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Abstract — In this paper, we introduce the concept of an (L, M)-fuzzy topogenous space, where
L, M are strictly two sided commutative quantales lattices. Basic properties of (L, M )-fuzzy topoge-
nous spaces are studied, (L, M )-fuzzy topological spaces, (L, M )-fuzzy uniform spaces and (L, M )-
fuzzy proximity space are characterized in the framework of (L, M)-fuzzy topogenous spaces. We
study some relationships between previous spaces and give their examples. The notion of their

continuity property is investigated.
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1 Introduction

The concepts of topogenous order and topogenous space were first introduced by
Csaszer [8] in 1963. These concepts allow to develop a unified approach to the
three spaces: topologies, proximities and uniformities. This enabled him to evolve a
theory including the foundations of the three classical theories of topological spaces,
uniform spaces and proximity spaces.

In the case of the fuzzy structures there are at least two notions of fuzzy topoge-
nous structures, the first notion worked out in (Katsaras 1983 [24], 1985 [26], 1988
[27]) present a unified approach to the theories of Chang in 1968 [6] fuzzy topological
spaces, Hutton fuzzy uniform spaces (Hutton, 1977 [19]), Katsaras fuzzy proximity
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spaces (Katsaras 1979 [21], 1985 [26], 1990 [28]) and Artico fuzzy proximity (Artico
and Moresco 1984 [2]).

The second notion worked out in Katsaras (1990 [28],1991 [29]) agree very well
with Lowen fuzzy topological spaces (Lowen 1976 [35]) and Lowen-Hohle fuzzy uni-
form spaces (Lowen 1981 [36]). Cimoka [7] introduced L-fuzzy topogenous struc-
tures in complete lattices. El-Dardery investigated L-fuzzy topogenous order which
induced L-fuzzy topology [9].

Based on the idea of (L, M )-fuzzy topological space introduced by Kubiak [33, 34]
(the motivation for this concept comes from an idea of Hohle [15] which was called
fuzzifying topology in [46]).

In this paper, we introduce the concept of an (L, M)-fuzzy topogenous space,
where L, M are strictly two sided commutative quantales lattices. Basic proper-
ties of (L, M)-fuzzy topogenous spaces are studied, (L, M)-fuzzy topological spaces,
(L, M )-fuzzy uniform space and (L, M)-fuzzy proximity space are characterized in
the framework of (L, M)-fuzzy topogenous spaces. We give some important propo-
sitions that link the previous spaces to each other. We study some relationships
between previous spaces and give their examples. The notion of their continuity
property is investigated.

2 Preliminary

In this paper, Let X be a non-empty set and let L = (L, <,V, A, 0,1) be a completely
distributive lattice with the least element 07 and the greatest element 1; in L.

Definition 2.1. [14, 16, 41] A complete lattice (L, <,®) is called a strictly two-
sided commutative quantale (stsc-quantale, for short) iff it satisfies the following
properties.

(L1) (L,®) is a commutative semigroup,

(L2) x =2 ® 1, for each x € L and 1 is the universal upper bound,

(L3) ® is distributive over arbitrary joins, i.e. (\/,z;) ©y = V. (x;: © y).

There exists a further binary operation — (called the implication operator or
residuated) satisfying the following condition

x—>y:\/{zEL|x®z§y}.
Then it satisfies Galois correspondence; i.e, (r®@z) <y iff z < (x — y).

Remark 2.2. Every completely distributive lattice (L, <, A, V,* ) with an order re-
versing involution * is a stsc-quantale (L, <, ®, @®,* ) with an order reversing involu-
tion * where ® = A and @ = V.

In this paper, we always assume that (L, <,®,®,*) (resp. (M,<,0,®,")) is a
stsc-quantale with an order reversing involution * which is defined by

r@y=(x"0y), 2v=2—-0
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unless otherwise specified.

Lemma 2.3. [16, 17, 42] For each x,y, z, z;, y;,w € L, we have the following prop-
erties.

()1l—-2=2,00z=0andz—0==x

2)Ify <z thenzOy < zOz,2dy <zdz,x my<z—zandz—x<y—=z
(B)nySxAyS:chSx@y,

4) (Niva) = Viu, Vaw)" = N\ vi,s

(5) z© (Aiwi) < /\Z(I ® ¥i),

©6) z® (N;iyi) = Niz®y), v (V,u1) = V,(x D i),

(M) = (ANiwi) = Niz — wi),

&) (Vizi) =y = Ni(zi — v),

9) = (V) > V(@ — i),

(10) (A;zi) =y > Vy(zi — ),

(1) (z0y) mz=0—(y—2)=y— (z—2),
(12)z0(r—y)<yandr —y<(y —2) = (z — 2),
(B)zo(@ay) <y ,zoy=(—y) andrdy=2a"—y,
(4) (z—y)ok—w) < (z02) = (yow),

() z—y<(r0z) = (yo©z)and (z —y) Oy —2z) <z — 2z

(16) (z = 9) O (z mw) < (2@ 2) = (y Sw).

Definition 2.4. [10, 11] For a given set X, define a binary mapping S : LX x LX — L
by
SO = N\ (M) = ple) ¥ A e LY,
zeX
then S is an L-partial order on L*. For A\, u € L*, S(\, p) can be interpreted as
the degree to which A\ is a subset of u. It is called the subsethood degree or the
fuzzy inclusion order.

Lemma 2.5. [10, 11] Let S be the fuzzy inclusion order, then V \, i, p,v € L and
a € L the following statements hold

(D p<pesSup) =1,

(2) S(A,p) © (p, ) < S(A, ),

B)yu<p= S()\ w) < S\, p) and S(u,\) > S(p,\) Ve L¥,

(4) S\ ) ©S(p,v) < SA©p,nov), and S, 1) AS(p,v) < S(AAp, pAv).

Definition 2.6. [34] A map 7 : L* — M is called an (L, M)-fuzzy topology on X
if it satisfies the following conditions.
(O1) T(0x)=T(1x) = 1u,
(02) T(M O X)) 2T (M) OT(N) VA, A € LK,

03) TV, ) > NTM) YN eLl™X iel

The pair (X,7) is called an (L, M)-fuzzy topological space. Let (X,7;) and
(Y, T3) be L-fuzzy topological spaces and f: X — Y be a map. Then f is called
LF-continuous if

L) <T(f~(\) YAe L.
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Definition 2.7. [7] A map F : LX — M is called an (L, M)-fuzzy cotopology on X
if it satisfies the following conditions.

(F1) F(0x) = F(1x) = 1,

(F2) F(M @ A2) > F(M) ©F(N2), VA, e € LK,

The pair (X, F) is called an (L, M)-fuzzy cotopological space. Let (X, F;) and
(Y, F3) be (L, M)-fuzzy topological spaces and f : X — Y be a map. Then f is
called LF-continuous if

Fo(N) < F(f(N), YrelLY.

3 Perfect (L, M)-fuzzy topogenous structures and
(L, M)-fuzzy topologies

Definition 3.1. A mapping ¢ : LY x LY — L is called an (L, M)-fuzzy semi-
topogenous order on X if it satisfies the following axioms.

(ST1) £(1x,1x) = &(0x,0x) = 1,

(ST2) £(A, 1) < S(A, ),

(ST3) If Ay <A, p <y, then &\ ) < &A1, ).

Remark 3.2. If £ is an (L, M)-fuzzy semi-topogenous order on X. Then

(1) If &N\, i) = 1y, then A < p,

2) €(1x.A) £ A A@) and € 0x) < A, V(@)

(3) Define a mapping £ : LY x LX — M as &% (\, u) = &(u*, \*). Then £° is an
(L, M)-fuzzy semi-topogenous order on X.

Definition 3.3. An (L, M)-fuzzy semi-topogenous order £ on X is called symmetric
if
(5) ¢=¢"

Definition 3.4. For every Ay, Ao, pi1, i € L, an (L, M)-fuzzy semi-topogenous
order ¢ is called
(1) (L, M)-fuzzy topogenous if

(T) €M © A2, 11 © pa) > E(A1, 1) © E(Ag, p2),
(2) (L, M)-fuzzy co-topogenous if
(CT) €A1 @ g, pr @ pi2) 2 E(1, 1) © E(Ag, pi2),

(3) (L, M)-fuzzy bitopogenous if € are (L, M )-fuzzy topogenous and (L, M )-fuzzy
cotopogenous.
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Remark 3.5. Let (L = M,® = A, & = V) be a complete lattice, then (L, M )-fuzzy
bitopogenous order is an L-fuzzy topogenous in a Cimoka sense from:

(T) 6()\ A A?Nl A ,u2) 2 5()\7 :ul) A 6()\27/’@)7
(CT) &MV Ao, V) = E(A, 1) AE(A, ).

Definition 3.6. An (L, M)-fuzzy topogenous (resp. cotopogenous) order £ on X is
said to be L-fuzzy topogenous (resp. cotopogenous) space if £ o > &, where

(TS) (G 0&)(A 1) =V epx &(A p) © &2(p, 1)

Definition 3.7. An (L, M)-fuzzy semi-topogenous order £ on X is called perfect if

(ST4) &(V; Xis i) = N (X, ).
An (L, M)-fuzzy semi-topogenous order £ on X is called co-perfect if

An (L, M)-fuzzy semi-topogenous order £ on X is called bi-perfect if £ are (L, M)-
fuzzy perfect and (L, M )-fuzzy co-perfect.

Theorem 3.8. Let & and & be (L, M)-fuzzy cotopogenous (respectively, topoge-
nous, perfect, co-perfect) order on X. Define the composition (& 0&) of & and &
by

(&ro&)h ) =\ &\ p) © &lp, p).

peX

Then (& o &) is (L, M)-fuzzy cotopogenous (respectively, topogenous perfect, co-
perfect) order on X.

Proof. (ST2) By Lemma 2.5 (2), we have

(§10&) (N, 1) \/ & (N p) © &(p, 1) \/ SN\, p) ©S(p, ) < S(A, ).

peX peX
(CT)

(&1 0 &) (A1, ) © (&1 0 &) (A2, p2)
= \/ (&A1, p1) © &a(p1, 1)) © \/ (E1(A2, p2) © E2(p2, p12))

p1eLlX p2eLlX
< V(G p) @&, p2) © (&lpr1 i) © &a(pa, 12)))
p1,p2€LX

<\ (GO ® A, 01 B p2) © alpr @ p2y 1 B i) < (€10 &) (M B Ao, i B i)

p1,p2€LX
Other cases are similarly proved .

Theorem 3.9. Let £ be a co-perfect (L, M )-fuzzy cotopogenous order, then

(1) The mapping F¢ : L* — M defined by F¢(A\) = £(A\,\) is an (L, M)-fuzzy
cotopology on X,

(2) &° is a perfect (L, M)-fuzzy topogenous order.
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Proof. (1) (F1) F¢(0x) = £(0x,0x) = §(1x, 1x) = Fe(1x) = 1,
(F2) Fe(A1 @ X2) = (A1 D Aa, A B Na) > £, A1) ©@E(A2, Aa) = Fe(M1) © Fe(Na),

(F3> ]:E(/\i )‘i) = §<Az Ais /\z )‘i) > /\zf(/\z Ais )‘i) > /\ig(/\iv )‘i) = /\7, ff(/\i)-

(2) (T) MO O pz) =E((11 © p2)", (A © Ag)7)
= &(1 ® p3, AT A3) = E(p1, AT) © §(a, A7) 2 €5(Ar, 1) © €7( Az, pia).

Other cases are easily proved.

Theorem 3.10. Let F be an (L, M)-fuzzy cotopology on X, then
(1) The mapping &7 : LX x LY — M defined by

GO =\{F@) [ X<y <uyel™}
is a co-perfect L-fuzzy cotopogenous space. Moreover, F¢, = F,
(2) If ¢ is a co-perfect (L, M)-fuzzy cotopogenous order, then {7, < ¢&.
Proof. (1) (ST1) ££(0x,0x) = V{F(7) | 0x <7< 0x,v€ L¥} = F(0yx) =1,
Er(lx 1) =V{F () | Ix Sy < 1x v € LY} = F(ly) = 1.

(ST2) If A <, then S(A\, u) = 1. If A £, then

VAFO) [ A<y <pye X} =o.

It is trivial.
(ST3) If Ay <A, <y, then A\ <A<~y <pu<pu. So, \y <7 < py. Thus,

e = \V{FM) [ A<y <pye LX)
< \/{F(V) | M <y <,y € LY} = Ex(M, ).

(CT)

Er( A, 1) © Ep(Ag, po) = (\/{-7:(71) M <7 <m})o (\/{-7:(%) | X2 <7 < po})
< \/{}_(’71) OF(2) | M@ A <71 @y <t @ o}
S\/{}—(’Yl@’h) [ M B A <71 By <y @ st

<VAF@) T M@ X <y < @ po}
=Er(A D Ao, 11 B pi2).
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(ST5)
#O0 N\ ) = VAFOA <7 < /\uz} =\{F) = /\7 A<y < i
> \/{/\F Y)A < v < iy = /\ VAFGIN <3 < aud) = \&r X ).

Finally,  Fe, () = &\ A) = VIF() | A <7 < Ay € LY} = F(N).

2) e =\{F A<y <= V@) I A<y <u} <€ p).

Theorem 3.11. Let & be a perfect (L, M) -fuzzy topogenous order, then
(1) The mapping Z¢ : LX — M defined by Z¢(\) = £(A\, \) is an L-fuzzy topology
on X,
(2) & is a coperfect (L, M)-fuzzy cotopogenous order such that Fes(X) = T¢(A\*),
(3) If £ is a symmetric bi-perfect (L, M )-fuzzy bitopogenous order, then 7, = F.

Proof. (1) It is similarly proved as Theorem 3.9(1).
(2) Te(X7) = (A, A7) = €5(A A) = Fes (A),
(3) Ze(A) = EAA) = &7(A, A) = Fes (A).

Theorem 3.12. Let 7 be an (L, M)-fuzzy topology on X.
(1) The mapping &7 : LY x LX — M defined by

=T [ A<y <pyel™y

is a perfect (L, M)-fuzzy topogenous space. Moreover, T¢, =T,
(2) If Fr(N\) = T(X\) is an (L, M)-fuzzy topology on X, then &z, = &5

Proof. (1) It is similarly proved as Theorem 3.10 (1).

) &rr M) = V{FrMIN <y < = \HT () Im <97 <X =&, ) = &5 (M ).
Example 3.13. Let (L = M = [0, 1], ®, —) be a complete residuated lattice defined

by
rOy=(r+y—1)V0, z—-y=_1—-x+y) Al

Let X = {z,y} be a set and u,v € L such that
u(z) = 0.6,u(y) = 0.5, v(x)=04,v(y) =0.7.
Define 7, F : LX — M as follows

1, if/\E{lx,Ox} 1, if/\E{lx,Ox}
0.6, if A\ =u, ) 0.7, it A=,
T\ = 03, if A\=udu, A= 04, if A\=vdw,

0, otherwise 0, otherwise.



Journal of New Theory 8 (2015) 01-28

(1) Since 0.3 =T (u©®u) > 7T (u) ©7T(u) = 0.2, T is an (L, M)-fuzzy topology
on X. By Theorem, we obtain a perfect topogenous space &7 @ LY x LX — L as

follows

1, if)\ZOXOI‘pzlx,
_ ) 0.6, ifu@u}_é)\gugp,
sr(Ap) = 03, if Ox #X<ucu<pufp,
0, otherwise.
By Theorem 3.12, we obtain a co-perfect cotopogenous space &5 : LY x LX — L
as follows
1, ifA=0xorp=1x
& p) = 0.6, ifA<u*<p,pPu du*
T\ P) = 03, f A<u"du*<p#lx,\Lu*,
0, otherwise.

Moreover, Fes (A) = T (\*).

(2) Since 0.4 = F(vdv) > F(v

) ® F(v) =04, Fisan (L, M)-fuzzy cotopology

on X. By Theorem 3.10, we obtain co-perfect cotopogenous order &7 : LX x LY — M

as follows

1, if)\:OXOI“pzlx
)07, ifvdvZA<vu<p,
&) = 0.5, if Ox #A<vdv<pvLp,
0, otherwise.

By Theorem 3.10, we obtain perfect topogenous order &7 : LX x LX — M as
follows

1, if)\:OXOI‘p::lX
s 0.7, fvev2A<v* <ppFtovov
§r(Ap) = 0.5, if A<v*Ov* < p, ALk,

0, otherwise.

Moreover, T¢s (A) = F(X¥).

Definition 3.14. Let {x and &y be two (L, M)-fuzzy semi-topogenous orders on
X and Y, respectively. A mapping f : (X,&x) — (Y, &y) is said to be topogenous
continuous if

Er(Ap) <Ex(fTN), f(w), YApel”

Theorem 3.15. Let (X,{y) and (Y, &y) be perfect (L, M)-fuzzy topogenous space.
If a mapping f : (X,&x) — (Y,&) is topogenous continuous, then the mapping
[ (X, Ze,) — (Y, T, ) is LF-continuous.

Conversely, a mapping f : (X, 7x) — (Y, 7y) is LF-continuous iff f: (X, &7, ) —
(Y, &7, ) is topogenous continuous.
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Proof. Since f: (X, {x) — (Y, &) is LF-topogenous continuous, then

Tex (7 (X)) = &x(f (N, [T (N) 2 & (A A) = Ty (M)

Conversely, since f : (X,7x) — (Y, 7Zy) is LF-continuous, then

) =\H{Tr () X<y < <\H{TX(FO)) 17N < () < ()}
<\VA{Tx() [ p=1f"(7), F~(N) <p<
=& (T (N, 7 (W)

Conversely, since Te; = Tx and 7¢, = Tx from Theorem 3.12(1), it is trivial.

Corollary 3.16. Let (X,{x) and (Y,&y) be co-perfect (L, M)-fuzzy cotopogenous
space. If a mapping f : (X,&x) — (Y,&) is topogenous continuous, then the
mapping f : (X, Fey) — (Y, Fe, ) is LF-continuous.

Conversely, a mapping f : (X, Fx) — (Y, Fy)is LF-continuous iff f: (X, {x,) —
(Y, &5, ) is topogenous continuous.

Lemma 3.17. Let f: X — Y be a mapping, then the following inequalities hold.
(1) ()" < f7 (),

[\
=z
Sy

1
R
{

!
=
-
=

TINA

SN wW=0\V we@y= N nwx)s \  u@)=0" 0.

zef 1 (y) zef~'({y}) zef~ ' ({y})

(2) Let y, € Y, then

ST N = AU = (1)) )

Hence, S(f~(A), (f7(1"))*) < S(A p).
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(3)
SN () = N\ A @) = ulf(@) = N\ My) = ny) = S, ).
(4)
fFaeomw =\ (o) < Ao ( '\  ul@)
ref-1({y)) vef-1({y)) ref-1({yh)
<)o f7 ().
(5)
Fhomy =\ Qo) < Aa)o( \/  u@)
ref-1({y}) vef-1({y)) ref-1({y))
<M e ().

Other cases are easily proved.

Theorem 3.18. let f : X — Y be a mapping. Let & be an (L, M)-fuzzy topogenous

(co-topogenous, perfect, co-perfect, respectively) order on Y. We define the pre-
image [ (&) of £ under f as

FEON ) =&, (F7 (")), YA e L™

Then,

(1) f=(¢) is an (L, M)-fuzzy topogenous (co-topogenous, perfect, co-perfect, re-
spectively) order on X. Moreover, if £ 0 & < &, then f(£) o f(&) < f(&).

(2) A mapping f : (X,{x) — (Y,&) is topogenous continuous if and only if
f7(6) <é&x.

Proof. (1) (ST2) By Lemma 3.17, we have
SO ) =&~ N, (f (1)) < ST, (F7 (1)) < S ).
(T)
SO O A, 1 © po)

(A1 @A), (f 7 (11 © p2)"))")
(M) © f7(A2), (F7 (k1) © (f 7 (13))")
(M), (F7 (")) © €07 (A2), (F 7 (1)7)
T(E)(A1y 1) © FT(E) (N2, pa2).

E(f~
=<~
>&(f
=f

(CT)

FTEOM® Ao, 1 ® o) =M@ X)), (f 7 ((11 ® p2)™))*) (by Lemma 3.17)
T(A) @ ST (), (FT (1) @ (f T (13))7)
A, (7 (5)") © €0~ (A2), (F 7 (1))
§

(A, 1) © F7(6) (A2, i)

VAA/-\
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If 0 & <&, then f~(€) o f(€) < f(£) since
F©of~©O0mw =\ F©ONp o[ w)

peLX

=V €SO (7)) (), (f~ (1)) (by Lemma 3.17(1))

< V €GN0 @& (0 (F (1))

<& 7 W)7) = 1O ).

(2) For any p,v € L*, we have
7@, v) =& (), (7)) < & (f~ (7 (), [~ (f7 (")) < Ex(p,v),
Ex(fT ), () = F U V), () = £ (), (U ()")7) = € ).

4 Perfect (L, M)-fuzzy topogenous space and (L, M)-
fuzzy quasi-proximities

Kim et al [30] introduced the concept of L-fuzzy proximities in a strictly two sided,
commutative quantales. We here reintroduce them in a slightly different way as
follows.

Definition 4.1. A mapping § : LY x L* — M is called an (L, M)-fuzzy quasi-
proximity on X if it satisfies the following axioms.

(QP1) 6(0x,1x) =0(1x,0x) = Oy,

(QP2) 60 1) = Vyex (A © ) (a),

(QP3) If Ay < g, p1 < po, then 5(A1, p1) < (N, po) V p € LXK,

(QP4) 6(A1 © Az, p1 @ p2) < 6(A1, p1) © 0( A2, p2),

(QP5) (A, p) = N\{6(A p) & 6(p, p)}-

The pair (X, ) is called an (L, M)-fuzzy quasi-proximity space. We call §(\, )
a gradation of nearness.

Let 6; and d3 be (L, M)-fuzzy quasi-proximities on X. Then ¢; is called coarser
than 8y if dy(\, 1) < 61(\, ) for all A\, € LX.

An (L, M )-fuzzy quasi-proximity is called (L, M )-fuzzy proximity on X if it sat-
isfies the following axiom
(P) 6(A, 1) = o(p, ).

An (L, M)-fuzzy quasi-proximity is called perfect if it satisfies the following axiom
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(PP) 5(\/1‘@ )‘i7 N) = \/iel“ 5()‘27 p)-

An (L, M)-fuzzy quasi-proximity is called co-perfect if it satisfies the following
axiom

(CPP) 0(A, Vier £i) = Vier 0(A, pi)-
Proposition 4.2. (1) If 0 is an (L, M)-fuzzy quasi-proximity space and we define
6 LX x LX — M by

85N\, p) = 6(u*, "), VA peLX,
then §° is an (L, M)-fuzzy quasi-proximity space.

(2) If (X, €) is a perfect (L, M)-fuzzy topogenous space and we define d; : LX x
LX — M by
Se(\p) =&\ p*) VA peL™,

then 0¢ is a perfect (L, M)-fuzzy quasi-proximity space on X. Moreover, if ¢ is
symmetric, then ¢ is a bi-perfect (L, M )-fuzzy proximity space on X.

(3) If (X,€) is a co-perfect (L, M)-fuzzy co-topogenous space and we define J; :
LX x LX — M by
Oe(A\ ) = € (u, A*) ¥ A pe LY,

then d¢ is a co-perfect (L, M)-fuzzy quasi-proximity space on X. Moreover, if £ is
symmetric, then &g is a bi-perfect (L, M )-fuzzy proximity space on X.

(4) If 6 is an (resp. perfect) (L, M)-fuzzy quasi-proximity space and we define
& LX x LX — M by

Es(A ) =6\ p*) VA pe L,

then &5 is an (resp. perfect) (L, M)-fuzzy topogenous space such that dg, = 0.
Moreover, if £ is an (resp. perfect) (L, M)-fuzzy topogenous space, then &5, = &.

(5) If § is an (resp. co-perfect) (L, M)-fuzzy quasi-proximity space and we define
& LX x LX — M by

E(Ap) = 6" (u*,\) VA, pe L¥,

then &; is an (resp. co-perfect) (L, M)-fuzzy co-topogenous space such that ¢, = 0.
Moreover, if  is an (resp. co-perfect) (L, M )-fuzzy co-topogenous space, then &5, = &.

Proof. (1) It is easily proved.

(2) (Qpl) 55(1)(,0)() = f*(lx,O}) = f*(lx,OX) - OM Similarly, (55(0)(, 1)() = 0
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(QP2) By Definition 3.1 (ST2) and Lemma 2.3 (16), we have

(N Q@) = w@) =\ M) = w (@) =\ hou)(@).

zeX zeX zeX

Og(A, p) = (S(A, p7))”

(QP3) If A > p, then
E(N, p") < &, p") HEE (1, p7) < E°(N, p7), then d¢(p, p) < d¢(A, p).
(QP4)

0e(M @ A2, p1 B p2) = (M © Ag, (p1 @ p2)") = £ (M1 © Ao, p © p3)
< E (A, 1) @ €5 (Mo, 05) = 0e( A1, p1) D de( N2, p2).

(QP5) Since £ o0& > ¢ by definition 3.7, then

0e(M 1) = E (A 1") > (£ 0 &) (V &nyoih.w)
~yeLX
= AN clnesme) = N sy (v p.
yeLX yeLX

(PP) 0c(Vier Mis 1) = & (Vier Ais %) = Vier € (N 17) = Vier 0e(Ais 1)

Let & = &° be given, then £ is co-perfect by

XN p) =N p) =6\ o A7) = N ) = N&Op) = N pi)

i€l i€l i€l i€l i€l i€l
(P) de(A, ) = & (A, 1) = ()" (A, 1) = &7 (1, A7) = deps, ).

(CPP)  0¢(X Vier i) = €A Nicr 1) = Vier (A p7) = Vier 0¢(A, pi). Hence
¢ is a biperfect (L, M )-fuzzy proximity space on X.

(3) It is similarly proved as (2).
(QP4)

0e(A1 © A2, p1 @ p2) = £ (p1 @ p2, (M1 © X2)*) = £ (p1 D p2, A] © A5)
<& (1, ML) @ € (p2, A3) = 0e( A1, p1) D de( N2, p2).

Other cases are similarly proved as (2).
(4) (ST1)  &(lx,1x) =6"(1x,1%) = 6"(1x,0x) = 0% = Ly,

&(0x,0x) = 0"(0x,0%) = 0"(0x, 1x) = 0" = 1p.
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(ST2) From Lemma 2.3 (16), we have

SO =) < (Vo) @) = ANou) ()

= \OG) = 1) = 50

(ST3) If Ay < A, g <y, then from (QP3) and (QP6)

Es(Ap) = 07 (A, ") = 0" (A, p7) = 07 (p", ) 2 07 (py, M) = 67 (Aa, pp) = Es(Aa, ).
(ST4) Obviously, &(A, 1) = 6*(A, p*) = 6" (p", A) = &(p", A") = §(A, ).
(T)

féo\la,ul) © 560\2’#2) = 5*()\1,M1) © 5* )\2,M2

:( )\hlul @5 )‘27/’62))
< 0" ()\1 @)\2,#1 @Hg) = 5*()\1 ®)‘2a (:ul ®lu2) ) =

Es(AM1 O Ag, 11 © pa).

5&5(/\7 :u) = 5;()‘7 M*) = 5(/\7 :u)a 555()‘a :u) = 52()‘7 p,*) = g()" :u)'
(5) (CT)

Es(A1, 1) © E5(Ng, p2) = 6% (15, A1) © 6% (15, o) = (0(1y, A1) & 6(s, )\2))
< O] © pgy A ® Ag) = 0 (111 @ p12)"s A A2) = &s(M & Ao, i1 © paa).

656()\7 ILL) = 5;(:“7 )‘*) = 6()\7 ILL)’ 565(>‘a M) = 5§(u*a )‘) = §(>‘a M)
Theorem 4.3. Let ¢ be an (L, M)-fuzzy quasi-proximity on X, then

(1) If § is perfect and the mapping 75 : L* — M defined by 7T5(\) = 6*(\, \*),
then 75 is an (L, M )-fuzzy topology on X.

(2) If 6 is co-perfect and the mapping Fs : L* — M defined by Fs(A\) = §*(A*, \),
then Fj is an (L, M )-fuzzy cotopology on X.

(3) If 0 is a perfect (L, M)-fuzzy proximity on X, then Z5(\) = Fs(N).

Proof. (1) Let ¢ be a perfect (L, M )-fuzzy quasi-proximity on X and define {5(\, p) =
0*(A\, u*), then &5 a perfect (L, M)-fuzzy topogenuous and

Hence 75 is an (L, M )-fuzzy topology on X.

(2) It is easily proved as  Z5(\) = (A, A*) = 0" (A", \) = T5(N).
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Theorem 4.4. Let F be an (L, M)-fuzzy co-topology on X, then

(1) The mapping 0z : L x LX — M defined by

Sr(hp) = N(F@) [ <y <A}
is a co-perfect (L, M)-fuzzy quasi-proximity space. Moreover, Fj, = F.

(2) If 0 is a co-perfect (L, M)-fuzzy quasi-proximity on X, then 0z > 9.
Theorem 4.5. Let 7 be an (L, M)-fuzzy topology on X, then

(1) The mapping d7 : LX x L* — M defined by

sr(h ) = AT A<y <p'}

is a perfect (L, M)-fuzzy quasi-proximity space. Moreover, 75 = 7.

(2) If Fr(X\) =T (\*) is an (L, M)-fuzzy topology on X, then &z, = d5.

Example 4.6. Let & be given as Example 3.13 and since d¢, (A, p) = &(A, p*), then
we have

0 p) = S" (M) =\ (A @p) (),

zeX

Og, (As p) = { 0, (A, p) = {

Example 4.7. Let 7, F be given as Example 3.13.

0, if A <p*,
1, otherwise.

0, ifA=0x, orp=_0yx,
1, otherwise

(1) By Theorems 4.2(2) and 4.5, we obtain a perfect (L, M )-quasi-proximity
Sy = 07 L* x L* — M as follows

0, if A=0xor p=0x

5e (M, p) = 04, fucouP<u<lp

¢r P 0.7, f Ox #A<uou<puLp,
1, otherwise.

By Theorems 4.2(2) and 4.5, we obtain a co-perfect (L, M )-quasi-proximity
Ogs = Oy = L™ x LY — M with T*(\) = T(\*) as follows

0, if \=0x or p=0x

Ses (M, p) = 04, ifAX<u* <p* p"2u du

&\ P 0.7, it A<u" @u* <p"#1x, A Lu,
1, otherwise.

Moreover, Fj,, (A) =T (\).
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(2) By Theorems 4.2(2) and 4.4, we obtain co-perfect (L, M )-quasi-proximity
0¢r = 05 : LY x L* — M as follows

0, ifA=0xorp=0x
_J 03, ifvevFr<v<p,
e (N, p) = 0.5, if Ox ZX<v@ov < p* v L p,
1, otherwise.

By Theorems 4.2(2) and 4.4, we obtain perfect (L, M)-quasi-proximity
Ogs. = Op+ : L™ x LY — M with F*(X) = F(\*) as follows

0, if \=0xor p=_0x
Ses (A, p) = 0.3, fvdv2Z2Alv <pp v Ov*
&GP 0.5, if A<v"ov* <p* A Lo,

1, otherwise.

Moreover, 7}5}(/\) = F(\).

Definition 4.8. Let (X, dx) and (Y, dy) be two (L, M )-fuzzy quasi-proximity spaces.
A mapping f: (X,0x) — (Y,dy) is said to be L-fuzzy proximally continuous if

Ox(\ ) <oy (f7(N). fT (W), VA peLl”,

or equivalently,  dx (F~(N), £~ (1)) < by (A ).

Theorem 4.9. A mapping [ : (X,0x) — (Y, dy) of two (L, M )-fuzzy quasi-proximity
spaces is L-fuzzy proximally continuous iff the the mapping f : (X, &) — (Y, &)
is topogenous continuous.

Conversely, a mapping f : (X,{x) — (Y, &) of (L, M)-fuzzy topogenous spaces
is topogenous continuous iff the mapping f : (X, d¢, ) — (Y, d¢, ) of the corresponding
(L, M)-fuzzy quasi-proximity spaces is L-fuzzy proximally continuous.

Proof. Since f: (X,0x) — (Y, dy) is L-fuzzy proximally continuous, then
Eox (f (N S (1) = X (F(A), (f 7~ ())")
(N ) < B () = &y (A ).
Conversely, Since f: (X,£x) — (Y, &y) is topogenous continuous, then
O (ST (A, S (1) = & (F(N), (F 7 ())")
=TT (W) S G KT =g (A ).

Theorem 4.10. Let (Y, ) be an (L, M )-fuzzy quasi-proximity space, X be a non-
empty set and f : X — Y be a mapping. We define §; : LX x LX — M by

O\ ) = 6(f7(N), f7 (W), VA e L™
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Then,

(1) &5 is the coarsest (L, M)-fuzzy quasi-proximity for which f is L-fuzzy
proximally continuous,

(2) A mapping g¢:(Z,€) — (X,0f) is L-fuzzy proximally continuous iff fog
is L-fuzzy proximally continuous.

Proof. (QP1) é;(1x,0x) = 0(f~(1x), f~(0x)) < d(1y,0y) = Op. Similarly,
5]0(0)(, 1)() =0p.

(QP2)
S ) =6(f~ (N, f~(w) =\ (=N o f~(m)w)
> \/ Moo \/ we)=\ M) o) =\ (Ao ().
vEF=(yo) xeﬁyo) veX reX
(QP3) If A < p, then d¢(A,p) = 6(f7(N), f7(p) < 6(f~ (1), [~ (p) = 65 (1, p)-
(QP4)
0(A1, p1) @ 05 (N2, p2) = 0(f7 (A1), [ (p1) @ 8(f 7 (A2), [ (p2))
>6(f7 (M) O (A, [T (p1) @ f(p2))
>0(fT (MO N), [T (p1 @ p2)) = 55 (M © Mg, p1 @ ).
(QP5) Since d¢(A, (f7(p))*) = o(f~(N), f7(f7(p"))) < 3(f7(N),p*), then we

have

SrA ) = 0(f~ (N, f7(w) =\ 5(F7 (N, p) @ 6(F7 (1), p")

peLX

> A GO (0) @8 (F(0))
f=(p)eLX

>' /\ 5f 695f L,y )
yeLX

From the definition of ds, f is L-fuzzy proximally continuous. Let f : (X, 1) —
(Y,0) be L-fuzzy proximally continuous, and since

S1( A, ) < O(fF7(N), f () = 0p(A, ).

Then, ¢y is coarser than d;.

(2) Let g be L-fuzzy proximally continuous. So,

EA 1) < 0p(g7 (M), g7 () = 6(f (g7 (M), S (g7 ().
Hence, f o g is L-fuzzy proximally continuous. Let f o g be L-fuzzy proximally
continuous, then

EA ) <o(f (g7 (W), f (g7 () = 097 (A), 97 ().

Then ¢ is L-fuzzy proximally continuous.
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5 (L, M)-fuzzy topogenous order induced by (L, M)-
fuzzy quasi uniformity

Definition 5.1. [31, 47] A mapping U : L**X — M is called an (L, M)-fuzzy
quasi-uniformity on X iff it satisfies the properties.

(LU1) There exists u € L**X such that U(u) = 1y,
(LU2) If v < u, then U(v) < U(u),

(LU3) For every u,v € L% U(u®v) > U(u) ®©U(v),
(LU4) If U(u) # Opr, then 1o < u, where

1 ifx=

(LUS) U <UoU, where UoU(u) =\ {U(v) oU(w) | vow < u},

vow(x,y) = \/ (v(z,2) ©v(z,y)), YVz,yeX.

zeX

Remark 5.2. Let (X,U) be an (L, M)-fuzzy quasi-uniform space, then by (LU1)
and (LU2), we have U(lxxx) = 1y because u < lx.x for all u e LX*X,

Definition 5.3. [31, 47] Let (X,U) and (Y,V) be (L, M)-fuzzy uniform spaces,
and ¢: X — Y baa mapping. Then ¢ is said to be L-uniformly continuous if

V(v) <U((¢ x @) (v)),

for every v € LY*Y.

Lemma 5.4. [31] Let (X,U) be an (L, M)-fuzzy quasi-uniform space. For each
u € L% and A € LX, the image u[)\] of \ with respect to u is the fuzzy subset of
X defined by

uN(@) = \/ (\y) @ uly,2)), VreX

yeX

For each u, v, ui,us € LX*X and X, p, A1, A2, \; € LY | we have

< wu[A], for each U(u) > 0y,
<wou, foreach U(u) > 0y,

o uw)[A] = vlu[All,

ViAil = ViulAdl,

(u1 © ug)[A1 © Ap] < ur[Ai] © uafAs],
(U1 O] Ug)[)\l S, )\2] < ul[)\l] @b u2[>\2].

A
(v
ul
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Theorem 5.5. Let (X,U) be an (L, M )-fuzzy quasi-uniform space. Define a map-
ping & : LX x LX — M by

= \/{U(w) | ul\] < p}.
Then (X, &) is an (L, M)-fuzzy topogenous space.

Proof. . (ST1) Since u[0 X] = Ox and u[lx] = 1y, for U(u) = 1y, we have
Su(lx,1x) = &u(0x,0x) = 1us

(ST2) Since for all U(u) > 0y, we have X < u[A]. Then if &\, pu) = 1a, we
have A < p.

(ST3) If Ay < A, p < pyq, then

= \/{U(u) ] < n} < \{U(u) ] <}
< ViU | <} = &ilAr, ).
(T)

§u(A, 1) © &u(Aa, o) = \/ U(u) | | < Ml}@\/{u v[Ao] < o}
g\/L{(u [)\]GUP\]<M1®N2}
<\{Uwo UQU)[A1®/\2]<M1®M2}
S\/ |w)\1®)\2]<M1®M2}

=&u(M © Ao, 11 © p12).

(CT)
&M, ) © &g, i) = \/ ] < m}@\/{u v[ha] < o}
< u[A1] © v[Aq] <u1@,u2}
S\/ |u®UP\1@/\2]<M1@N2}

§u ()\1 B Ao, 11 B pa).

(TS) For each u € LX*¥ such that wu[\] < p, by (LU5), we have

=\/{U®) w) | vow < ul.
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Thus,
\/{U(u) ] <} < \{U(v) | vowl[A = v[wA]] < p}
<\ {\/{U w) | wA] <, vyl < p}}

~yeLX

V AV U@ [ ob] < uy o \{U(w) | wi] <A1}

~yeLX

=\ @&x) oty

yeLX

IA

Example 5.6. Let (L = M = [0,1],®, —) be a complete residuated lattice defined
as
rOy=(x4+y—1)V0, z—y=>1—-x+y) AL

Let X = {x,y,z} be a set and w € L**X such that

1 05 0.3 1 0 0
w=| 07 1 05 ], wow=| 04 1 0
0.6 0.6 1 02 02 1

Define U : LX*X — M as follows

1, ﬂlL:<Txxx,

0.6, ifwﬁu%TXxX,
0.3, if wow<uPw,
0, otherwise.

U(u) =

Since 0.3 =U(wOw) >U(w)OU(w) = 0.2 and wow = w, (WOwW)o(wOwW) =
(w®w), then U is an (L, M )-fuzzy quasi-uniformity on X.

By Theorem 5.5, we obtain (L, M)-fuzzy topogenous order &, : L* x LX — M
as follows

1’ lf/\ < \/xeX ([L’) S
A _ 067 if Ox 7é A< 'LU[)\] < 7\/z€X )\(.1') ﬁ Ps
©P) =90 030 it X< (wow) < pui £ p,

0, otherwise.

Definition 5.7. Let (X,¢x) and (Y,&y) be two (L, M)-fuzzy topogenous orders
and let f: X — Y beamap. Then f:(X,{x)— (Y,&) is called an L-fuzzy open
topogenous map if

ExO\ ) S& (TN (), VA pe L

Theorem 5.8. Let (X,U) and (Y,V) be (L, M)-fuzzy quasi-uniform spaces. If
f:(X,U) — (Y,V) is LF-uniformly continuous, then f : (X,&,) — (Y,&y) is an
L-fuzzy open topogenous map.
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Proof. Let v[f~(\)] < f7(n), then

(f < )7 WA ==l M) <77 () < pe

Hence,

() f (1)

I
<
——
<
<

) Lol < f7 ()}

FX @) LW < 7 ()}
FX 7)1 (> )7 WA < p}

| w

VAR
<< <
N

Theorem 5.9. Let (X,U) be an (L, M)-quasi uniform space. Define a mapping
& o L% — L such that

&N p) = \/ {U(w) © S, ulp]) },

then &, is an (L, M)-fuzzy topogenous order.
Proof. (ST1) Since u[0x]| = Oy, and u[lx] = 1x, then

&u(0x,0x) =&(1x,1x) = \/U(u) = 1.

(ST2) By (QU1) and Lemma 2.3 (16), we have

&) < N\ (N oul)) (@) = A (] = (ulw])) ().

zeX zeX

For U(u) > 0y, we have A < w[A] and p > (u[p*])*. Thus, by Lemma 2.3 (2), we
have

A @) = @) ) (@) < N (@N@) = n@) < N\ (M) = p@) = SO, p).

zeX zeX rzeX

Since A < ul)], u[p*]* <p,

&\ p) =\ {U(w) © SN, ulp])} < \/{U(w) © S, p)} < SO p).

Therefore, & (A, p1) < S(\ p).

(ST3) It is obvious.
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(ST4) By Lemma 2.5(3) and Lemma 5.4(5), we have

§u(M © Az, p1 © o) \/ {U(u) ulh © Ao, ul(pr @ p2)]") }
>\/{u M@l )" © alp3)))
>\/{u o V() © S(ubvd )

= fu()\b p1) © &u(Aa, p2).

(T) By Lemma 2.5(3) and Lemma 5.4(6), we have
(M ® Aoy p1 @ po) = \/ {U(w) © S(ulhy @ Ao], ul(p1 ® )]}
> \/ {U(u) © S(ulM] & ula], ulpi]* & ulp3]) }

> \/ {U(w) © S(ul\], ulpi] }@\/{u ], ulps]") }

u

= &u(A1, p1) © &u(Na, p2).

Theorem 5.10. Let (X,U) and (Y,V) be two (L, M)-fuzzy quasi uniform spaces
and f: X — Y be LF-uniformly continuous, then f : (X, &) — (Y,&) is L- fuzzy
topogenous continuous.

Proof. Since (f X f)~(u)[f=(N)] = f~([f~(f~(A)]) < f~(v[A]) and by Theorem
5.7 for u = (f x f)~(v), we have for all \,u € L

= \/{V(v) © S (wp']))}
< \/{V ) © S (A, S~ (e ])) )
< \/{U ST @l D)) < &l (M), f (w)-

Lemma 5.11. For every A, p € L%, we define u,\,p,u;j) : X x X — L by

unp(@, ) = M) = p(y), uy,(,y) = u,(y, ©),

then we have the following statements

(]-) ]-XXX - qu, OX = /LLIX7 lx7

(2) IF A\ < Xy and py < po, then wuy, ,, < up, p,,

(3) EX<p, then 1n <wy,,

(4) For every w,, € L*** and X € L*, we have u,,o0uy, < uy,,
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) Ury,p1 O] Uy, po < U1 025 Up1Gp2s
) Ury,p1 ® UNg,po < U125 Upi®p2s
) “K,}; = Up*a+s
; u;11®>\2,P1®p2 = Upjops N ®A;

UN @Aa,p1Bp2 — WpiOP5, N ON;

(1) Ixux(z,y) = 1 = ugy 05 (7,y) = 0x(2) — Ox(y) = 1x(7) — 1x(y) = w115 (7, 9).
(2) Let Ay < Ay and p; < po, then

Ung,pr (T,Y) = A2(z) = p1(y) < Mi(x) = pa(y) = un (2, 9)-
(3) Since 1A[A] = A < p, then 1a < uy),.

(4)
(@, 2) 0 urs (2,2) = \/ (W) = p(2))O(A(@) = 7(9))) < A@) = ply) = urpla, 2).

(5)
(uhym © U)\2,p2)(l‘, Z) = Ui, (I7 Z) © Uxg,py (:L‘a Z)
< (M(2) = p(y) © (Ma(x) = pa(y))
< )\1(3:) © AQ(x) - Pl(y) © pQ(y) = UX;OA2; uﬂl@ﬁz(xﬂy)'
(6)

(uALPl © u>\27p2)<x7 y) = Uxy,py (QJ, y) © Uy, (SC, Z/)
< (M) = () © (Aa(x) = p2(y))
< )‘1(‘%‘) D )‘Q(x) - pl(y) D pQ(y) = UNi@A2s Up1Dpo (IL‘, y)

(1) (,y) = ur,p(y,2) = My) — p(a) = p*(x) = X (y) = wpe e (2,9).
(8),(9) are similarly proved.

In the following theorem, we obtain an (L, M)-fuzzy quasi uniform space from
an (L, M)-fuzzy topogenous order.

Theorem 5.12. Let (X,¢) be an (L, M)-fuzzy quasi topogenous space. Define
Ug : LY — M by

Ug(u) = \/{Qyzlg(ﬂhpi) | ®zT‘L:1 Ui, ps < u}7
i=1,2,3,....,n}. Then,

where \/ is taken over every finite family {u,, ,,
(1) Ug is an (L, M)-fuzzy quasi uniformity on X,
(2) &, =¢.
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Proof. (1) (LU1) Since (0x,0x) = §(1x, Lx) = 1ar, there exists 1xxx = uoy 0y =
u’lx,lx - LXXX. It fOHOWS uf(]‘XXX) — 1M

(LU2) It is trivial from the definition of .

(LU3) For every u,v € L*** each two families {u,, ,,

®?=1 Upi,p; < u} and
k
{uyjzwj | ®J:1 ul/j,w]‘ S /U}7 we have

U, ( ) ®u§ \/{Qz 15 :U’lvpl)| ®z 1 Ypipi < u} © \/{Q;C:lg Vi7wi)| ®§:1 Uy w; < U})
< VO & (i p1) © (O (v wy)) | Oy, < 1 OFy Uy, < 0}

< VA@L &, ) © (O wi) | (Ot p,) © (Ot ) < @)
< Ue(u O ).
(LU4) If U(u) # Op, there exists a family {uy,,, | O, uy,, < u} such that
1
=1

E(Ni,pi) # Opr. Since £(N;, pi) # On, for @ = 1,2,...,m, then \; < p; for
2 api- Thus 1a <O uy, p, < u.

g eeey TN, i.e. 1A S U
LU5) Suppose there exists u € LX*X such that
( pp

VA Ue(v) ©Us(w) | vow < u} # Ue(u)

Put t = V{ Ue(v) ©Ue(w) | vow < u}. From the Definition of Ue(u), there exists
family {w,, , | Oy up,,, < u} such that

t £ O (N, pi)-
Since 605 Z 57 t z @ 15 g )‘mpz) - QI{VWELX{g(Vapi) © (§<AZ77))}} and L

is a stsc-quantal, then there exist 7; € L~ such that

t £ O (E(v, pi) © E(Niy ).

On the other hand v; = u., ,,, w; = uy, ~,, then it satisfies

Vi O Wi < Uy, p, O U,y S U ;s u{(“l') > 5(%’7/01')’ Z/{E(wi) > 5()‘2':%')'

Let v = @2v; and w = O ,w; be given. Since wv; o w; < wy,,,, for each
1=1,2,3,...... ,m, we have

(OF v)o (O, v)=0R (tiow) <O Uy, < u.
Then, we have vow <wu, Ue(v) > O, Ue(v;) and Ug(w) > OF 4 Ug(w;). Thus,
t=\/{Ue(w) O Ue(w) | wow <u} > U(v) © Ue(w) > O, (€(%,p1) © (i 1))-
It is a contradiction. Thus, U, is an (L, M)-fuzzy quasi uniformity on X.

(2) Since u[A] < p, then wu < wu,,. Hence,

(N p) = \[{Ue(w) | ulN] < p} = Ue(un,) = €N, p).
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6 Conclusion

The main purpose of this paper is to introduce concepts in fuzzy set theory, namely
that an (L, M )-fuzzy semi-topogenous order, (L, M )-fuzzy topogenous space, (L, M )-
fuzzy uniform space and the (L, M)-fuzzy proximity space in strictly two sided,
commutative quantales. On the other hand, we study some relationships between
previous spaces and we give their examples. As a special case our (L, M)-fuzzy
topogenous structures contain classical Csdszer topogenous structures, Katasaras
fuzzy topogenous structures and Cimoka L-fuzzy topogenous structures.
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