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Abstract — The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we
introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate
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1. Introduction

The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the
main tools in Algebraic Geometry. Atiyah and Macdonald [1] introduced the spectrum
Spc(R) of aring R as the following: for each ideal | of R,V (1) ={P e Spec(R): | < P},
then the set V(1) satisfy the axioms for the closed sets of a topology on Spc(R), called the

Zariski topology. Also, the notion of a spectrum of modules has been introduced by many
authors see [2, 5, 6 and 7]. Prabpayak and Leerawat [11] introduced a new algebraic
structure which is called KU-algebras. They introduced the concept of homomorphisms of
KU-algebras and investigated some related properties. In [3, 4, 12 and 13], the authors
introduced topologies on the set of all prime ideals by different way. In this paper, we study
the relationship between a KU-algebra and topological space by the notion of the Zariski
topology. We give the new concept of KU-lattice, involutory ideal and prime ideal of a
KU-algebra X and discuss some properties which related to these concepts. Consequently,
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we show that Spc(X) of a KU-algebra X is a compact and disconnected space. Also, we
study some of separation axioms and continuous map of this topological space.

2. Preliminaries

Now we recall some known concepts related to KU-algebra from the literature which will
be helpful in further study of this article.

Definition 2.1 [11]. Let X be a nonempty set with a binary operation*and a constantO .
The triple (X ,*,0)is called a KU-algebra, if the following axioms are satisfied. For all

X,y,ze X .

(ku) (x*y)*[(y*2))*(x*2)]=0.

(ku,) x*0=0.

(kuy) Oxx=x.

(ku,) x*y=0and y*x=0 impliesx=y.
(kug) x*x=0.

On a KU-algebra X, we can define a binary relation < on X by putting x<y< y*x=0.
Then (X,<)is a partially ordered set and 0Ois its smallest element. Thus (X ,*,0) satisfies
the following conditions. For all x,y,z e X , we that

(kuy) (y*2z)*(x*2) < (x*y)

(ku,) 0<x

(ku,) x<y,y<x implies x=y,

(ku,) y#*x<x.

Theorem 2.2 [8]. In a KU-algebra X . The following axioms are satisfied.
Forall x,y,ze X,

(1) x<yimplyy*z<x=*z,
(2) x*(y*z)=y=*(x*2),
@) (y*x)*x)<y.

Definition 2.3 [11]. A non-empty subset | of a KU-algebra X is called an ideal of X if
forany x,y e X, then

(i) 0el and

(i) xxy,xel imply yel.

Definition 2.4 [9]. A KU-algebraX is said to be KU-commutative if it satisfies
(yxx)xx=(x*xy)=y, forall x,y inX.

Lemma 2.5 [9]. If X is KU-commutative algebra, then for any distinct elements
X, ¥,2€ X , XA(Yy*2)=(XAY)*(XAZ).
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Definition 2.6. If there is an element E of a KU-algebra X satisfying x<E forall xe X,
then the element E is called unit of X . A KU-algebra with unit is called bounded. In a
bounded KU-algebra X , we denote x*E by N, . Itis easy to see that N =0,N, =E.

Example 2.7. Let X = {O,a,b,c,d} be a set with a binary operation * defined by the
following table.

« [0 |la|b|c|d]|e
0 |0ja|bjc|d]e
a |00 |bjc|b]cC
b |{0|a|0|bj|a|d
c [0Ola|0]|0]a|a
d 0|00 |b|O]|Db
e |0O|0|0]O0]|0]O

Using the algorithms in Appendix, we can prove that (X, *, 0) is a KU-algebra and by
routine calculations, we can see that X is a bounded KU-algebra with unit "d".

Theorem 2.8. For a bounded KU-commutative algebra X , we denote xv y =N .y, and
forall x,y e X, we have

(a) NNx =X,

(b) N, AN, =N, N, VN =N,
(c) x<yimplies N, <N,.

(d) EAXx=X,

(e) xXAE=E.

Proof. The proof is straightforward. [

Definition 2.9. A partially ordered set (L,<) is said to be a lower semilattice if every pair

of elements in L has a greatest lower bound and it is called to be an upper semilattice if
every pair of elements in L has a least upper bound. If Lis a lattice, then we define
XAYy=glb{x,y}and xvy=Ilub{x,y}. A lattice L is said to be distributive if it satisfies

the following conditions. For all x,y,zeL
(1) xA(Yyv2)=(XAY)V(XAZ),
(2) xv(yA2)=(Xvy)A(xv2).

Theorem 2.10. Every KU-commutative algebra X is a KU-lower semilattice with respect
to(X,5).

Proof. Suppose X is a KU-commutative algebra. We know thatxAy<xand XAy<y .
Let z be any element of X suchthat z<xandz<y,thenx*z=y=*z=0 (by Definition of

commutativty

<),sowehavethatz=0%z=(Xx*z)*z=(z*X)*X.
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By the same reason we havez =(z*y)*y, and hence
Z=(z*x)*x=(((z*y)*y)*x)*x<(y*X)*X=XAY, thus XAy is the greatest KU-
lower bound and so (X,<)is a KU-lower semilattice.[]

The converse of this theorem may not be true. For example, in Example 2.7 we have that
X is a lower semilattice, but(a*c)*c=c*c=0=2a=0*a=(c*a)*a.

Theorem 2.11. Any bounded KU-commutative algebra X with respect to (X,<) is a KU-
lattice.

Proof. Since N, AN, <N, andN, AN, <N, from Theorem 2.8 we have that

X=Ny <N iny=Xvyandy=Ny <Ny n)=XVY.

This shows that xv y is a common upper bound of x andy. Now, by Theorem 2.8 if
x<zandy<z, thenN, <N andN,<N . It follows that N, <N, AN, , therefore
N(NMNy) <N, andxvy<z.Hence xvy isaleast upper bound ofx andy, i.e. (X,<)is

a KU-upper semilattice. By using Theorem 2.10 and this Theorem, we obtain (X,<)is a
KU-lattice. [

Definition 2.12. Let X be a KU-algebra and A a nonempty subset of X . The ideal of
X generated by Ais denoted by (A) ={x e X :Ja,,...,a, € A such that(a, *(...x(a, *x) =0}, if
A= ¢. We have that (¢) ={0}.

Definition 2.13. Let X be KU-commutative algebra and A a subset of X . Then we define
A" ={xe X :aAx=0forallae A}and call it the KU-annihilator of A.

We write A*in place of (A®)". Note that A*is a nonempty since 0e A*. Obviously we
have X*={0}and {0} =X . If Ais an ideal it is easy to see that ANA"={0}. We
observe that if xe A"then aAx=0for all ae A. It follows that (x*a)*a=0 then
a<x*a anda=*(x*a)=0, hencex*a<a which implies that a=x+*a. Thus xe A"if

and only if a=x=a forall ae A. Moreover if X is commutative, then x e A*if and only
if a=x=a forall aeA.

If A={a}, then we write (a)"instead of ({a})".

Example 2.14. Let X ={0,a,b,c,d,e} be a set with a binary operation * defined by the
following table.

It is easy to show that X is a bounded KU-commutative algebra. If A={b,c}, then
A" ={0,a}.

Definition 2.15. An ideal A of a KU-commutative algebra X is said to be involutory if

A= A"". Moreover a KU-commutative algebra X is said to be involutory if every ideal of
X is involutory.
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Clearly {0}and X are involutory ideals.

Remark 2.16. In involutory KU-commutative algebra X , for any two ideals A,B of X , we
have that (AN B)" =(A"UB").

Lemma 2.17. Let X be involutory KU-commutative algebra. Then X ={(AU A") for any
ideal Aof X .

Proof. Note that A A" ={0}. By Remark 2.16 and note X is involutory, we have
(AUA"Y =(A"UA" Y =(A"NA) =(0)"=X.

Definition 2.18. A KU-algebra X is said to be KU-positive implicative if it satisfies that
(z=x)*(zxy)=z*(x*y), forall x,y,z inX.

Definition 2.19. A nonempty subset | of a KU-algebra X is said to be a KU-positive
implicative ideal if for all x,y,z in X, then

(1) Oel and
(2) zx(x*y)eland zxxelimplyzxyel.

Theorem 2.20. If we are given an ideal | of a KU-algebra X, thenl is a KU-positive
implicative if and only if, foranyae X theset A, ={xe X :a*xe l}isan ideal of X .

Proof. (=) Suppose that 1 is positive implicative ideal and (x*y)e A and x€ A, . Then
ax(x*xy)elanda=xel. By Definition 2.19 we obtain (a*y)el i.e. ye A, . This says
A, is an ideal.

(<=) Suppose that A, is an ideal of X , for any ae X . If zx(x*y)elandz*xel, then

(x*y)e Aand xe A, . Since A, is an ideal of X then ye Ajand z*y e | . This means that
| is positive implicative ideal. [

Corollary 2.21. If | is a KU-positive implicative ideal of X , then A, ={xe X :a*xel}is
the least ideal containing | anda, foranyae X .

Definition 2.22. A nonempty subset | of a KU-algebra X is said to be a KU-implicative
ideal if for all x,y,z in X, then

(1) 0Oel and

(2) zx((x*y)*x)eland zelimplyxel.

Definition 2.23. A proper ideal | of a KU-algebra X is called a maximal ideal if and only
if | c Ac X impliesthat | = Aor A= X, forany ideal Aof X .

Theorem 2.24. If 1| is an ideal of a KU-algebra X . Then the following statements are
equivalent.

(@) 1 is maximal and KU-implicative ideals,

(b) 1 is maximal and KU-positive implicative ideals,

(c) x,yelimpliesx*yeland y*xel forall x,y inX.
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Proof. (a)= (b). Suppose that | is KU-implicative ideal and z*(x*y)el,z*xel . Since
(z*X)*(z*(z*y)<x*x(zxy)=z*(X*y)el then (z*x)*(z*(z*y))eland zxxel.
lis an ideal, we have that (zx(zxy))el. It  follows  that
((zxy)*xy)*x(z*xy)=z*(z*y)el and 0*(((z*y)*Yy))*(z*y))el. Combining Oel
we obtain z*y e | . Hence | is KU-positive implicative ideal.

(b) =(c). Letx,ygl. Since 1is KU-positive implicative. By Corollary 2.21
A ={ue X :ux*yel}is the least ideal containing | andy. Using maximality of I we

have that A, = X .Hencexe A, thatisx*yel. Likewise for y*xel .

(c) = (a) At first we prove that | is KU-implicative. Suppose | does not KU implicative,
then there are x,y inXsuch that (x*y)*xelbutxgl. Ifx*yel, combining

(x*y)*xxelwe getxel. This contradicts to xgl. If x*xyegl, by (c) we have
yelasxgl.Byku,, we havex*y <y, we getx*yel. This contradicts to x*yel.

Hence | is KU-implicative. Next we prove that | is maximal. Note that | is also KU-
positive implicative. Hence it is sufficient to prove that for any aglwe have
A ={xe X :x*xael}=X. By Corollary 2.21, A, is the least ideal containing | and a.
For all x in X, when xel then xe A and when xgl, byael and (c) we have that

x*a el ie. xe A,. This means that A, = X . Therefore | is maximal ideal of X . [l

Definition 2.25. Let X be a KU-lower semilattice and P a proper ideal of X . Then P is
said to be a prime ideal if aAbe P implies aeP or be P, forany a,b inX.

Theorem 2.26. In a KU-lower semilattice X , a proper ideal P of X is said to be a prime if
ANBgc P implies AcP orBc P, foranyideals A,B inX.

Proof. Suppose that AN\Bc P, Az Pand B P for some two ideals A,B in X .

Thus there exist aand b such that ae A—Pand be B—P. From aAb<a and aAb<b
it follows that aAbe A,BandaAbe ANNBc< P. This contradicts to primness of P.

Hence AcP orBcP.

Theorem 2.27. If X is a KU-implicative algebra, then each prime ideal of X is maximal.

Proof. Suppose that Pis prime ideal anda,bgP. Since X is KU-implicative, then
aA(axb)=((axb)xa)*xa=a*xa=0<P. Noticingag P, we havea*b e P. By the same
way we get b+a e P. Hence P is maximal ideal by Theorem 2.24. [

Lemma 2.28. Let X be a KU-lower semilattice. If a< x"and a < x™ for natural numbers n
and m, then there exists a natural number psuch thata<(xAy)®", foranyx,y,ae X.

Proof. Since for m<n,a<x"impliesa<x", it suffices to verify that when
x"+*a=y"+*a=0, there exist a natural number p such that (xAy)?*a=0. We proceed
by induction onn. Whenn=1, we havex*a=y*a=0, a<x and a<y. Hence
asxAy,le,(xAy)*a=0.
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Now suppose the assertion holds for natural numbern, that is, x"*a=y"*a=0 implies
that there exists a natural number p such that(x A y)? *a=0.

If X" xa=y"*a=0,then 0=x""*a=(x*(y"*(x"*a))

By the same argument we have 0 = y*(y" *(x"*a) In view of the first step of induction
we get

(XAY)*(y"*(x"*a) =0 (y"*(x"*((xAy)*a) =0 (xx(X""*(y" *((x Ay)*a))=0.

Fromy"™xa=0. It easily follows that(y=(x"*#(y"*((xAy)*a)=0_  Hence
x"x(y"#((xAy)’*a)=0 | Repeating the above procedure n times we obtain
y' (XA Y #a) = 0. (@) . By an entirely similar way we have that

X" x (XA Y)™ #8) = 0 (2) . By the induction hypothesis and (1), (2), we know that

there is a natural number p such that (XA Y)? *((xAy)™ *a) =0 (xAy)""*a=0_ [J

Corollary 2.29. Let X be a KU-lower semilattice and P an ideal in X . Then for any
x,ye X if xAyeP,then(PU{x}P)(PU{yp=P.

Definition 2.30. Let X be a KU-lower semilattice. A nonempty subset S of X is said to be
A -Closed if xAyeS wheneverx,yeS.

Theorem 2.31. Let X be a KU-lower semilattice and Sa nonempty A -closed subset
of X such that 0¢ S, 1(X) denotes the set of all ideals of X then {l e I(X):1NS=¢}

have a maximal ideal P such thatP(1S =¢ . Moreover P is a prime ideal.

Proof. The existence of an ideal P easily follows from Zorn's lemma. We will prove that
Pis a prime ideal. Let us suppose it is not the case, i.e., there exist X,y e X such that

xXAyeP, xgP andyegP. Then Pis properly contained in both
(PU{x} =R and(PU{y}) = P,. Because of maximality of P, PNS#gandP,NS#4¢.
Lets; e PNS,i=12. We known s AsS,<s,i=12implies s As,ePR P, =P(by
Corollary 2.29). On the other hands, As, € S. This is a contradiction. Hence P is a prime
ideal. [

Theorem 2.32. In a KU-lower semilattice X . Any maximal ideal must be prime.

Proof. By using Theorem 2.31 and Corollary 2.29, we obtain the result.

Definition 2.33. Let | be an ideal of a KU-algebra X . We will call an ideal J of X a
minimal prime ideal associated with the ideal I if Jis a minimal element in the set of all
prime ideals containing | .
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Lemma 2.34. Let | be a proper ideal of a KU-lower semilattice X .Then

(@) 1is contained in a prime ideal,

(b) Any prime ideal containing | contains a minimal prime ideal associated with the
ideal I .

Proof. If | is a prime ideal, then the Lemma is true. Let us suppose that | is not a prime
ideal andae X —1 . Obviously, S ={xe X :a<x}is anonempty, A-closedand O¢ S . By

Theorem 2.31, there exists a prime ideal P such that PN S =¢. (a) holds.

To show (b) it is sufficient to show that the intersection of any chain of prime ideals is a
prime ideal. Let {P. :i € @w}be a chain of prime ideals of X and P=(¥P :i e @}. Suppose

that Pis not a prime ideal, that is, there are x,ye Xsuch that xAyeP,xgP,ygP.
Thus, there are i, j e @ such thatx ¢ B,y & P,. Without loss of generality we can assume

that Bc P, x¢PR,y¢ PR and xAye P c R . This contradicts to P, being a prime.

3. Topology Spectrum of KU-commutative algebra x

In this section, we define the notion of a spectrum of KU-commutative algebra X and
study some of its properties.

Definition 3.1. Let X be KU-commutative algebra and Spec(X) the set of all prime ideals
of X . Then for any ideal Aof X , we define W(A)={P e Spec(X)| Az P} .

Proposition 3.2. Let X be KU-commutative semilattice algebra. Then
(i) Ac B implies that W(A) cW (B), for any ideals A,Bof X,
(i) W(A) =W({A)).

Proof. (i) Let LeW(A) = Az L.SinceAcB = LeW(B). Hence W(A)cW(B).

(if) Since Ac(A) from (i) we get that W(A) cW((A)). Let PeW((A)) = (A)« P and
since Ac(Aythen Az P,P eW (A) it follows that

W({AY) cW(A). Hence W(A)=W(A)).

Theorem 3.3. Let Xbe KU-commutative algebra. Then the family
T(X)={W(A)}r(x, forms a topology on Spec(X) .

Proof. W(0) ={P e Spec(X) : (0)  P}=¢ and
W (X)={P e Spec(X): X & P}=Spec(X). For any family {W (A )},
UW(A)={P e Spec(X): A ¢ Pforsome A}={Pe Spec(X):UA z P}

={P e Spec(X) :(( JAY 2 P}=W((JA)) implies that | JW(A)eT(X).

Finally, W(A) ﬂWI(EB) ={Pe Spec(Xle) Az P} {Pe Spleec(X) :Bz P}
={P e Spec(X): Az Pand B & P}.

Since P is a prime ideal, therefore can be written as
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W(A)NW(B)={P e Spec(X): ANB& P}=W(ANB), i.e., W(A)NW(B)eT(X). Hence
T(X)is atopology on Spec(X), this topology will be called the spectrum topology.

Example 3.4. In Example 2.14. By using the algorithms in Appendix A, we can found that
{X,{0},{0,a},{0,b,c}} is the set of all ideals. Note that {{0,a} ,{0,b,c}} is the set of all
prime ideals of X and Spec(X)={{0,a},{0,b,c}}. Therefore T(X)={¢, Spec(X)} this is
the indiscrete topology.

Definition 3.5. For any Ae I (X) we denote the complement of W(A) by V(A). Hence
V(A)={P espec(X)| Ac P}, it follows that the set {V(A)},,x,is the family of the
closed sets of a topological space Spec(X) .

Remark 3.6. For any x e A we denote V ({x}) by V(x)and W ({x}) byW(x), i.e.
V (X) ={P e spec(X)|x e P} and W(x) ={P e spec(X) | x ¢ P}.
Now, we give some properties of the topological space Spec(X) .

Theorem 3.7. Let X be a KU-commutative semilattice. The family {W(x)} ., is a basis

for the topology of Spec(X) .

XeA

Proof. Let AgcX and W(A)an open subset of  Spec(X), then
W (A) =W(U{x}) = UW(x). Hence, any open set of Spec(X) is union of subsets from the

xeA XeA

Family W (X0}

Theorem 3.8. Let X be a KU-lower semilattice and A a proper ideal of X . Then Ais equal
to the intersection of all minimal prime ideals associated with it.

Proof. Denote J(A)=(XP e I(X):Pisaprime ideal and associated with A}.

It is clearly Ac J(A). We will show that J(A) < A. Let us suppose that it is not the case,
then there is ae J(A)andag A. As in the proof of Lemma 2.34, we can show that if
S={xe X :a< x}, then there exists a prime ideal P such that Ac PandPS=¢. The
existence of such a prime ideal P contradicts to the assumptions. Hence J(A)=A. [

Lemma 3.9. The mapping f:I1(X)—>T(X) given by f(A)=W(A) is a lattice
isomorphism.

Proof. By Theorem 3.3 of W(A) , it follows that f define a lattice homomorphism. We
only show that fis one to one and onto. For any ideals A,Be I(X). Suppose that
f(A)= f(B) then W(A)=W(B) and Spec(X)—W ((A)= Spec(X)—-W(B). Consequently,
J(A)=J(B), hence A=B, it follows that f is one to one and onto. Hence 1(X) and
T(X) are isomorphic. [

Proposition 3.10. If X is a bounded KU-commutative algebra, then Spec(X) is a compact
space.
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Proof. Let {W(A)}., be an open cover of Spec(X) . Then
spec(X)=|JW(A)=W(|JA)). By injectiveness of W (Lemma3.9) implies that

((JAY=X . Since Xis a bounded= Ee<(| JA) and hence(a, *(a, *(...*(a, *E)) =0.

iel iel

We may assume that a, e Afork=1.2,..,n, then a, eUAk for allk=1,2,...,n. This
k=1
implies that E e(U A, ) and hence (U A, ) = X (because no proper ideal containsE). This
k=1 k=1

shows that [ JW (A )=W(JA )=W(JA,))=W(X)=Spec(X). Thus we obtain a
k=1 k=1 k=1
finite Sub cover and consequently, Spec(X) is compact. [

Proposition 3.11. Let X be KU-commutative algebra. Then Spec(X)is T, topological
space.

Proof. Let P and Q be any two distinct prime ideals in Spec(X). Then either Pz Qor
QuzP. If PzQ, there exists xeP such that x ¢ Qwhich implies that Q € W (x) and
P W (x) . Therefore exists an open set W (x) containing Q but notP . Similarly, if Q& P.
There exists x e Qsuch that x ¢ P, which implies that Q W (x) and P e W (x) . Therefore
exists an open set W (x) containing P but notQ . Hence Spec(X)is a T,-space.

Proposition 3.12. If X is a KU-implicative algebra. Then Spec(X)is T, topological
space.

Proof. If Spec(X) = ¢, then Spec(X) is trivial space and itis a T, space.

If Spec(X) = ¢, then there exist a prime ideal P of Spec(X) . It follows by Theorem 2.27
that Pis a maximal ideal. Hence V(P)={i} and {i}is closed set in Spec(X), i.e.
Spec(X)is a T, space. [

Proposition 3.13. If Ais an involutory ideal of X and P e Spec(X), then P gW (A")if and
only if PeW(A).

Proof. If PgW(A"), then A* < P. Since A is an involutory ideal of X , therefore by
Lemma 2.17 X =(AUA") and hence Az P. This implies thatP e W (A).

Conversely, assume that P eW(A) then Az P. Since AN A*={0}c P and Pis a prime
ideal. Therefore by Theorem 2.26 AcPor A" P, but Az P. It follows that A® < P and
consequently we have P g W (A*) .[]

Proposition 3.14. Let X be an involutory KU-algebra with at least one involutory ideal
(proper). Then Spec(X) is a disconnected topological space.

Proof. Let Abe an involutory (proper) ideal of X . We claim that W(A)and W (A*) form
disconnection of Spec(X). That W(A)and W (A*)mutually exclusive, follows from
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Proposition 3.13. We show that Spec(X) =W (A)UW (A"). Indeed Ais an involutory ideal,
then X =(AU A") . This implies that

W(X) =W ((AUA") =W(AUA") =W (A UW(A").

This means that Spec(X)=W(A)UW (A")and consequently Spec(X)is a disconnected
space. [

Proposition 3.15. If X is an involutory KU-algebra, then Spec(X) is Hausdorff space.

Proof. Let Pand Q be any two distinct prime ideals in Spec(X). Then there exists an
element x in X such that xe Pand xgQ. This implies that (xX) c P and{(xX) z Q. In

other word P gW ({x)) and Q e W({x)). By Proposition 3.13, we have P e W ({x)*). Thus
we obtain two open sets W({x))and W ({x)*)such that PeW({(x)*)and QeW(x)). It
follows that W ({x}) MW ({(x)*) =W ({(x)N{x)*) =W (0)=¢. Hence Spec(X)is Hausdorff
space. [

Corollary 3.16. If X is a bounded involutory KU-algebra, then Spec(X) is normal space.

Definition 3.17 [4]. Let (G,*0)and (H,e,0) be KU-algebras. A homomorphism is a map
h: G — H satisfying h(x*y) =h(x)eh(y)for all x,y e G. An injective homomorphism is
called monomorphism and a surjective homomorphism is called epimorphism.

Proposition 3.18. Let (G*0)and (H,,0)be KU-algebras and h:G—>H a
homomorphism map of KU-algebras, then for any prime ideal Pof H. The ideal
h™(P)={xe G :h(x) e P} is also a prime ideal of G .

Proof. Let xAyeh™(P) forany x,y eG, then

(y *x)*x € h™(P) = h((y * X) * x) € P(by homomorphism) = h(y *x)eh(x) e P =
(h(y) e h(x))eh(x) e P = h(x) A h(y) € P.

Since Pisprime = h(x)e P or h(y)e P

= xeh™(P) or yeh™(P) . Hence h™(P) is prime ideal of G . [

Theorem 3.19. Let (G,*,0), (H,,0) be KU-algebras and h: G — H a homomorphism map

of KU-algebras. If o : SpecH — SpecG , define by o(P)=h"(P) for any P e SpecH , then
o IS continuous map.

Proof. Let W(x) be a basic open set in Spec(G), forany xe G . Then

o (W(X))={P e SpecH : o(P) e W (x)}
={P e SpecH :h™(P) eW(x)}
={P e SpecH : x¢ h™(P)}
={P e SpecH : h(x) ¢ P}, which is open in Spec(H).



Journal of New Theory 5 (2015) xx-yy 89

Thus the inverse image of any open set in Spec(G) is open in Spec(H) and hence ois a
continuous map. [

4. Conclusion

This work is a study of the relationship between the KU-algebras and topological spaces.
We introduced the topology spectrum of a commutative KU-algebra and we obtained some
results that were different from the topology spectrum of commutative ring. However, there
are differences because KU-algebras are not rings. We proved that the spectrum of KU-
algebra is compact, disconnected and Hausdorff space. Also, we studied the continuous
map of this topological space. The main purpose of our future work is to investigate the
fuzzy topology of KU-algebras, which may have a lot of applications in different branches
of mathematics.
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Appendix Algorithms

Algorithm for KU-algebras
Input ( X :set, *:binary operation)
Output (“ X is a KU-algebra or not™)
Begin

If X =¢ thengoto (1.);

EndlIf

If 0g X thengoto (1.);

EndIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do

If x; *x, =0 then

Stop: = true;

EndIf

j=1

While j <|X| and not (Stop) do
If ((y; *x)*x)=0 then

Stop: = true;

EndIf

EndIf

k=1

While k <|X| and not (Stop) do

If (% *y;)*((y; *2,) * (% *2,)) = 0 then

Stop: = true;
EndIf
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EndIf While
EndIf While
EndIf While
If Stop then

(1.)  Output (“ X is not a KU-algebra”)
Else
Output (“ X is a KU-algebra”)
EndIf
End

Algorithm for ideals

Input ( X : KU-algebra, | :subset of X );
Output (“ 1 is an ideal of X or not”);

Begin

If | =¢ thengoto (1.);

EndlIf

If 0¢ I thengoto (1.);

EndlIf

Stop: =false;

i=1;

While i <|X| and not (Stop) do
j=1

While j <|X| and not (Stop) do
If (x; *y;)eland x; el then
If y; 1 then

Stop: = true;
EndIf
EndlIf

EndIf While
EndIf While
EndIf While
If Stop then
Output (“ 1 is an ideal of X )
Else
(1.) Output (“ I is not an ideal of X ™)

EndlIf
End
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