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Abstract − The purpose of this article is to derive some functions which map the zeros of Fibonacci
polynomials to the zeros of Lucas polynomials. Also we find some equations which are satisfied by
F
′
n (x) and so L

′′
n (x). To obtain these equations, formulizations which are made up of hyperbolic

functions for Fibonacci and Lucas polynomials are used.
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1 Introduction

As it is well known, studying zeros of polynomials plays an increasingly important
role in Mathematical research. Fibonacci polynomials Fn (x) are defined recursively
by

Fn (x) = xFn−1 (x) + Fn−2 (x) , (1)

by initial conditions F1 (x) = 1, F2 (x) = x. Similarly, Lucas polynomials Ln (x) are
defined by

Ln (x) = xLn−1 (x) + Ln−2 (x) , (2)

with the initial values L1 (x) = x and L2 (x) = x2 + 2 (see [7]). In [6], V. E. Hoggat
and M. Bicknell found the zeros of these polynomials using hyperbolic trigonometric
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functions defined by sinh z = ez−e−z

2
and cosh z = ez+e−z

2
. They found the general

form of Fibonacci polynomials as follows:

F2n (x) =
sinh 2nz

cosh z
(3)

and

F2n+1 (x) =
cosh (2n + 1) z

cosh z
, (4)

where x = 2 sinh z (see [6] for more details).
Furthermore, in [4], M. X. He, P. E. Ricci and D. Simon determined the location

and distribution of the zeros of the Fibonacci polynomials.
There are several papers on the derivatives of the Fibonacci and Lucas polyno-

mials (see [1], [2], [8], [10] and [11]). For any fixed n, in [10], Jun Wang proved the
following equation

L
(t)

n (x) = nF (t−1)
n (x) , n ≥ 1. (5)

For the first order derivatives we have L
′
n (x) = nFn (x) . Thus we have the zeros of

L
′
2n (x) and L

′
2n+1 (x) as follows:

±2i sin
kπ

2n
, k = 0, 1, 2, ..., n− 1 (6)

and

±2i sin

(
2k + 1

2n + 1

)
π

2
, k = 1, 2, ..., n, (7)

respectively in [6]. It will be very nice to obtain the formulization of the zeros of

L
(t)

n (x) for t ≥ 2. Then using (5) same formulization would also be adapted to

the zeros of F
(t)

n (x) for t > 1. But the successively application of chain rule makes
computations difficult as t increases. The computations get difficult even for second
order derivative. Our aim is to obtain the zeros of L

(t)

n (x) as iterates of some function

which map the zeros of Ln (x) to the zeros of L
(t)

n (x). In this paper we get some
results for t = 1. Also we prove some equations which are satisfied by F

′
n (x) and so

L
′′
n (x).

2 Mapping from the Modulus of the Zeros of Ln (x)

to the Modulus of the Zeros of L
′
n (x)

First we give some functions which map the modulus of the zeros of L2n (x) and
L2n+1 (x) to the modulus of the zeros of L

′
2n (x) and L

′
2n+1 (x), respectively. It is

known that the zeros of Fibonacci and Lucas polynomials are pure imaginary and
come in complex conjugates. Hence we consider their magnitudes.
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For the polynomials L
′
2n (x), we denote the modulus of the zeros of these poly-

nomials by xn (x1 = 0 < x2 < ... < xn) and the modulus of the zeros of L2n (x) by
yn (y1 < y2 < ... < yn).

We know that the number of positive zeros of L
′
2n (x) is n including 0 and the

number of positive zeros of L2n (x) is n. In the following theorem, we give a function
which map the modulus of the zeros of L2n (x) to the modulus of the zeros of L

′
2n (x) in

ascending order.

Figure 1: The graph of the function αn(x) from n = 1 to 5.

Theorem 2.1. The modulus of the zeros of L2n (x) are mapped to the modulus of
the zeros of L

′
2n (x) by the following function

αn(x) = 2 sin(arcsin
x

2
− π

4n
+ kπ),

where k is an integer.

Proof. From [6], we know that the magnitudes of zeros of L
′
2n (x) and L2n (x) are

x = 2 sin
kπ

2n
, k = 0, 1, ...., n− 1
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and

y = 2 sin

(
2k + 1

2n

)
π

2
, k = 0, 1, ...., n− 1,

respectively. For θ = kπ
2n

, if we write x = 2 sin θ and y = 2 sin
(
θ + π

4n

)
, the equality

of the values of θ gives us

arcsin(
y

2
)− π

4n
+ πk1 = arcsin(

x

2
) + πk2,

where k1and k2 are integers. Then, taking k = k1 − k2, the desired function can be
found easily.

The results have been controlled numerically for L2 (x) through L10 (x) (see Fig-
ure 1).

Now we focus on the magnitudes of the zeros of odd indexed Lucas polynomials.
We denote them by xn (x1 = 0 < x2 < ... < xn). The zeros of L

′
2n+1 (x) are denoted

by yn (y1 < y2 < ... < yn−1 < yn). As well as being well known that the number of
the modulus of the zeros of L2n+1 (x) is n, the number of the modulus of the zeros
of L

′
2n+1 (x) is n (see [3]).

Theorem 2.2. The modulus of the zeros of L2n+1 (x) are mapped to the modulus
of the zeros of L

′
2n+1 (x), arranging from small to large, by the following function

βn(x) = 2 sin(arcsin
x

2
+

π

2(2n + 1)
+ πk),

where k is an integer.

Proof. Since we know that the magnitudes of zeros of L2n+1 (x) and L
′
2n+1 (x) are

x = 2 sin
kπ

2n + 1
, k = 0, 1, ...., n− 1

and

y = 2 sin

(
2k + 1

2n + 1

)
π

2
, k = 0, 1, ...., n− 1,

respectively. If we take θ = kπ
2n+1

then we find

arcsin(
x

2
) +

π

2(2n + 1)
+ πk1 = arcsin(

y

2
) + πk2,

where k1and k2 are integers. Then, taking k = k1 − k2, the desired function can be
found easily.

Figure 2 shows the graphics of the functions βn(x) for 1 ≤ n ≤ 5.
By (5), we know that the zeros of Fn (x) are identical with the zeros of L

′
n (x).

The functions βn(x) and αn(x) map the zeros of Ln (x) to the zeros of both Fn (x)
and L

′
n (x).
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Figure 2: The graph of the function βn(x) from n = 1 to 5.

If we use the following well-known equations cosh z = cos(iz) and sinh z =
−i sin(iz) we can rewrite the equations (3) and (4) as follows:

F2n (x) = −i
sin(2niz)

cos(iz)
(8)

and

F2n+1 (x) =
cos [i (2n + 1) z]

cos(iz)
, (9)

where x = 2 sinh z.
Then we can give the following theorems.

Theorem 2.3. The zeros of F
′
2n (x), and so the zeros of L

′′
2n (x), satisfy the following

equation
2n = − tan(2niz) tan (iz) , (10)

where x = 2 sinh z.

Proof. Using the equation (8), from the equation F ′
2n (x) = 0, we can obtain

2n (cos(2niz)) (cos iz) = − (sin(2niz)) (sin iz) , (11)
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where cos(iz) 6= 0 and x = 2 sinh z. Then by rearranging the equation (11) we find
the desired result (10).

Example 2.4. Let us find the zeros of the polynomial F
′
6 (x) = 5x4 + 12x2 + 3. By

(10), we obtain
6 = − tan(6iz) tan(iz).

Using half angle formulas we have

3 = −tan(3iz) tan(iz)

1− tan2(3iz)
. (12)

The solutions of the equation (12), the zeros of F
′
6 (x) and L

′′
6 (x), can be found

easily using the equation x = 2 sinh z. So we have the roots

−i

√
1

5
(6−

√
21), i

√
1

5
(6−

√
21),−i

√
1

5
(6 +

√
21),−i

√
1

5
(6 +

√
21).

Theorem 2.5. The zeros of F
′
2n+1 (x) , and so the zeros of L

′′
2n+1 (x), satisfy the

following equation
2n + 1 = tan (iz) cot(i (2n + 1) z), (13)

where x = 2 sinh z.

Proof. The proof follows from (9).
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