of the four parameter columns 
(train/box_loss, train/obj_loss, val/box_loss, val/obj_loss) in the table with the loss values of the models 
shows that "YOLOv5m" has the lowest loss values in the training dataset. It is also evident that 
"YOLOv5m" demonstrates the lowest loss values for both box prediction and object recognition within 
the validation dataset. A comparison of the training data of the different models is shown in Table 7. 

Table 7. Comparative analysis of the models based on training data 

Model train/box_loss Difference 
(YOLOv5m) Model train/obj_loss Difference 

(YOLOv5m) 
YOLOv5m 0.17526  YOLOv5m 0.013463  
YOLOv5n 0.024484 0.006958 YOLOv5n 0.018398 -0.004935 
YOLOv5s 0.021183 -0.003923 YOLOv5s 0.015321 -0.001858 
YOLOv5l 0.15369 0.002157 YOLOv5l 0.011766 0.001697 

Model val/box_loss Difference  
(YOLOv5m) Model val/obj_loss Difference  

(YOLOv5m) 
YOLOv5m 0.020153  YOLOv5m 0.0089622  
YOLOv5n 0.026951 -0.006798 YOLOv5n 0.013128 -0.0041658 
YOLOv5s 0.026205 -0.006052 YOLOv5s 0.011324 -0.0023618 
YOLOv5l 0.015674 0.004479 YOLOv5l 0.0068746  0.0020876 

 
In conclusion, the optimization parameters of the models (x/lr0-1-2) were analyzed. All models 

exhibit identical values for these parameters. The specific parameter values are presented in Table 8. 
The YOLOv5m model, which had the highest number of parameters among the four models, showed 
the best performance compared to the other models. Starting with high accuracy, recall, and mAP values, 
YOLOv5m further improved them during training (Table 8). Reduced losses will enable the YOLOv5m 
model to capture more complex patterns and detect objects with greater accuracy. The YOLOv5m model 
gives the best result according to higher validation and positive sample capture rate. 

Table 8. Optimization parameters of the models 

Model x/lr0-1-2 Difference (YOLOv5m) 
YOLOv5m 0.00022375  
YOLOv5n 0.00022375 0 
YOLOv5s 0.00022375 0 
YOLOv5l 0.00022375 0 

Model  metrics/precision Difference 
(Model 3) Model metrics/ 

recall 
Difference 
(Model 3) 

YOLOv5m 0.88139  YOLOv5m 0.88889  
YOLOv5n 0.89887 -0.01748 YOLOv5n 0.61111 -0.522221 
YOLOv5s 0.82107  0.06032 YOLOv5s 0.76741  0.812349 
YOLOv5l 0.89094 -0.00955 YOLOv5l 0.94444  -0.05555 

Model metrics/mAP_0.5 Difference 
(Model 3) Model metrics/ 

mAP_0.5:0.95 
Difference 
(Model 3) 

YOLOv5m 0.84938  YOLOv5m 0.7365  
YOLOv5n 0.77906  0.07032 YOLOv5n 0.54423  0.19227 
YOLOv5s 0.83393  0.01545 YOLOv5s 0.63445  0.01205 
YOLOv5l           0.9528 -0.10342 YOLOv5l 0.85202 -0.11552 
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3.6. Training result 

Screenshots of the training results are given separately for each model in Figures 8, 9, 10, and 
11. 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5n 

   
Figure 8. Validation Batch ‘prediction marks’ resulting from model training (YOLOv5n) (Original). 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5s 

  
Figure 9. Validation Batch ‘prediction ındicators’ derived from the training of the models (YOLOv5s) 

(Original). 

Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5m 

  
Figure 10. Validation Batch ‘prediction marks’ resulting from model training (YOLOv5m) (Original). 
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Size: 640x640, Batch: 20, Epoch: 160, Algorithm: YOLOv5l 

  
 

Figure 11. Validation Batch ‘prediction indicators’ derived from the training of the models 
(YOLOv5l) (Original). 

4. Discussion 

The integration of deep learning algorithms into agricultural harvesting systems is expected to 
bring significant benefits to agricultural productivity. By using these algorithms, greater accuracy and 
efficiency can be achieved in the detection and harvesting of agricultural products. In addition, the use 
of these technologies has the potential to improve occupational health and safety for agricultural 
workers. The effectiveness of these algorithms in harvesting systems is also underpinned by other 
studies in the field of deep learning. For example, Fountas et al. (2020) demonstrated the effectiveness 
of deep learning algorithms in their research focused on the use of agricultural robots. These studies 
demonstrated that the proficiency of agricultural robots in detecting and harvesting crops was enhanced 
through the implementation of deep learning algorithms. 

The YOLOv5 model was successfully used in other studies. Soeb et al. (2023) used the YOLOv7 
deep learning model to detect leaf diseases of green tea. The detection and identification results for the 
YOLOv7 approach were validated with significant statistical metrics such as detection precision, 
precision, recall, mAP value, and F1 score, resulting in 97.3%, 96.7%, 96.4%, 98.2%, and 0.965, 
respectively. Hong et al. (2023) used the YOLOv5 model to allow harvesting robots to recognize fruits 
under different conditions for asparagus. With this study, they showed that the YOLOv5 model was 
effective in fruit recognition and harvesting applications. Roshanianfard et al. (2022) evaluated the 
performance of a robotic end effector for courgette harvesting. This study assessed the end-effector 
parameters, including precision, repeatability, damage rate, and the area suitable for harvesting.Such 
performance evaluations are important for the development and optimization of robotic harvesting 
systems. Darwin et al. (2021) stated that plant diseases can affect agricultural yields and deep learning 
classifier models can be used in disease diagnosis. Elavarasan and Vincent (2020) introduced a deep 
reinforcement learning model aimed at predicting crop yields. In this model, they used previous climate 
data, soil information, and crop management practices as input characteristics. Shin et al. (2020) 
proposed a deep reinforcement learning model for crop yield prediction in sustainable agricultural 
practices. The model uses a combination of deep learning and reinforcement learning techniques to 
analyze various environmental factors and accurately predict crop yield. The proposed model was 
concluded to perform better than traditional methods and provided valuable information to optimize 
agricultural practices. This study aimed to identify the most effective detection model suitable for 
harvesting courgette fruit. Rivera Zarate (2023) focused on the use of LiDAR technology in agriculture 
and metric estimations. This technology is used to make predictions on topics such as plant health, tree 
height, tree inventory, LAI estimation, soil properties, and crop yield. Rai et al. (2023) created an open-
source dataset in multiple formats for real-time weed detection in agriculture. The dataset consists of 
3,975 images of five different weed species commonly found in North Dakota. The dataset is intended 
to have more efficient and sustainable weed detection and herbicide application in agricultural practices. 
Luo et al. (2023) have investigated the application of computer vision technologies in agriculture in 
urban and controlled environment agriculture. They also emphasized that artificial intelligence 
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technologies, deep learning models such as ResNet and MobileNet, and object detection models such as 
Faster R-CNN, Mask R-CNN, and YOLO can have great potential in the management of crops, animals, 
and plants. (Zualkernan et al., 2023) stated that traditional machine learning techniques, CNNs, and 
transformers can be used for simple classification problems, and emphasized that CNNs are the best 
choice. They achieved 82.10% accuracy in sugar cane plant counting Lu et al. (2023) integrated 
YOLOv8 technology into the field of phytology. They aimed to improve the detection of small objects 
with simple and effective optimizations. They achieved distinguishing small objects in UAV images 
using their YOLOv8-UAV approach. Palacios et al. (2023) developed a new algorithm using computer 
vision and machine learning for early yield prediction for different grape varieties. As a result of their 
study, they were able to develop an automatic method for grape yield prediction using computer vision 
and machine learning and obtained successful results in different grape varieties. Sapkota et al. (2023) 
proposed an image processing algorithm for corn row identification and classified the remaining 
vegetation as weeds after identifying the corn rows. Using their image processing algorithm, they created 
a weed map and sprayed accordingly. As a result, they achieved a 26.2% savings in pesticides compared 
to existing methods. Ubaid and Javaid (2024) performed feature extraction using VGG-16 and 
Inception-v3 modules using a model trained on a dataset obtained from a sugarcane field. Jaramillo-
Hernández et al. (2024) have addressed the use of machine vision techniques in low-cost devices and 
how these techniques can be used to increase productivity in precision agriculture (Jaramillo-Hernández 
et al., 2024). The researchers set out to design, implement, and execute a methodology that integrates 
computer vision and artificial intelligence and incorporates object detection and integrated depth 
estimation methods. In this research, the Depth Object Detector (DOD) was trained with the Microsoft 
Common Objects in Context dataset and the MinneApple dataset. Similarly, Punithavathi et al. (2023) 
aimed to develop a model for crop and weed identification in precision agriculture using methods based 
on computer vision and deep learning. Their research led to the development of a model for weed 
detection and classification using multiscale Faster R-CNN for object detection and optimal extreme 
learning machine (ELM) processes for weed classification (Punithavathi et al., 2023).The current study 
seeks to identify the most effective detection model suitable for courgette harvesting.The YOLOv5 
model was successfully used in other studies. It also showed the potential of using robotic systems in 
courgette harvesting. A range of metrics was utilized to evaluate the performance of robotic systems 
employed in courgette harvesting. These performance assessments are essential for the enhancement 
and optimization of robotic harvesting technologies. 

5. Conclusions 

The accuracy of object recognition in training and validation images was evaluated using a 
dataset created with YOLOv5 models. An examination of the metric data and accuracy prediction rates, 
which indicate the model's success in object recognition, validated the effectiveness of the training 
outcomes. By examining the discrepancies between the training and validation datasets concerning loss 
metrics, along with assessing the loss values in the validation set for a more comprehensive 
understanding, it was determined that the model designated as ‘YOLOv5m’ exhibited the following 
parameters: 

python train.py --img 640 --batch 20 --epochs 160 --data dataset.yaml --weights yolov5m.pt. 
A deeper analysis of the metric data and prediction accuracy revealed that the training outcomes 

for the “YOLOv5 medium” model surpassed those of the other models. The enhanced accuracy of the 
YOLOv5m model, in comparison to its counterparts, played a crucial role in its overall effectiveness. In 
addition, the YOLOv5m model showed a balanced performance and achieved commendable values for 
mean average precision (mAP) and recall. The initial learning rates lr0, lr1, and lr2 were the same for 
all models and were gradually reduced over the epochs. This approach allowed the models to learn 
quickly in the initial phase and then refine their learning through more accurate adjustments. Based on 
the analysis of these values, the YOLOv5m model was found to be the most effective choice for robotic 
systems, especially when identifying complex and large objects. 
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