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1 Introduction and Preliminaries

In this paper, (X, τ) represents topological space on which no separation axioms are
assumed unless explicitly stated. The closure and the interior of a subset G of a
space X will be denoted by cl(G) and int(G), respectively.

In 1937, Stone [16] introduced and studied the notion of regular open sets in
topological spaces. A subset G of X is said to be regular open [16] if int(cl(G))=G.
The complement of regular open set is regular closed. In 1968, Veličko [19] introduced
the notion of δ-open sets, which are stronger than open sets in order to investigate
the characterization of H-closed spaces. A point x ∈ X is called a δ-cluster point of
G if G ∩ U 6= ∅ for every regular open set U containing x. The set of all δ-cluster
points of G is called the δ-closure of G and is denoted by clδ(G). If clδ(G)=G, then
G is called δ-closed. The complement of a δ-closed set is δ-open. In 1968, Zaitsav
[20] introduced and studied the notion of π-open sets. A finite union of regular open
sets is said to be π-open [20]. The complement of a π-open set is π-closed.

In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal
topological spaces called Ig-closed sets [2]. In 2008, Navaneethakrishnan and Paulraj
Joseph have studied some characterizations of normal spaces via Ig-open sets [10].
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In 2013, Ekici and Ozen [6] introduced a generalized class of τ*. Ravi et. al [14, 15]
introduced another generalized classes of τ* called weakly Ig-closed sets and weakly
Iπg-closed sets respectively.

The main aim of this paper is to study the notion of weakly Igδ-closed sets in
ideal topological spaces. Moreover, this generalized class of τ* generalize Igδ-open
sets and weakly Igδ-open sets. The relationships of weakly Igδ-closed sets and various
properties of weakly Igδ-closed sets are discussed.

Definition 1.1. A subset G of a topological space (X, τ) is said to be

1. g-closed [9] if cl(G) ⊆ H whenever G ⊆ H and H is open in X;

2. g-open [9] if X\G is g-closed;

3. weakly g-closed [17] if cl(int(G)) ⊆ H whenever G ⊆ H and H is open in X.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X
which satisfies

1. A ∈ I and B ⊆ A imply B ∈ I and

2. A ∈ I and B ∈ I imply A∪B ∈ I [8].

Given a topological space (X, τ) with an ideal I on X if P(X) is the set of all
subsets of X, a set operator (•)? : P(X) → P(X), called a local function [8] of A with
respect to τ and I, is defined as follows: for A ⊆ X, A?(I, τ) = {x ∈ X | U ∩ A /∈ I
for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator
cl?(•) for a topology τ ?(I, τ), called the ?-topology and finer than τ , is defined by
cl?(A) = A ∪ A?(I, τ) [18]. We will simply write A? for A?(I, τ) and τ ? for τ ?(I,
τ). If I is an ideal on X, then (X, τ , I) is called an ideal topological space. On the
other hand, (A, τA, IA) where τA is the relative topology on A and IA = {A ∩ J : J
∈ I} is an ideal topological space for an ideal topological space (X, τ , I) and A ⊆
X [7]. For a subset A ⊆ X, cl*(A) and int*(A) will, respectively, denote the closure
and the interior of A in (X, τ*).

Definition 1.2. A subset G of an ideal topological space (X, τ , I) is said to be

1. Ig-closed [2] if G* ⊆ H whenever G ⊆ H and H is open in (X, τ , I).

2. Irg-closed [11] if G* ⊆ H whenever G ⊆ H and H is regular open in (X, τ , I).

3. Iπg-closed [13] if G* ⊆ H whenever G ⊆ H and H is π-open in (X, τ , I).

4. pre*I-open [5] if G ⊆ int*(cl(G)).

5. pre*I-closed [5] if X\G is pre*I-open.

6. I-R closed [1] if G = cl*(int(G)).

7. ∗-closed [7] if G = cl*(G) or G* ⊆ G.

Remark 1.3. [6] In any ideal topological space, every I-R closed set is ∗-closed but
not conversely.
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Definition 1.4. Let (X, τ , I) be an ideal topological space. A subset G of X is said
to be

1. a weakly Ig-closed set [14] if (int(G))* ⊆ H whenever G ⊆ H and H is an open
set in X.

2. a weakly Iπg-closed set [15] if (int(G))* ⊆ H whenever G ⊆ H and H is a π-open
set in X.

3. a weakly Irg-closed set [6] if (int(G))* ⊆ H whenever G ⊆ H and H is a regular
open set in X.

Remark 1.5. [3] The following holds in any topological space:
regular open set ⇒ π-open set ⇒ δ-open set ⇒ open set.

These implications are not reversible.

2 Properties of Weakly Igδ-closed Sets

Definition 2.1. A subset G of an ideal topological space (X, τ , I) is said to be

1. Igδ-closed if G* ⊆ H whenever G ⊆ H and H is δ-open in (X, τ , I).

2. weakly Igδ-closed if (int(G))* ⊆ H whenever G ⊆ H and H is δ-open in (X, τ ,
I).

Theorem 2.2. Let (X, τ , I) be an ideal topological space and G ⊆ X. The following
properties are equivalent:

1. G is a weakly Igδ-closed set,

2. cl*(int(G)) ⊆ H whenever G ⊆ H and H is a δ-open set in X.

Proof. (1) ⇒ (2) : Let G be a weakly Igδ-closed set in (X, τ , I). Suppose that G ⊆
H and H is a δ-open set in X. We have (int(G))* ⊆ H. Since int(G) ⊆ G ⊆ H, then
(int(G))* ∪ int(G) ⊆ H. This implies that cl*(int(G)) ⊆ H.

(2) ⇒ (1) : Let cl*(int(G)) ⊆ H whenever G ⊆ H and H is a δ-open in X. Since
(int(G))* ∪ int(G) ⊆ H, then (int(G))* ⊆ H whenever G ⊆ H and H is a δ-open set
in X. Therefore G is a weakly Igδ-closed set in (X, τ , I).

Theorem 2.3. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is δ-open
and weakly Igδ-closed, then G is ∗-closed.

Proof. Let G be a δ-open and weakly Igδ-closed set in (X, τ , I). Since G is δ-open
and weakly Igδ-closed, cl*(G) = cl*(int(G)) ⊆ G. Thus, G is a ∗-closed set in (X, τ ,
I).

Theorem 2.4. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
weakly Igδ-closed set, then (int(G))* \G contains no any nonempty δ-closed set.

Proof. Let G be a weakly Igδ-closed set in (X, τ , I). Suppose that H is a δ-closed set
such that H ⊆ (int(G))*\G. Since G is a weakly Igδ-closed set, X\H is δ-open and
G ⊆ X\H, then (int(G))* ⊆ X\H. We have H ⊆ X\(int(G))*. Hence, H ⊆ (Int(G))*
∩ (X\(int(G))*) = ∅. Thus, (int(G))*\G contains no any nonempty δ-closed set.



Journal of New Theory 9 (2015) 01-10 4

Theorem 2.5. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
weakly Igδ-closed set, then cl*(int(G))\G contains no any nonempty δ-closed set.

Proof. Suppose that H is a δ-closed set such that H ⊆ cl*(int(G))\G. By Theorem
2.4, it follows from the fact that cl*(int(G))\G = ((int(G))* ∪ int(G))\G.

Theorem 2.6. Let (X, τ , I) be an ideal topological space. The following properties
are equivalent:

1. G is pre*I-closed for each weakly Igδ-closed set G in (X, τ , I),

2. Each singleton {x} of X is a δ-closed set or {x} is pre*I-open.

Proof. (1) ⇒ (2) : Let G be pre*I-closed for each weakly Igδ-closed set G in (X,
τ , I) and x ∈ X. We have cl*(int(G)) ⊆ G for each weakly Igδ-closed set G in
(X, τ , I). Assume that {x} is not a δ-closed set. It follows that X is the only
δ-open set containing X\{x}. Then, X\{x} is a weakly Igδ-closed set in (X, τ , I).
Thus, cl*(int(X\{x})) ⊆ X\{x} and hence {x} ⊆ int*(cl({x})). Consequently, {x}
is pre*I-open.

(2) ⇒ (1) : Let G be a weakly Igδ-closed set in (X, τ , I). Let x ∈ cl*(int(G)).
Suppose that {x} is pre*I-open. We have {x} ⊆ int*(cl({x})). Since x ∈

cl*(int(G)), then int*(cl({x})) ∩ int(G) 6= ∅. It follows that cl({x}) ∩ int(G) 6=
∅. We have cl({x} ∩ int(G)) 6= ∅ and then {x} ∩ int(G) 6= ∅. Hence, x ∈ int(G).
Thus, we have x ∈ G.

Suppose that {x} is a δ-closed set. By Theorem 2.5, cl*(int(G))\G does not
contain {x}. Since x ∈ cl*(int(G)), then we have x ∈ G. Consequently, we have x ∈
G.

Thus, cl*(int(G)) ⊆ G and hence G is pre*I-closed.

Theorem 2.7. Let (X, τ , I) be an ideal topological space and G⊆X. If cl*(int(G))\G
contains no any nonempty ∗-closed set, then G is a weakly Igδ-closed set.

Proof. Suppose that cl*(int(G))\G contains no any nonempty ∗-closed set in (X, τ ,
I). Let G ⊆ H and H be a δ-open set. Assume that cl*(int(G)) is not contained in
H. It follows that cl*(int(G))∩(X\H) is a nonempty ∗-closed subset of cl*(int(G))\G.
This is a contradiction. Hence G is a weakly Igδ-closed set.

Theorem 2.8. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
weakly Igδ-closed set, then int(G) = H\K where H is I-R closed and K contains no
any nonempty δ-closed set.

Proof. Let G be a weakly Igδ-closed set in (X, τ , I). Take K = (int(G))*\G. Then,
by Theorem 2.4, K contains no any nonempty δ-closed set. Take H = cl*(int(G)).
Then H = cl*(int(H)). Moreover, we have H\K = ((int(G))* ∪ int(G))\((int(G))*\G)
= ((int(G))* ∪ int(G)) ∩ (X\(int(G))* ∪ G) = int(G).

Theorem 2.9. Let (X, τ , I) be an ideal topological space and G ⊆ X. Assume that
G is a weakly Igδ-closed set. The following properties are equivalent:

1. G is pre*I-closed,

2. cl*(int(G))\G is a δ-closed set,

3. (int(G))* \G is a δ-closed set.
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Proof. (1)⇒ (2) : Let G be pre*I-closed. We have cl*(int(G))⊆G. Then, cl*(int(G))\G
= ∅. Thus, cl*(int(G))\G is a δ-closed set.

(2) ⇒ (1) : Let cl*(int(G))\G be a δ-closed set. Since G is a weakly Igδ-closed set
in (X, τ , I), then by Theorem 2.5, cl*(int(G))\G = ∅. Hence, we have cl*(int(G))
⊆ G. Thus, G is pre*I-closed.

(2) ⇔ (3) : It follows easily from that cl*(int(G))\G = (int(G))*\G.

Theorem 2.10. Let (X, τ , I) be an ideal topological space and G ⊆ X be a weakly
Igδ-closed set. Then G ∪ (X\(int(G))*) is a weakly Igδ-closed set in (X, τ , I).

Proof. Let G be a weakly Igδ-closed set in (X, τ , I). Suppose that H is a δ-open
set such that G ∪ (X\(int(G))*) ⊆ H. We have X\H ⊆ X\(G ∪ (X\(int(G))*)) =
(X\G) ∩ (int(G))* = (int(G))*\G. Since X\H is a δ-closed set and G is a weakly
Igδ-closed set, it follows from Theorem 2.4 that X\H = ∅. Hence, X = H. Thus, X is
the only δ-open set containing G ∪ (X\(int(G))*). Consequently, G ∪ (X\(int(G))*)
is a weakly Igδ-closed set in (X, τ , I).

Corollary 2.11. Let (X, τ , I) be an ideal topological space and G ⊆ X be a weakly
Igδ-closed set. Then (int(G))*\G is a weakly Igδ-open set in (X, τ , I).

Proof. Since X\((int(G))*\G) = G ∪ (X\(int(G))*), it follows from Theorem 2.10
that (int(G))*\G is a weakly Igδ-open set in (X, τ , I).

Theorem 2.12. Let (X, τ , I) be an ideal topological space and G⊆ X. The following
properties are equivalent:

1. G is a ∗-closed and δ-open set,

2. G is I-R closed and δ-open set,

3. G is a weakly Igδ-closed and δ-open set.

Proof. (1) ⇒ (2) ⇒ (3) : Obvious.
(3) ⇒ (1) : Since G is δ-open and weakly Igδ-closed, cl*(int(G)) ⊆ G and so G

= cl*(int(G)). Then G is I-R closed and hence it is ∗-closed.

Proposition 2.13. Every pre*I-closed set is weakly Igδ-closed but not conversely.

Proof. Let H ⊆ G and G be a δ-open set in X. Since H is pre*I-closed, cl*(int(H))
⊆ H ⊆ G. Hence H is weakly Igδ-closed set.

Example 2.14. Let (X, τ , I) be an ideal topological space such that X = {a, b, c},
τ = {∅, X, {c}, {a, c}} and I = {∅, {c}}. Then {a, c} is weakly Igδ-closed set but
not pre*I-closed.

3 Further Properties

Theorem 3.1. Let (X, τ , I) be an ideal topological space. The following properties
are equivalent:

1. Each subset of (X, τ , I) is a weakly Igδ-closed set,

2. G is pre*I-closed for each δ-open set G in X.
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Proof. (1) ⇒ (2) : Suppose that each subset of (X, τ , I) is a weakly Igδ-closed set.
Let G be a δ-open set in X. Since G is weakly Igδ-closed, then we have cl*(int(G))
⊆ G. Thus, G is pre*I-closed.

(2) ⇒ (1) : Let G be a subset of (X, τ , I) and H be a δ-open set such that G
⊆ H. By (2), we have cl*(int(G)) ⊆ cl*(int(H)) ⊆ H. Thus, G is a weakly Igδ-closed
set in (X, τ , I).

Theorem 3.2. Let (X, τ , I) be an ideal topological space. If G is a weakly Igδ-closed
set and G ⊆ H ⊆ cl*(int(G)), then H is a weakly Igδ-closed set.

Proof. Let H ⊆ K and K be a δ-open set in X. Since G ⊆ K and G is a weakly
Igδ-closed set, then cl*(int(G)) ⊆ K. Since H ⊆ cl*(int(G)), then cl*(int(H)) ⊆
cl*(int(G)) ⊆ K. Thus, cl*(int(H)) ⊆ K and hence, H is a weakly Igδ-closed set.

Corollary 3.3. Let (X, τ , I) be an ideal topological space. If G is a weakly Igδ-
closed and open set, then cl*(G) is a weakly Igδ-closed set.

Proof. Let G be a weakly Igδ-closed and open set in (X, τ , I). We have G ⊆ cl*(G)
⊆ cl*(G) = cl*(int(G)). Hence, by Theorem 3.2, cl*(G) is a weakly Igδ-closed set in
(X, τ , I).

Theorem 3.4. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
nowhere dense set, then G is a weakly Igδ-closed set.

Proof. Let G be a nowhere dense set in X. Since int(G) ⊆ int(cl(G)), then int(G) =
∅. Hence, cl*(int(G)) = ∅. Thus, G is a weakly Igδ-closed set in (X, τ , I).

Remark 3.5. The reverse of Theorem 3.4 is not true in general as shown in the
following example.

Example 3.6. In Example 2.14, {a, c} is a weakly Igδ-closed set but not a nowhere
dense set.

Remark 3.7. The intersection of two weakly Igδ-closed sets in an ideal topological
space need not be a weakly Igδ-closed set.

Example 3.8. Let (X, τ , I) be an ideal topological space such that X = {a, b, c,
d}, τ = {∅, X, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}} and I = {∅, {d}}. Then A =
{a, b, d} and B = {a, b, c} are weakly Igδ-closed sets but their intersection {a, b}
is not a weakly Igδ-closed set.

Theorem 3.9. Let (X, τ , I) be an ideal topological space and G ⊆ X. Then G is
a weakly Igδ-open set if and only if H ⊆ int*(cl(G)) whenever H ⊆ G and H is a
δ-closed set.

Proof. Let H be a δ-closed set in X and H ⊆ G. It follows that X\H is a δ-open set
and X\G ⊆ X\H. Since X\G is a weakly Igδ-closed set, then cl*(int(X\G)) ⊆ X\H.
We have X\int*(cl(G)) ⊆ X\H. Thus, H ⊆ int*(cl(G)).

Conversely, let K be a δ-open set in X and X\G ⊆ K. Since X\K is a δ-closed set
such that X\K⊆G, then X\K⊆ int*(cl(G)). We have X\int*(cl(G)) = cl*(int(X\G))
⊆ K. Thus, X\G is a weakly Igδ-closed set. Hence, G is a weakly Igδ-open set in (X,
τ , I).

Theorem 3.10. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
weakly Igδ-closed set, then cl*(int(G))\G is a weakly Igδ-open set in (X, τ , I).
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Proof. Let G be a weakly Igδ-closed set in (X, τ , I). Suppose that H is a δ-closed
set such that H ⊆ cl*(int(G))\G. Since G is a weakly Igδ-closed set, it follows from
Theorem 2.5 that H = ∅. Thus, we have H ⊆ int*(cl(cl*(int(G))\G)). It follows from
Theorem 3.9 that cl*(int(G))\G is a weakly Igδ-open set in (X, τ , I).

Theorem 3.11. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is
a weakly Igδ-open set, then H = X whenever H is a δ-open set and int*(cl(G)) ∪
(X\G) ⊆ H.

Proof. Let H be a δ-open set in X and int*(cl(G)) ∪ (X\G) ⊆ H. We have X\H ⊆
(X\int*(cl(G))) ∩ G = cl*(int(X\G))\(X\G). Since X\H is a δ-closed set and X\G
is a weakly Igδ-closed set, it follows from Theorem 2.5 that X\H = ∅. Thus, we have
H = X.

Theorem 3.12. Let (X, τ , I) be an ideal topological space. If G is a weakly Igδ-open
set and int*(cl(G)) ⊆ H ⊆ G, then H is a weakly Igδ-open set.

Proof. Let G be a weakly Igδ-open set and int*(cl(G)) ⊆ H ⊆ G. Since int*(cl(G))
⊆ H ⊆ G, then int*(cl(G)) = int*(cl(H)). Let K be a δ-closed set and K ⊆ H. We
have K ⊆ G. Since G is a weakly Igδ-open set, it follows from Theorem 3.9 that K
⊆ int*(cl(G)) = int*(cl(H)). Hence, by Theorem 3.9, H is a weakly Igδ-open set in
(X, τ , I).

Corollary 3.13. Let (X, τ , I) be an ideal topological space and G ⊆ X. If G is a
weakly Igδ-open and closed set, then int*(G) is a weakly Igδ-open set.

Proof. Let G be a weakly Igδ-open and closed set in (X, τ , I). Then int*(cl(G)) =
int*(G) ⊆ int*(G) ⊆ G. Thus, by Theorem 3.12, int*(G) is a weakly Igδ-open set in
(X, τ , I).

Definition 3.14. A subset A of an ideal topological space (X, τ , I) is called QI-set
if A = M∪N where M is δ-closed and N is pre*I-open.

Remark 3.15. Every pre*I-open (resp. δ-closed) set is QI-set but not conversely.

Example 3.16. Let (X, τ , I) be an ideal topological space such that X = {a, b, c,
d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}} and I = {∅, {d}}. Then {b, d}
is a QI-set but it is neither pre*I-open nor δ-closed.

Theorem 3.17. For a subset H of (X, τ , I), the following are equivalent.

1. H is pre*I-open.

2. H is a QI-set and weakly Igδ-open.

Proof. (1) ⇒ (2): By Remark 3.15, H is a QI-set. By Proposition 2.13, H is weakly
Igδ-open.

(2) ⇒ (1): Let H be a QI-set and weakly Igδ-open. Then there exist a δ-closed
set M and a pre*I-open set N such that H =M∪N. Since M ⊆ H and H is weakly Igδ-
open, by Theorem 3.9, M ⊆ int*(cl(H)). Also, we have N ⊆ int*(cl(N)). Since N ⊆
H, N ⊆ int*(cl(N)) ⊆ int*(cl(H)). Then H = M∪N ⊆ int*(cl(H)). So H is pre*I-open.

The following example shows that the concepts of weakly Igδ-open set and QI-set
are independent.
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Example 3.18. In Example 3.16, {c} is weakly Igδ-open set but not QI-set. Also
{d} is QI-set but not weakly Igδ-open set.

Remark 3.19. The following diagram holds for any ideal topological space:

Igδ-closed set −→ weakly Igδ-closed set
↓ ↓

Irg-closed set −→ weakly Irg-closed set

None of the implications is reversible as shown in the following examples and in
[6].

Example 3.20. Let (X, τ , I) be an ideal topological space such that X = {a, b,
c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}} and I = {∅}. Then {a, b} is
Irg-closed set but not Igδ-closed.

Example 3.21. In Example 3.20, {a, b} is weakly Irg-closed set but not weakly
Igδ-closed.

Example 3.22. In Example 3.20, {c} is weakly Igδ-closed set but not Igδ-closed.

4 gδ-pre*I-normal Spaces

Definition 4.1. An ideal topological space (X, τ , I) is said to be gδ-pre*I-normal
if for every pair of disjoint δ-closed subsets A, B of X, there exist disjoint pre*I-open
sets U, V of X such that A ⊆ U and B ⊆ V.

Theorem 4.2. The following properties are equivalent for a space (X, τ , I).

1. X is gδ-pre*I-normal;

2. for any disjoint δ-closed sets A and B, there exist disjoint weakly Igδ-open sets
U, V of X such that A ⊆ U and B ⊆ V;

3. for any δ-closed set A and any δ-open set B containing A, there exists a weakly
Igδ-open set U such that A ⊆ U ⊆ cl*(int(U)) ⊆ B.

Proof. (1) ⇒ (2): The proof is obvious.
(2) ⇒ (3): Let A be any δ-closed set of X and B any δ-open set of X such that

A ⊆ B. Then A and X\B are disjoint δ-closed sets of X. By (2), there exist disjoint
weakly Igδ-open sets U, V of X such that A ⊆ U and X\B ⊆ V. Since V is weakly
Igδ-open set, by Theorem 3.9, X\B ⊆ int*(cl(V)) and U∩int*(cl(V)) = ∅. Therefore
we obtain cl*(int(U)) ⊆ cl*(int(X\V)) and hence A ⊆ U ⊆ cl*(int(U)) ⊆ B.

(3) ⇒ (1): Let A and B be any disjoint δ-closed sets of X. Then A ⊆ X\B and
X\B is δ-open and hence there exists a weakly Igδ-open set G of X such that A ⊆
G ⊆ cl*(int(G)) ⊆ X\B. Put U = int*(cl(G)) and V = X\cl*(int(G)). Then U and
V are disjoint pre*I-open sets of X such that A ⊆ U and B ⊆ V. Therefore X is
gδ-pre*I-normal.

Definition 4.3. A function f : (X, τ , I)→ (Y, σ) is said to be weakly Igδ-continuous
if f−1(V) is weakly Igδ-closed in X for every closed set V of Y.

Definition 4.4. A function f : (X, τ , I) → (Y, σ, J ) is called weakly Igδ-irresolute
if f−1(V) is weakly Igδ-closed in X for every weakly Jgδ-closed of Y.
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Definition 4.5. A function f : (X, τ) → (Y, σ) is said to be δ-closed [4, 12] if f(V)
is δ-closed in Y for every δ-closed set V of X.

Definition 4.6. A topological space (X, τ) is said to be δ-normal if for every pair
of disjoint δ-closed subsets A, B of X, there exist disjoint open sets U, V of X such
that A ⊆ U and B ⊆ V.

Theorem 4.7. Let f : X → Y be a weakly Igδ-continuous δ-closed injection. If Y is
δ-normal, then X is gδ-pre*I-normal.

Proof. Let A and B be disjoint δ-closed sets of X. Since f is δ-closed injection, f(A)
and f(B) are disjoint δ-closed sets of Y. By the δ-normality of Y, there exist disjoint
open sets U and V in Y such that f(A) ⊆ U and f(B) ⊆ V. Since f is weakly Igδ-
continuous, then f−1(U) and f−1(V) are weakly Igδ-open sets of X such that A ⊆
f−1(U) and B ⊆ f−1(V). Therefore X is gδ-pre*I-normal by Theorem 4.2.

Theorem 4.8. Let f : X → Y be a weakly Igδ-irresolute δ-closed injection. If Y is
gδ-pre*I-normal, then X is gδ-pre*I-normal.

Proof. Let A and B be disjoint δ-closed sets of X. Since f is δ-closed injection, f(A)
and f(B) are disjoint δ-closed sets of Y. Since Y is gδ-pre*I-normal, by Theorem
4.2, there exist disjoint weakly Jgδ-open sets U and V in Y such that f(A) ⊆ U
and f(B) ⊆ V. Since f is weakly Igδ-irresolute, then f−1(U) and f−1(V) are disjoint
weakly Igδ-open sets of X such that A ⊆ f−1(U) and B ⊆ f−1(V). Therefore X is
gδ-pre*I-normal.
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