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Abstaract — We establish some new inequalities of Hermite-Hadamard type for functions whose
fourth derivatives absolute values are quasi-convex. Further, we give new identity.Using this new
identity, we establish similar inequalities for left-hand side of Hermite-Hadamard result.Also, we
present applications to special means.
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1 Introduction

A function f: I C R — R is called convex function if f(Ax + (1 — N)y) < Af(x) +
(1=X)f(y) for all x,y € I and A € [0, 1]. Geometrically, this means that if P, @ and
R are three distinct points on graph of f with ) between P and R, then () is on
or below chord PR. There are many results associated with convex functions in the
area of inequalities, but one of them is the classical Hermite-Hadamard inequalities:

f(a;b) = bia/abf(w)dxgw7

for all a,b € I, with a < b.

Recently, numerous authors [1-7] developed and discussed Hermite-Hadamard’s
inequalities in terms of refinements, counter-parts, generalizations and new Hemitte-
Hadamard’s type inequalities.

The notion of quasi-convex function which is generalization of convex function is

defined as:
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Definition 1.1. A function F : [a,b] — R is called quasi-convex on [a, b], if

fQz+ (1= Ny) <max{f(z), f(y)}, Y,y € [a,b].

Any convex function is quasi-convex but converse is not true in general(See for
example [3]). D.A Ion [6] established inequalities of right hand side of Hermite-
Hadamard’s type inequality for functions whose derivatives in absolute values are
quasi-convex functions. These inequalities appear in the following theorems:

Theorem 1.2. Let f: I° C R — R be a function, differentiable on I° with a,b € I°
and a < b. If | f’| is quasi-convex on [a, b], then we have:

‘f(a);f b_a/ i Y smae{| ()17 O]

Theorem 1.3. Lept f:I°CR—Rbea functlon, differentiable on I° with a,b € I°
and a < b. If | f'|»=T is quasi-convex on [a, b], then we have:
b—a _p_ BN 'l
< 29 fna i) 75 P 0D

flay+fo) 1
’ e =R 2Ap+ 1)

Theorem 1.4. Let f : I° C R — R be a function, twice differentiable on I° with
a,b € I° and a < b. If | f”| is quasi-convex on [a, b], then we have:

100 L [ fopan] < O a0

In paper [8], S.Qaisar, S.Hussain, C. He established new refined inequalities of
right hand side of Hermite-Hadamard result for the class of functions whose third
derivatives at certain powers are quasi-convex functions as follow:

Theorem 1.5. Let f: I CR — R be thrice differentiable mapping on I° such that
f" € L[a,b], where a,b € I with a < b. If | f"| is quasi-convex on [a, b], then we have
the following inequality'

‘f )+ f(b)

b—a)?

_ !/ < ( n n )
[ et @) = gy maxll @ 0
Theorem 1.6. Let f: I CR — R be three time differentiable mapping on 7° such
that f” € L[a,b], where a,b € I with a < b. If |f"”|?=T is quasi-convex on [a, b], and
p > 1, then we have the following inequality:

ORI L [ s = L 0 - )

< O3 (1) e @i L0

Theorem 1.7. Let f: I C R — R be thrice differentiable mapping on 7° such that
f" € Lla,b], where a,b € I with a < b. If | f"'|? is quasi-convex on [a,b], and ¢ > 1,
then we have following inequality:

’f(a)-;f b_a/f ()i — 217 0) ~ (@)

(b—
192

<

9 (max{| (@)%, | £ (5)[7}) .
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In this paper, we establish new refined inequalities of the right hand side of
Hermite-Hadamard result for the class of functions whose fourth derivative at certain
powers are quasi-convex functions. Further, we establish new identity using which,
we establish new refined inequalities of left hand side of Hermit-Hadamard result for
the same class of functions considered earlier.

2 Main Results

For establishing new inequalities of right hand side of Hermite-Hadamard result for
the functions whose fourth derivative at certain powers are quasi-convex, we need
the following identity:

Lemma 2.1. Let Let f : I C R — R be four times differentiable mapping on 7°
such that ) € L[a,b], where a,b € I with a < b, then

1 b b—a
e d
b—a/a J@)de + =3

(b—a)*
24

f(a) + f(b)
2

[f(b) = f'(a)] =

/1(/\(1 — A2 (@ + (1 — \)b)dA

Theorem 2.2. Let f : I C R — R be a four times differentiable mapping on [1°
such that f(") € La,b], where a,b € I with a < b. If |f"| is quasi-convex on |[a, b],
then we have the following inequality:

T B

_ -0
- 720

a

—L170) ~ /o)

max{|f* (a)l, |F™(b)]}. (1)

Proof. Using Lemma 2.1 and quasi-convexity of | f()], we get

a ’ —¢
Vu;ﬂw llf@m-b /() — £'(a)

b—a 12

< %/0 (AL = X))?[f (aX + (1 — A)b)|dA

(b—a)! i i ' 2
< S max{ @@l [ (0= )Py
- (b — CL)4 v v

the proof is completed. n

Theorem 2.3. Let f : I C R — R be a four times differentiable mapping on [I°
such that f) € L[a,b], where a,b € I with a < b. If |f(™)|7—T is quasi-convex on
[a,b], and p > 1, then we have the following inequality:

@) 1 bt
S erd RS (LORVA0)
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_ -
- 24
where ¢ = p%l

7 (2p + 1,2p + 1) (max{| f©) (a) |4, | £ (B)|1})7, 2)

Proof. Using Lemma 2.1, Holder’s inequality and quasi-convexity of | f(“’)|ﬁ, we
get

‘f(a);rf b_&/f dx_b_a[f(b)—f’(a)]

< (b;f) /0(/\(1 [ £0 (aX + (1 — A)b)|dA

< %(/Ol(m 2”d)\> </ | FE (A + (1= )| )

O [ oa-xran) st @@ 00

It is easy to note that

<

B2p+1,2p+1) = /1(>\(1 — \))?PdA

which completes the proof. O

Theorem 2.4. Let f : I C R — R be a four times differentiable mapping on I°
such that ) € L[a,b], where a,b € I with a < b. If || is quasi-convex on |[a, b],
and g > 1, then we have following inequality:

’f() /f ()i — 217 0) ~ (@)

(b_a) [0 q w q %
< Eo sl max{l /@), 10 )17 ®)

Proof. Using Lemma 2.1, power mean inequality and quasi-convexity of |f)|7, we
get

’f() b_a/f ()i — 217 0) ~ (@)

(b—a)*
24

IN

/(/\(1— 2| £ (@ + (1 = A)b)|dA

1 =

T [oa—ara) (o0 neeasa-anr)

<O (5) (g melsa, |f(“’)(b)|‘I}>}1

24 30

(b= a)*

= g max{[ S @I £ 0)1)5.

which completes the proof. O]
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Now, to develop new refined inequalities of left hand side of Hermite-Hadamard
result for the class of functions whose third derivatives at certain powers are quasi-
convex, we need the following identity:

Lemma 2.5. Let Let f : I C R — R be three times differentiable mapping on I°
such that f") € La,b], where a,b € I with a < b, then

f(““’) / F@)dz + "L 10) - £(0)

_ (b—a)?
24

1

Ué AL = 20)(1 4+ 23) £ (Aa + (1 — A)b)dA

- / AL = 20) (14 20) F”(Ab + (1 — A)a)dA

Proof. Integrating by parts, we have

N |=

/ AL = 2X\) (1 + 20) " (Aa + (1 — A)b)dA

1 3
- /0 (1-1203) 1" (Aa + (1 — A)b)dA

2 fa+b Fo) 2
—(b_a)2f< 5 )+(b_a)2 (b_a)2/0 Af(ha+ (1 — \)b)dA

:<b—2a>2f/(a;b)+<bfl—(l2>2+<bi2a>3f(a§b) —b /f

and
/2 AL = 20)(1 4+ 20 (b + (1 — A)a)dA
0
_ b__la /O S(1— 1223 (b + (1 — \a)d

B 2 fa+Db f'(a) 24 3 ,

—(b_a)2f< . >+(b_a)2—(b_a)2/0 MO+ (1= Aa)d
24 fa+b fla) 12 <a—|—b> ER
o () o (5 ) e

this ends the proof. O]

Theorem 2.6. Let f : I C R — R be a three time differentiable mapping on [I°
such that f” € L[a,b], where a,b € I with a < b. If |f"| is quasi-convex on [a, b],
then we have following inequality:

() o [ e+ 0 - s

a

(b—a)’
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<
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Proof. Using Lemma 2.5 and quasi-convexity of ||, we get

\f(“*b) /f iz + L1 (6) ~ f(@)

1

[/ AL = 20)(1 4+ 20 (Aa + (1 — A)b)|dA

0

(b—a)’

24
[
< 20 (w01

1 1
2

x [/0 AL — 20)(1 + 2)\)dA + /0 A1 —20)(1 + 2/\)d)\}

<

=

AL — 20)(1 + 20 f”(\b + (1 — )\)a)\d)\]

(b—a)3 " "
s (max{\f @1 <b>\})

this complete the proof. m

Theorem 2.7. Let f : I C R — R be a three time differentiable mapping on [I°
such that f” € Lla,b], where a,b € I with a < b. If |f"'|#~T is quasi-convex on |[a, b],
and p > 1, then we have following inequality:

()

)3
< (b—a) ( 1
- 9% ‘p+1

Y17 0) - f(a)

24

3=

)5 (max{|f"(@)|’, | £ (5)]7})7, (5)

p

where ¢ = o

Proof. Using Lemma 2.5, Holder’s inequality and quasi-convexity of | fm\z’pj, we get

()

(b—a)’
24

2170) - f(a)

24

<

U AL = 20(1 4+ 20" (a + (1 = A)b)[dA

D=

+/ A(L = 2X\)(1+ 20 f"(Ab + (1 — )\)a)\d)\}

1

<05 K/o
+(/0§)\(1_2)\)p(1+2)\)pd)\>;(/0§/\|f”'(>\b+(1—)\)a)|qd)\);]

1

A= 22)(1+ 2A>PdA) P ( / A"+ (1 A)b)|qd/\);
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< O2 (e, !f’”(b)|q}); (f : AL-20 (127 ) % (f : ar)’

+(/05 A1 = 2)\)P(1 + 2)\)pd>\> : (/0 )\d)\> ;}
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Theorem 2.8. Let f : I C R — R be a three time differentiable mapping on 7°
such that f” € Lla,b], where a,b € I with a < b. If |f"|7 is quasi-convex on [a, b],
and g > 1, then we have following inequality:

\ (%) - 52 /f )iz + 2 2170) - f(0)

_b—ap
- 192

]

(max{| £"(a)|, | £ (b)|7}) 7. (6)

Proof. Using Lemma 2.5, power mean inequality and quasi-convexity of |f"”|9, we

et
g () o [ e+ 0 - s
< ;4“)3 [/0 AL = 2X)(1+ 2X)[f”(Aa + (1 — A)b)|dA
T /05 (L= 20 (14 20 f" (b + (1 )\)a)\d)\}
< ;4a)3 K/O%)\(1—2>\)(1+2)\)d>\>1_§</j >\(1—2/\)(1+2>\)|f”’()\a+(1—)\)b)]qd/\|)(11

1
2
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=
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the proof is so completed. O

3 Application to Some Special Means

We now consider the application of our theorem to the special means.
For positive numbers a > 0 and b > 0, define A(a,b) = %2 and

,
ppt+1_gp+1
{_@H)(b—a)}’ p# 10

b—a _
Lp(a’ab) = Inb—Ina’ b= —1

We know that A and L, respectively are called the arithmetic and generalized log-
arithmic means of two positive numbers a and b. By applying Hermite-Hadamard
type inequalities established in Section 2, we are in a position to construct some
inequalities for special means A and Lp. Consider the following function:

xa+4

(a+1)(a+2)(a+3)(a+4)

flz) = (7)

for0 < o < 1andx > 0. Since f¥)(z) = 2% and (Az+(1—\)y)* < A2+ (1—\)*y~
for all 2, > 0 and A € [0,1], then f(¥)(z) = 2 is a-convex function on R* and

2 (a+ D (a+2)(a+3)(a+4)

f(a> i f(b) 1 A(ao‘“, ba+4),
1 ]
b—a /a Jle)de = (@ +1)(e +2)(a + 3)(ar + 4)L“+4(a’ )

-0 = it

) LOH_Q (a, b)

Theorem 3.1. For positive numbers a and b such that b > ¢ and 0 < o < 1, we
have

‘12A(a°‘+4, b)) —12L444(a,b) — (b — a)*(a + 3) (e + 4) (e + 4) Loya(a, b)

(b—a)*
60

< (o + 1)(e + 2)(r + 3) (e + 4) max{|a”|, [b%[}

Proof. The assertion follows from inequality (1 ) applied to mapping (7). O
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Theorem 3.2. For positive numbers a and b such that b > ¢ and 0 < a < 1, we
have

12A(a®* b2 — 12041 4(a,b) — (b — a)*(a + 3) (o + 4) (o 4 4) Lat2(a, b)

(b—a)*

=872+ 1,2+ 1)(a + 1)(a + 2)(a + 3)(a + 4) (max{la]7, [5°]1}) .

<

Proof. The assertion follows from inequality (2) applied to the mapping (7). O

Theorem 3.3. For positive numbers a and b such that b > a and 0 < a < 1, we
have

12A(a*™, b*") — 12L444(a,b) — (b — a)*(a + 3)(a + 4)(a + 4) Loy a(a, b)

(b—a)t
60

Proof. The assertion follows from inequality (3) applied to the mapping (7).

< (a+ 1)@+ 2)(a + 3)(a + ) (max{|a®]", [1*]7})5.

]

Theorem 3.4. For positive numbers a and b such that b > a and 0 < a < 1, we
have

12494 (@ b°H ) — 12L014(a,b) — (b — a)* (e + 3)(a + 4) (o + 4) Las2(a, b)

(b=

16 (a+ 1) (o +2)(a+ 3)(a + 4)(max{|a®|, |b%|})-

Proof. The assertion follows from inequality (4) applied to the mapping (7). O

Theorem 3.5. For positive numbers a and b such that b > ¢ and 0 < a < 1, we
have

12A9F4 (@ b — 12L404(a,b) — (b —a)*(a + 3) (o + 4) (¢ + 4) Lay2(a, b)

_ )3
S(b a)( 1
8 p+1

1
q

) (a4 1)(a+ 2)(a + 3)(a + 4)(max{[a]%, [b%]7})

Proof. The assertion follows from inequality (5) applied to the mapping (7). [

Theorem 3.6. For positive numbers a and b such that b > a and 0 < a < 1, we
have

124°F4 (@, b)) = 12L,44(a,b) — (b — a)*(a + 3) (o + 4) (o + 4) Loyo(a, b)

< (b—a)’

(et Da+2)(a+3)(a+ 4) (max{|a®|%, [b7]7}) 7.
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Proof. The assertion follows from inequality (6) applied to the mapping (7). O
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