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Abstract – This paper deals with two-person matrix games whose elements of pay-off matrix are fuzzy 

numbers. Then the corresponding matrix game has been converted into crisp game using different 

defuzzification techniques. The value of the matrix game for each player is obtained by solving corresponding 

crisp game problems using the existing method. Finally, to illustrate the proposed methodology, a practical 

and realistic numerical example has been applied for different defuzzification methods and the obtained 

results have been compared.  
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1. Introduction 
 

In many real world practical problems with competitive situation, it is required to take the 

decision where there are two or more opposite parties with conflicting interests and the 

action of one depends upon the action which is taken by the opponent. A great variety of 

competitive situation is commonly seen in everyday life viz., in military battles, political 

campaign, elections, advertisement, etc. Game theory is a mathematical way out for finding 

of conflicting interests with competitive situations, which includes players or decision 

makers (DM) who select different strategies from the set of admissible strategies.  

 

During the past, several researchers formulated and solved matrix game considering 

crisp/precise payoff. This means that every probable situation to select the payoff involved 

in the matrix game is perfectly known in advance. In this case, it is usually assumed that 

there exists some complete information about the payoff matrix. However, in real-life 

situations, there are not sufficient data available in most of the cases where the situation is 

known or it exists only a market situation. It is not always possible to observe the stability  
 

from the statistical point of view. This means that only some partial information about the 

situations is known. In these cases, parameters are said to be imprecise.  

http://www.newtheory.org/
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To handle the problem with such types of imprecise parameters, generally stochastic, fuzzy 

and fuzzy-stochastic approaches are applied and the corresponding problems are converted 

into deterministic problems for solving them. In this paper, we have treated imprecise 

parameters considering fuzzy sets/fuzzy numbers. In the last few years, several attempts 

have been made in the existing literature for solving game problem with fuzzy payoff. 

Fuzziness in game problem has been well discussed by Campos [1]. Sakawa and Nishizaki 

[2] introduced max-min solution procedure for multi-objective fuzzy games. Based on 

fuzzy duality theory [3, 4, 5], Bector et al. [6, 7], and Vijay et al. [8] proved that a two 

person zero-sum matrix game with fuzzy goals and fuzzy payoffs is equivalent to a pair of 

linear programming problems. Nayak and Pal [9, 10] studied the interval and fuzzy matrix 

games. Chen and Larbani [11] used two persons zero-sum game approach to solve fuzzy 

multiple attributes decision making problem. Çevikel and Ahlatçıoglu [12] presented new 

concepts of solutions for multi-objective two person zerosum games with fuzzy goals and 

fuzzy payoffs using linear membership functions. Li and Hong [13] gave an approach for 

solving constrained matrix games with payoffs of triangular fuzzy numbers. 

Bandyopadhyay et al. [14] well studied a matrix game with payoff as triangular 

intuitionistic fuzzy number. Very recently, Mijanur et al. [15] introduced an alternative 

approach for solving fuzzy matrix games.  

 

In this paper, two person matrix games have taken into consideration. The element of 

payoff matrix is considered to be fuzzy number [16]. Then the corresponding problem has 

been converted into crisp equivalent two person matrix game using different 

defuzzification methods [17]. The value of the matrix game for each player is obtained by 

solving corresponding crisp game problems using the existing method. Finally, to illustrate 

the methodology, a numerical example has been applied for different defuzzification 

methods and the computed results have been compared. 

 

The rest of the paper is organized as follows. Sec. 2 presents the basic definition and 

preliminaries of Fuzzy Numbers. Defuzzification method is presented in Sec. 3. 

Mathematical model of matrix game is described in Sec. 4. Solution of matrix game is 

presented in Sec. 5. Numerical example and Computational results are reported in Sec. 6 

and a conclusion has been drawn in Sec 7. 

 

 

2. Definition and Preliminaries 
 

Definition 2.1. Let X be a non empty set.  A fuzzy set A  is defined as the set of 

pairs {( , ( )) : }
A

A x x x X  , where : [0,1]
A

X  is a mapping and  A
x is called the 

membership function of A or grade of membership of x in A . The value ( ) 0
A

x  is used to 

represent for complete non-membership, whereas ( ) 1
A

x  is used to represent for 

complete membership. The values in between zero and one are used to represent 

intermediate degrees of membership. 

  

Definition 2.2. A fuzzy set A  is called convex iff for 

all 1,x 2x X 1 2 1 2( (1 ) ) min{ ( ), ( )}
A A A

x x x x       , where [0,1] . 
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Definition 2.3. The set of elements that belong to the fuzzy set A  at least to the degree  is 

called the  -level set or  -cut and is given by { : ( ) }
A

A x X x     . 

If { : ( ) }
A

A x X x     , it is called strong  -level set or strong -cut. 

 

Definition 2.4. A fuzzy set A  is called a normal fuzzy set if there exists at least one 

x X such that ( ) 1
A

x  .  

 

Definition 2.5. A fuzzy number A  is a fuzzy set on the real line R , must satisfy the 

following conditions. 

 

(i) There exists at least one 0x R for which 0( ) 1
A

x  .  

(ii) ( )
A

x is pair wise continuous. 

(iii) A must be convex and normal. 

 

Definition 2.6. A triangular fuzzy number (TFN) A  is a normal fuzzy number represented 

by the triplet 1 2 3( , , )a a a where 1 2 3a a a  are real numbers and its membership function 

( ) : [0,1]
A

x X   is given below 

 

1
1 2

2 1

2

3
2 3

3 2

if

1 if
( )

if

0 otherwise

A

x a
a x a

a a

x a
x

a x
a x a

a a




  


 

 
  

 



 

 

Definition 2.7. A parabolic fuzzy number (PFN) A  is a normal fuzzy number represented 

by the triplet 1 2 3( , , )a a a where 1 2 3a a a  are real numbers and its membership function 

( ) : [0,1]
A

x X   is given below 

 

                       

2

2
1 2

2 1

2

2

2
2 3

3 2

1 if

1 if
( )

1 if

0 otherwise

A

a x
a x a

a a

x a
x

x a
a x a

a a



  
    

  



 
  
    

 


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3. Defuzzification 
 

Defuzzification is the process of producing a quantifiable result in fuzzy logic, given the 

fuzzy sets and the corresponding degrees of membership. There are several defuzzification 

techniques available in the existing literature. However, the common and useful techniques 

are as follows:   

 

3.1. Centre of Area of Fuzzy Number (COA of Fuzzy Number)  

 

This defuzzification can be expressed as 

 

 

 

A

x
COA

A

x

x x dx

x
x dx









 

 

where COAx
 
is the crisp output,  

A
x  is the membership function corresponding to the 

fuzzy number and x is the output variable. This method is also known as center of gravity 

or centroid defuzzification method.  

 

3.2. Bisector of Area of Fuzzy Number (BOA of Fuzzy Number) 

 

The bisector of area is the vertical line that divides the region into two sub-regions of equal 

area. The formula for BOAx  is given by  

 

   
4

1

.
BOA

BOA

x a

A A

a x

x dx x dx    

 

It is sometimes, but not always coincident with the centroid line.  

 

3.3. Largest of Maxima of Fuzzy Number (LOM of Fuzzy Number) 

 

Largest of maximum LOMx takes the largest amongst all x  that belong to  2 3,a a  as the 

crisp value.  

 

3.4. Smallest of Maxima of Fuzzy Number (SOM of Fuzzy Number) 

 

It takes the smallest output with the maximum membership function as the crisp value and 

it is denoted by SOMx .  

 

3.5. Mean of Maxima of Fuzzy Number (MOM of Fuzzy Number) 

 

In this method only active rules with the highest degree of fulfillment are taken into 

account. The output is computed as:  

 



Journal of New Theory 8 (2015) 51-64                                                                                                           55 

 

 
1

.
2

MOM LOM SOMx x x 
 

 

3.6. Regular Weighted Point of Fuzzy Number (RWP of Fuzzy Number) 

 

For the fuzzy number  1 2 3, , ,A a a a  the cut   is    ,A AA L R       and the regular 

weighted point for A  is given by Saneifard [18].  

 

   
 

 

      

1

1
0

1
0

0

2
( )  =

A A

A A

L R
f d

RWP A L R f d

f d

 
 

   

 

  
 
 

 






 

 

where  

 
 

 

1 2    when 0,1 2

2 1   when 1 2,1
f

 


 

  
 

  .
 

 

3.7. Graded Mean Integration Value of Fuzzy Number (GMIV of Fuzzy Number) 
 

For the generalized fuzzy number A  with membership function ( )
A

x , according to Chen 

et al. [19], the Graded Mean Integral Value ( )dGwP A  of A  is given by 

 

 
 

1
1 1

1
1 10

1
0

0

(1 ) ( ) ( )

( ) 2 (1 ) ( ) ( )dGw

x w L x wR x dx

P A x w L x wR x dx

xdx

 

 

 

   






 

 

where the pre-assigned parameter [0,1]w  refers the degree of optimism. 1w   represents 

an optimistic point of view, 0w  represents a pessimistic point of view and 0.5w  

indicates a moderately optimistic decision makers’ point of view. 

 

3.8. Centre of the Approximated Interval of Fuzzy Number (COAI of Fuzzy Number) 

 

Let A  be a fuzzy number with interval of confidence at the level , then the  -cut 

is[ ( ), ( )]L RA A  .  The nearest interval approximation of A  with respect to the distance 

metric d is  

 
1 1

0 0

( ) ( ) , ( )d L RC A A d A d   
 

  
  
  , 

 

 where  
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   
1 1

2 2

0 0

( , ) ( ) ( ) ( ) ( ) .L L R Rd A B A B d A B d           

 

The interval approximation for the triangular fuzzy number 1 2 3( , , )A a a a  

is 2 31 2 ( )( )
,

2 2

a aa a  
 
 

 and for the parabolic fuzzy number 1 2 3( , , )A a a a  is 

1 2 2 3

1 1
(2 ), ( 2 )

3 3
a a a a

 
  

 
. The defuzzified value for triangular fuzzy number 

is  1 2 3

1
2

4
a a a  and for the parabolic fuzzy number is  1 2 3

1

3
a a a  . The defuzzification 

values for different fuzzy numbers are listed in Table 1. 

 

 

4. Mathematical Model of a Matrix Game 

 
Let  1 2{ , ,..., }i mA A A A  be a pure strategy available for player A  and 1 2{ , ,..., }j nB B B B  be a 

pure strategy available for player B . When player A  chooses a pure strategy iA  and the 

player B  chooses a pure strategy jB , then ijg  is the payoff for player  A  and ijg  be a 

payoff for player B . The two-person zero-sum matrix game G can be represented as a pay-

off matrix ij m n
G g


    .  

 

4.1 Fuzzy Payoff matrix: 

 

Let players A  has m strategies, say, 1 2, ,..., mA A A and player B has n  strategies, say, 

1 2, ,..., mB B B .  

 

Table 1. Defuzzified values for different fuzzy numbers. 

 

Defuzzification 

technique 

Defuzzified value 

for TFN 

Defuzzified value 

for PFN 

COA  1 2 3

1

3
a a a    1 2 3

1
3 2 3

8
a a a   

BOA  1 2 3

1
2

4
a a a    1 2 3

1

3
a a a   

MOM 2a  2a  

SOM 2a  2a  

LOM 2a  2a  

RWP  1 2 3

1
2

4
a a a   

 
 2 3 2 1

2 2 1
2

15
a a a a


    

GMIV 

(with 0.5w  ) 
 1 2 3

1
4

6
a a a    1 2 3

1
4 7 4

15
a a a   

COAI  1 2 3

1
2

4
a a a    1 2 3

1

3
a a a   
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Here, it is assumed that each player has his/her choices from amongst the pure strategies. 

Also, it is assumed that player A  is always the gainer and player B  is always the loser. 

That is, all payoffs are assumed in terms of player A . Let ijg be the fuzzy payoff which is 

the gain of player A  from player B  if player A chooses strategy iA  where as player B  

chooses jB . Then the fuzzy payoff matrix of player A  and A and B  is ij m n
G g


    . 

 

4.2 Mixed strategy 

 

Let us consider the fuzzy matrix game whose payoff matrix is ij m n
G g


    . The mixed 

strategy for the player-A, is denoted by  1, , mx x  , where 0ix  , 1,2,...,i m and
1

1
m

i

i

x


 . 

It is to be noted that  0, ,0,1,0, ,0 ,m
ie

  1,2, ,i m represent the pure strategy for the 

player-A and
1

m
m
i i

i

e x


 . If 
1

: 0, 1
m

m i i

i

S x x


  
   
  

  then m mS E . 

 

Similarly, a mixed strategy for the player-B is denoted by  1 2, , , ny y y   where 

0, 1,2, ,jy j n   and
1

1
n

j

j

y


 . It is to be note that  0,0, ,0,1,0, ,0 ,n
je   

1,2, ,j n represent the pure strategy of the player-B and
1

n
n
j j

j

e y


 . If 

1

: 0, 1
n

n j j

j

S y y


  
   
  

 , then n nS E . Where mS and nS are the spaces of mixed 

strategies for the player-A and player-B respectively. 

 

 

4.3. Maximin-Minimax principle or Maximin-Minimax criteria of optimality for 

Fuzzy Payoff matrix 

 

Let the player A ’s payoff matrix be ij m n
g


 
  . If player A  takes the strategy iA  then surely 

he/she will get at least 1,2,...,i m for taking any strategy by the opponent player B . Thus 

by the maximin-minimax criteria of optimality, the player A  will choose that strategy 

which corresponds to the best of these worst outcomes 

 

1 2min ( ),min ( ),...,min ( )j j mj
j j j

DFV g DFV g DFV g  

Thus the maximin value for player A  is given by max min ( )ij
ji

DFV g
 
 
 

 

 

Similarly, player B  will choose that strategy which corresponds to the best (minimum) of 

the worst outcomes (maximum losses) 
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1 2max ( ),max ( ),...,max ( )i i in
i i i

DFV g DFV g DFV g  

Thus the minimax value for player B  is given by min max ( )ij
j

i

DFV g
 
  
 

  

Here, ( )ijDFV g  represents defuzzified value of the fuzzy number ijg . 

 

Theorem 4.1.  If a matrix game possesses a saddle point, it is necessary and sufficient that  

 

max min ( ) min max ( )ij ij
j ji i

DFV g DFV g
 

 

Definition 4.2.  A pair  ,   of mixed strategies for the players in a matrix game is called 

a situation in mixed strategies. In a situation  ,   of mixed strategies each usual situation 

(i, j) in pure strategies becomes a random event occurring with probabilities ix , jy .  Since in 

the situation (i, j), player-A receives a payoff ( )ijDFV g , the mathematical expectation of his 

payoff under  ,   is equal to  

 

 
1 1

, ( )
m n

ij i j

i j

E DFV g x y 
 

  

 

Theorem 4.2. Let ( , )E    be such that both min max ( , )
n mS S

E
 

 
 

and max min ( , )
nm SS
E


 


exist,                                            

then 

min max ( , ) max min ( , )
n nm mS SS S

E E
  

   
  

  

 

 

4.4 Saddle point of a function 

 

Let ( , )E   be a function of two variables (vectors)  and in mS and nS respectively. The 

point ( , ),  ,  m nS S       is said to be the saddle point of the function ( , )E   if  

 

( , ) ( , ) ( , )E E E        
 

Theorem 4.3.  Let ( , )E   be a function of two variables mS  and nS  such that 

max min ( , )E


   and min max ( , )E
 

    exist. Then the necessary and sufficient condition for 

the existence of a saddle point 0 0( , )   of ( , )E   is that 

 

( , ) max min ( , ) min max ( , )E E E
  

        
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4.4 Value of a Matrix Game 

 

The common value of   max min ,E


   and   min max ,E
 

   is called the value of the 

matrix game with payoff matrix ijG g     and denoted by ( )v G or simply v . 

 

Definition 4.3.  Thus if  * *,   is an equilibrium situation in mixed strategies of the 

game , ,m nS S E , then * *,   are the optimal strategies for the players A and B respectively 

in the matrix game with fuzzy payoff matrix ij m n
G g


    . Hence * *,   are optimal 

strategies for the players A and B respectively iff  

 

     * * * *, , , ,m nE E E S S             

 

Definition4.2.     

(i)           * * * *min , , max min , max , ,E E E E E
  

               

(ii)             * * *max , , min max , min , ,E E E E E
  

              

 

Theorem 4.4.      max min , min max ,
j i

v E j E i


    and the outer extrema are attained at 

optimal strategies of players. 

 

Theorem 4.5.     max min ( ) min max ( )ij ij
j ji i

DFV g v DFV g   

Proof: By the theorem 4.4, we have   max min , .m
j

v E j S


    But 

    max min , min , m
j j

E j E j S


     . Therefore  min , .m
j

v E j S    Letting m
ie   

we have    min , min , min ( )m
i ij

j j j
v E e j E i j DFV g   and we get min ( ).ij

j
v DFV g  The left 

side v  is independent of i so that taking maximum with respect to i, we obtain 

 max min ( )ij
ji

v DFV g . Proof of the second part is similar.
 

 

Theorem 4.6.   

(i). If player-A possesses a pure optimal strategy i
*
, then 

*max min ( ) min ( )ij i jj ji
v DFV g DFV g

 
  

 
 

(ii). If player-B possesses a pure optimal strategy j
*
, then  

  *min max ( ) max ( )ij ijj i i
v DFV g DFV g   
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Proof:   max min ,
j

v E j


  * *
*min ,  as m m

i ij
E e j e   is optimal. Proof of the rest is similar. 

 

 

5. Solution of Matrix Game 

 

Let us consider a 2  2 Matrix game whose fuzzy payoff matrix G  is given by  

 

11 12

21 22

g g
G

g g

 
  
 

 

 

If G  has a saddle point, solution is obvious. 

 

Let G  have no saddle point. Let the player-A has the strategy 

    1 2, ,1 0 1x x x x x       and the player-B has the strategy    ,1 0 1y y y     . 

Then    

 

 
2 2

1 1

, ( )ij i j

i j

E DFV g x y 
 

  

 

If    * * * * * *,1 , ,1x x y y 


     be optimal strategies, then from  

 

     * * * *
2 2, , , ,E E E S S             

 

we have          * * * *, , , 0,1 , 0,1E x y E x y E x y x y     . 

 

From the first part of the inequality, we set that  *,E x y  regarded as a function of x has a 

maximum at *x  thus, 

 

 * *

* 22 12

11 22 12 21,

( ) ( )
0 .

( ( ) ( )) ( ( ) ( ))x y

DFV g DFV gE
y

x DFV g DFV g DFV g DFV g


  

   
 

 

Provided that 11 22 12 21( ( ) ( )) ( ( ) ( )) 0DFV g DFV g DFV g DFV g     
 

Similarly, from the second part of the inequality, it is seen that  *,E x y  regard as a 

function of y has a minimum at *y  i.e., 

 

 * *

* 22 21

11 22 12 21,

( ) ( )
0 .

( ( ) ( )) ( ( ) ( ))
x y

DFV g DFV gE
x

y DFV g DFV g DFV g DFV g


  

   
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Provided that 11 22 12 21( ( ) ( )) ( ( ) ( )) 0DFV g DFV g DFV g DFV g    .  And  

 

 * * *,v E x y  11 22 12 21

11 22 12 21

( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( ))

DFV g DFV g DFV g DFV g

DFV g DFV g DFV g DFV g




  
 

 

It can be proved that 11 22 12 21( ( ) ( )) ( ( ) ( )) 0DFV g DFV g DFV g DFV g     implies that G  

has a saddle point.  

 

6. Numerical Example 

 
To illustrate the proposed methodology, we have solved one numerical example. In this 

example, the elements of payoff matrix are fuzzy valued (taken from Mijanur et al. [15]). 

Using eight different defuzzification methods, the matrix game has been converted into 

eight matrix games which are shown in Table 2. Finally, we have solved all the matrix 

games and computed results have been presented in Table 3. 

 

Example-1 

 

Suppose that there are two companies A and B to enhance the market share of a new 

product by competing in advertising. The two companies are considering two different 

strategies to increase market share: strategy I (adv. by TV), II (adv. by Newspaper). Here it 

is assumed that the targeted market is fixed, i.e. the market share of the one company 

increases while the market share of the other company decreases and also each company 

puts all its advertisements in one. The above problem may be regarded as matrix game. 

Namely, the company A and B are considered as players A and B respectively.  

 

 
Table 2. Converted matrix games 

 

Defuzzification 

Methods 

Defuzzified Pay of 

Matrix for TFN 

Defuzzified Pay of 

Matrix for PFN 

COA 181.67 154.67

90 181.67

 
 
 

 
181.88 154.50

90 181.88

 
 
 

 

BOA 181.25 155.00

90 181.25

 
 
 

 
181.65 154.67

90 181.65

 
 
 

 

MOM 180.00 156.00

90 180.00

 
 
 

 
180.00 156.00

90 180.00

 
 
 

 

SOM 180.00 156.00

90 180.00

 
 
 

 
180.00 156.00

90 180.00

 
 
 

 

LOM 180.00 156.00

90 180.00

 
 
 

 
180.00 156.00

90 180.00

 
 
 

 

RWP 181.25 155.00

90 181.25

 
 
 

 
181.61 154.71

90 181.61

 
 
 

 

GMIV (with 

0.5  ) 

180.83 155.33

90 180.83

 
 
 

 
181.33 154.93

90 181.33

 
 
 

 

COAI 181.25 155.00

90 181.25

 
 
 

 
181.25 154.67

90 181.25

 
 
 
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The marketing research department of company A establishes the following pay-off matrix. 

 

  Adv. byTV Adv. byNewspaper  

G   
Adv.byTV  (175,180,190) (150,156,158)

(80,90,100) (175,180,190)

 
 
 

 
AdvbyNewspaper  

 

Where the element (175, 180, 190) in the matrix G indicates that the sales amount of the 

company A increase by “about 180” units when the company A and B use the strategy I 

(adv. by TV) simultaneously. The other elements in the matrix G can be explained 

similarly. 

 
Table 3. Solutions of matrix games 

 
Defuzzification 

Methods 

Player-A (For TFN) 

 
For PFN (Player-A) 

 *x  
*1 x  

*V  
*x  

*1 x  
*V  

COA 0.227522 0.772478 160.81309 0.229324 0.770676 160.80972 

BOA 0.223404 0.776596 160.86436 0.227430 0.772570 160.80606 

MOM 0.210526 0.789474 161.05263 0.210526 0.789474 161.05263 

SOM 0.210526 0.789474 161.05263 0.210526 0.789474 161.05263 

LOM 0.210526 0.789474 161.05263 0.210526 0.789474 161.05263 

RWP 0.223404 0.776596 160.86436 0.226985 0.773015 160.81590 

GMIV(with 

0.5  ) 
0.219204 0.780796 160.91970 0.224242 0.775758 160.84999 

COAI 0.223404 0.776596 160.86436 0.225579 0.774421 160.66590 

 

The computational results have been shown in Table 3 for different parametric values. 

From Table 3, it follows that in the case of TFN values, the best game value is obtained in 

the cases of MOM, SOM and LOM. In case of PFN values, the best game value is obtained 

in cases of MOM, SOM and LOM.   

 

 

 
 

Fig. 1. Value of the game for different defuzzification methods 

 

All the results have been shown in Fig. 1. The optimal solution sets, as obtained by the 

defuzzification approach, are consistent with those obtained by standard existing approach 
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under fuzzy set up. Thus, it can be claimed that the defuzzification approach attempted in 

this work well to handle the matrix game with fuzzy payoff. 

 

 

7. Conclusion 
 

In this paper, a method of solving fuzzy game problem using several fuzzy defuzzification 

techniques of fuzzy numbers has been considered. A Numerical example is presented to 

illustrate the proposed methodology. Due to the choices of decision makers’, the payoff 

value in a zero sum game might be imprecise rather than precise value. This impreciseness 

may be represented by various ways. In this paper, we have represented this by fuzzy 

number.  Then the fuzzy game problem has been converted into crisp game problem after 

defuzzification in which all the payoff values are crisp valued. Here, several defuzzification 

techniques have been used to solve the fuzzy game and the corresponding crisp games with 

their strategies and value of the game have been presented and compared. 
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