

Year: 2016, Number: 10, Pages: 76-85 Received: 16.08.2015Original Article* Published: 09.02.2016

ON NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE FOURTH DERIVATIVE ABSOLUTE VALUES ARE QUASI-CONVEX WITH APPLICATIONS

Imran Abbas Baloch^{1,*} <iabbasbaloch@gmail.com> Basharat Rehman Ali¹ <basharatrwp@gmail.com>

Abstaract — We establish some new inequalities of Hermite-Hadamard type for functions whose fourth derivatives absolute values are quasi-convex. Further, we give new identity. Using this new identity, we establish similar inequalities for left-hand side of Hermite-Hadamard result. Also, we present applications to special means.

Keywords — Hermite-Hadamard type inequalities, Quasi-convex function, Power mean inequality.

Introduction 1

A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is called convex function if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)y$ $(1-\lambda)f(y)$ for all $x,y\in I$ and $\lambda\in[0,1]$. Geometrically, this means that if P, Q and R are three distinct points on graph of f with Q between P and R, then Q is on or below chord PR. There are many results associated with convex functions in the area of inequalities, but one of them is the classical Hermite-Hadamard inequalities:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2},$$

for all $a, b \in I$, with a < b.

Recently, numerous authors [1-7] developed and discussed Hermite-Hadamard's inequalities in terms of refinements, counter-parts, generalizations and new Hemitte-Hadamard's type inequalities.

The notion of quasi-convex function which is generalization of convex function is defined as:

Abdus Salam School of Mathematical Sciences, GC University, Lahore 54600, Pakistan

^{**} Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

Definition 1.1. A function $F:[a,b]\to\mathbb{R}$ is called quasi-convex on [a,b], if

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}, \ \forall x, y \in [a, b].$$

Any convex function is quasi-convex but converse is not true in general (See for example [3]). D.A Ion [6] established inequalities of right hand side of Hermite-Hadamard's type inequality for functions whose derivatives in absolute values are quasi-convex functions. These inequalities appear in the following theorems:

Theorem 1.2. Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a function, differentiable on I° with $a, b \in I^{\circ}$ and a < b. If |f'| is quasi-convex on [a, b], then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{(b - a)}{4} \max\{|f'(a)|, |f'(b)|\}.$$

Theorem 1.3. Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a function, differentiable on I° with $a, b \in I^{\circ}$ and a < b. If $|f'|^{\frac{p}{p-1}}$ is quasi-convex on [a, b], then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{(b - a)}{2(p + 1)^{\frac{1}{p}}} \left(\max\{|f'(a)|^{\frac{p}{p - 1}}, |f'(b)|^{\frac{p}{p - 1}}\} \right)^{\frac{p - 1}{p}}.$$

Theorem 1.4. Let $f: I^{\circ} \subseteq \mathbb{R} \to \mathbb{R}$ be a function, twice differentiable on I° with $a, b \in I^{\circ}$ and a < b. If |f''| is quasi-convex on [a, b], then we have:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{(b - a)^{2}}{12} \max\{|f''(a)|, |f''(b)|\}.$$

In paper [8], S.Qaisar, S.Hussain, C. He established new refined inequalities of right hand side of Hermite-Hadamard result for the class of functions whose third derivatives at certain powers are quasi-convex functions as follow:

Theorem 1.5. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be thrice differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If |f'''| is quasi-convex on [a,b], then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right| \le \frac{(b - a)^{3}}{192} \max\{|f'''(a)|, |f'''(b)|\}.$$

Theorem 1.6. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be three time differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If $|f'''|^{\frac{p}{p-1}}$ is quasi-convex on [a,b], and p > 1, then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{3}}{96} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} (\max\{|f'''(a)|^{q}, |f'''(b)|^{q}\})^{\frac{1}{q}}.$$

Theorem 1.7. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be thrice differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If $|f'''|^q$ is quasi-convex on [a,b], and $q \ge 1$, then we have following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{3}}{192} (\max\{|f'''(a)|^{q}, |f'''(b)|^{q}\})^{\frac{1}{q}}.$$

In this paper, we establish new refined inequalities of the right hand side of Hermite-Hadamard result for the class of functions whose fourth derivative at certain powers are quasi-convex functions. Further, we establish new identity using which, we establish new refined inequalities of left hand side of Hermit-Hadamard result for the same class of functions considered earlier.

2 Main Results

For establishing new inequalities of right hand side of Hermite-Hadamard result for the functions whose fourth derivative at certain powers are quasi-convex, we need the following identity:

Lemma 2.1. Let Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be four times differentiable mapping on I° such that $f^{(iv)} \in L[a, b]$, where $a, b \in I$ with a < b, then

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{12} [f'(b) - f'(a)] - \frac{f(a) + f(b)}{2}$$
$$= \frac{(b-a)^{4}}{24} \int_{0}^{1} (\lambda(1-\lambda))^{2} f^{(iv)}(a\lambda + (1-\lambda)b)d\lambda$$

Theorem 2.2. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a four times differentiable mapping on I° such that $f^{(iv)} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{iv}|$ is quasi-convex on [a,b], then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{4}}{720} \max\{|f^{(iv)}(a)|, |f^{(iv)}(b)|\}.$$
(1)

Proof. Using Lemma 2.1 and quasi-convexity of $|f^{(iv)}|$, we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{4}}{24} \int_{0}^{1} (\lambda (1 - \lambda))^{2} |f^{(iv)}(a\lambda + (1 - \lambda)b)| d\lambda$$

$$\leq \frac{(b - a)^{4}}{24} \max\{|f^{(iv)}(a)|, |f^{(iv)}(a)|\} \int_{0}^{1} (\lambda (1 - \lambda))^{2} d\lambda$$

$$= \frac{(b - a)^{4}}{720} \max\{|f^{(iv)}(a)|, |f^{(iv)}(a)|\}$$

the proof is completed.

Theorem 2.3. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a four times differentiable mapping on I° such that $f^{(iv)} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{(iv)}|^{\frac{p}{p-1}}$ is quasi-convex on [a,b], and p > 1, then we have the following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{b-a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^4}{24} \beta^{\frac{1}{p}} (2p+1, 2p+1) (\max\{|f^{(iv)}(a)|^q, |f^{(iv)}(b)|^q\})^{\frac{1}{q}}, \tag{2}$$

where $q = \frac{p}{p-1}$.

Proof. Using Lemma 2.1, Holder's inequality and quasi-convexity of $|f^{(iv)}|^{\frac{p}{p-1}}$, we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{4}}{24} \int_{0}^{1} (\lambda (1 - \lambda))^{2} |f^{(iv)}(a\lambda + (1 - \lambda)b)| d\lambda$$

$$\leq \frac{(b - a)^{4}}{24} \left(\int_{0}^{1} (\lambda (1 - \lambda))^{2p} d\lambda \right)^{\frac{1}{p}} \left(\int_{0}^{1} |f^{(iv)}(a\lambda + (1 - \lambda)b)|^{q} \right)^{\frac{1}{q}}$$

$$\leq \frac{(b - a)^{4}}{24} \left(\int_{0}^{1} (\lambda (1 - \lambda))^{2p} d\lambda \right)^{\frac{1}{p}} (\max\{|f^{(iv)}(a)|^{q}, |f^{(iv)}(b)|^{q}\})^{\frac{1}{q}}$$

It is easy to note that

$$\beta(2p+1,2p+1) = \int_0^1 (\lambda(1-\lambda))^{2p} d\lambda$$

which completes the proof.

Theorem 2.4. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a four times differentiable mapping on I° such that $f^{(iv)} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{iv}|^q$ is quasi-convex on [a,b], and $q \ge 1$, then we have following inequality:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{4}}{720} (\max\{|f^{(iv)}(a)|^{q}, |f^{((iv))}(b)|^{q}\})^{\frac{1}{q}}.$$
(3)

Proof. Using Lemma 2.1, power mean inequality and quasi-convexity of $|f^{(iv)}|^q$, we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx - \frac{b - a}{12} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b - a)^{4}}{24} \int_{0}^{1} (\lambda (1 - \lambda))^{2} |f^{(iv)}(a\lambda + (1 - \lambda)b)| d\lambda$$

$$\leq \frac{(b - a)^{4}}{24} \left(\int_{0}^{1} (\lambda (1 - \lambda))^{2} d\lambda \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} (\lambda (1 - \lambda))^{2} |f^{(iv)}(a\lambda + (1 - \lambda)b)|^{q} \right)^{\frac{1}{q}}$$

$$\leq \frac{(b - a)^{4}}{24} \left(\frac{1}{30} \right)^{1 - \frac{1}{q}} \left(\frac{1}{30} \max\{|f^{(iv)}(a)|^{q}, |f^{(iv)}(b)|^{q}\} \right)^{\frac{1}{q}}$$

$$= \frac{(b - a)^{4}}{720} (\max\{|f^{(iv)}(a)|^{q}, |f^{(iv)}(b)|^{q}\})^{\frac{1}{q}}.$$

which completes the proof.

Now, to develop new refined inequalities of left hand side of Hermite-Hadamard result for the class of functions whose third derivatives at certain powers are quasiconvex, we need the following identity:

Lemma 2.5. Let Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be three times differentiable mapping on I° such that $f^{(m)} \in L[a,b]$, where $a,b \in I$ with a < b, then

$$f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)]$$

$$= \frac{(b-a)^{3}}{24} \left[\int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)f'''(\lambda a + (1-\lambda)b)d\lambda - \int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)f'''(\lambda b + (1-\lambda)a)d\lambda \right]$$

Proof. Integrating by parts, we have

$$\int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)f'''(\lambda a+(1-\lambda)b)d\lambda$$

$$=\frac{1}{b-a}\int_{0}^{\frac{1}{2}}(1-12\lambda^{2})f''(\lambda a+(1-\lambda)b)d\lambda$$

$$=\frac{2}{(b-a)^{2}}f'\left(\frac{a+b}{2}\right)+\frac{f'(b)}{(b-a)^{2}}-\frac{24}{(b-a)^{2}}\int_{0}^{\frac{1}{2}}\lambda f'(\lambda a+(1-\lambda)b)d\lambda$$

$$=\frac{2}{(b-a)^{2}}f'\left(\frac{a+b}{2}\right)+\frac{f'(b)}{(b-a)^{2}}+\frac{12}{(b-a)^{3}}f\left(\frac{a+b}{2}\right)+\frac{24}{(a-b)^{4}}\int_{b}^{\frac{a+b}{2}}f(x)dx$$
and
$$\int_{0}^{\frac{1}{2}}\lambda(1-2\lambda)(1+2\lambda)f'''(\lambda b+(1-\lambda)a)d\lambda$$

$$=\frac{-1}{b-a}\int_{0}^{\frac{1}{2}}(1-12\lambda^{2})f''(\lambda b+(1-\lambda)a)d\lambda$$

$$=\frac{2}{(b-a)^{2}}f'\left(\frac{a+b}{2}\right)+\frac{f'(a)}{(b-a)^{2}}-\frac{24}{(b-a)^{2}}\int_{0}^{\frac{1}{2}}\lambda f'(\lambda b+(1-\lambda)a)d\lambda$$

$$=\frac{24}{(b-a)^{2}}f'\left(\frac{a+b}{2}\right)+\frac{f'(a)}{(b-a)^{2}}-\frac{12}{(b-a)^{3}}f\left(\frac{a+b}{2}\right)+\frac{2}{(b-a)^{4}}\int_{a}^{\frac{a+b}{2}}f(x)dx$$
this ends the proof.

this ends the proof.

Theorem 2.6. Let $f:I\subseteq\mathbb{R}\to\mathbb{R}$ be a three time differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If |f'''| is quasi-convex on [a,b], then we have following inequality:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^{3}}{192} \left(\max\{|f'''(a)|, |f'''(b)|\} \right).$$
(4)

Proof. Using Lemma 2.5 and quasi-convexity of |f'''|, we get

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^{3}}{24} \left[\int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)|f'''(\lambda a + (1-\lambda)b)|d\lambda + \int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)|f'''(\lambda b + (1-\lambda)a)|d\lambda \right]$$

$$\leq \frac{(b-a)^{3}}{24} \left(\max\{|f'''(a)|, |f'''(b)|\} \right)$$

$$\times \left[\int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)d\lambda + \int_{0}^{\frac{1}{2}} \lambda(1-2\lambda)(1+2\lambda)d\lambda \right]$$

$$= \frac{(b-a)^{3}}{192} \left(\max\{|f'''(a)|, |f'''(b)|\} \right)$$

this complete the proof.

Theorem 2.7. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a three time differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If $|f'''|^{\frac{p}{p-1}}$ is quasi-convex on [a,b], and p > 1, then we have following inequality:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^{3}}{96} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} \left(\max\{|f'''(a)|^{q}, |f'''(b)|^{q}\} \right)^{\frac{1}{q}},$$
(5)

where $q = \frac{p}{p-1}$.

Proof. Using Lemma 2.5, Holder's inequality and quasi-convexity of $|f'''|^{\frac{p}{p-1}}$, we get

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^{3}}{24} \left[\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda)|f'''(\lambda a + (1-\lambda)b)|d\lambda + \int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda)|f'''(\lambda b + (1-\lambda)a)|d\lambda \right]$$

$$\leq \frac{(b-a)^{3}}{24} \left[\left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)^{p}(1+2\lambda)^{p}d\lambda \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} \lambda |f'''(\lambda a + (1-\lambda)a)|^{q}d\lambda \right)^{\frac{1}{q}} + \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)^{p}(1+2\lambda)^{p}d\lambda \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} \lambda |f'''(\lambda b + (1-\lambda)a)|^{q}d\lambda \right)^{\frac{1}{q}} \right]$$

$$\leq \frac{(b-a)^3}{24} \left(\max\{|f'''(a)|^q, |f'''(b)|^q \} \right)^{\frac{1}{q}} \left[\left(\int_0^{\frac{1}{2}} \lambda (1-2\lambda)^p (1+2\lambda)^p d\lambda \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \lambda d\lambda \right)^{\frac{1}{q}} + \left(\int_0^{\frac{1}{2}} \lambda (1-2\lambda)^p (1+2\lambda)^p d\lambda \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \lambda d\lambda \right)^{\frac{1}{q}} \right] \\
= \frac{(b-a)^3}{96} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\max\{|f'''(a)|^q, |f'''(b)|^q\} \right)^{\frac{1}{q}} \\
\qquad \Box$$

Theorem 2.8. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a three time differentiable mapping on I° such that $f''' \in L[a,b]$, where $a,b \in I$ with a < b. If $|f'''|^q$ is quasi-convex on [a,b], and $q \ge 1$, then we have following inequality:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x)dx + \frac{b-a}{24} [f'(b) - f'(a)] \right|$$

$$\leq \frac{(b-a)^{3}}{192} \left(\max\{|f'''(a)|^{q}, |f'''(b)|^{q} \} \right)^{\frac{1}{q}}.$$
(6)

Proof. Using Lemma 2.5, power mean inequality and quasi-convexity of $|f'''|^q$, we get

$$\begin{split} \left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x) dx + \frac{b-a}{24} [f'(b) - f'(a)] \right| \\ & \leq \frac{(b-a)^{3}}{24} \left[\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) |f'''(\lambda a + (1-\lambda)b)| d\lambda \right. \\ & + \int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) |f'''(\lambda b + (1-\lambda)a)| d\lambda \right] \\ & \leq \frac{(b-a)^{3}}{24} \left[\left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{1-\frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) |f'''(\lambda a + (1-\lambda)b)|^{q} d\lambda \right]^{\frac{1}{q}} \right. \\ & + \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{1-\frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) |f'''(\lambda b + (1-\lambda)a)|^{q} d\lambda \right)^{\frac{1}{q}} \right] \\ & \leq \frac{(b-a)^{3}}{24} \left(\max\{|f'''(a)|^{q}, |f'''(b)|^{q}\} \right)^{\frac{1}{q}} \\ & \times \left[\left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{1-\frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{\frac{1}{q}} \right. \\ & + \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{1-\frac{1}{q}} \left(\int_{0}^{\frac{1}{2}} \lambda (1-2\lambda)(1+2\lambda) d\lambda \right)^{\frac{1}{q}} \right] \\ & = \frac{(b-a)^{3}}{192} \left(\max\{|f'''(a)|^{q}, |f'''(b)|^{q}\} \right)^{\frac{1}{q}} \end{split}$$

the proof is so completed.

3 Application to Some Special Means

We now consider the application of our theorem to the special means. For positive numbers a > 0 and b > 0, define $A(a, b) = \frac{a+b}{2}$ and

$$L_p(a,b) = \begin{cases} \left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right], & p \neq -1, 0 \\ \frac{b-a}{\ln b - \ln a}, & p = -1 \\ \frac{1}{e} \left(\frac{b^b}{a^a} \right)^{\frac{1}{b-a}}, & p = 0 \end{cases}$$

We know that A and L_p respectively are called the arithmetic and generalized logarithmic means of two positive numbers a and b. By applying Hermite-Hadamard type inequalities established in Section 2, we are in a position to construct some inequalities for special means A and L_p . Consider the following function:

$$f(x) = \frac{x^{\alpha+4}}{(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)} \tag{7}$$

for $0 < \alpha \le 1$ and x > 0. Since $f^{(iv)}(x) = x^{\alpha}$ and $(\lambda x + (1-\lambda)y)^{\alpha} \le \lambda^{\alpha} x^{\alpha} + (1-\lambda)^{\alpha} y^{\alpha}$ for all x, y > 0 and $\lambda \in [0, 1]$, then $f^{(iv)}(x) = x^{\alpha}$ is α -convex function on \mathbb{R}^+ and

$$\frac{f(a) + f(b)}{2} = \frac{1}{(\alpha + 1)(\alpha + 2)(\alpha + 3)(\alpha + 4)} A(a^{\alpha + 4}, b^{\alpha + 4}),$$

$$\frac{1}{b - a} \int_{a}^{b} f(x) dx = \frac{1}{(\alpha + 1)(\alpha + 2)(\alpha + 3)(\alpha + 4)} L_{\alpha + 4}(a, b),$$

$$f'(b) - f'(a) = \frac{b - a}{(\alpha + 1)(\alpha + 2)} L_{\alpha + 2}(a, b)$$

Theorem 3.1. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$\left| 12A(a^{\alpha+4}, b^{\alpha+4}) - 12L_{\alpha+4}(a, b) - (b-a)^{2}(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a, b) \right|$$

$$\leq \frac{(b-a)^{4}}{60}(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)\max\{|a^{\alpha}|, |b^{\alpha}|\}$$

Proof. The assertion follows from inequality (1) applied to mapping (7).

Theorem 3.2. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$12A(a^{\alpha+4},b^{\alpha+4}) - 12L_{\alpha+4}(a,b) - (b-a)^2(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a,b)$$

$$\leq \frac{(b-a)^4}{2}\beta^{\frac{1}{p}}(2p+1,2p+1)(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)(\max\{|a^{\alpha}|^q,|b^{\alpha}|^q\})^{\frac{1}{q}}.$$

Proof. The assertion follows from inequality (2) applied to the mapping (7). \Box

Theorem 3.3. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$\left| 12A(a^{\alpha+4}, b^{\alpha+4}) - 12L_{\alpha+4}(a, b) - (b-a)^{2}(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a, b) \right|$$

$$\leq \frac{(b-a)^{4}}{60}(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)(\max\{|a^{\alpha}|^{q}, |b^{\alpha}|^{q}\})^{\frac{1}{q}}.$$

Proof. The assertion follows from inequality (3) applied to the mapping (7).

Theorem 3.4. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$\left| 12A^{\alpha+4}(a^{\alpha+4}, b^{\alpha+4}) - 12L_{\alpha+4}(a, b) - (b-a)^{2}(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a, b) \right|$$

$$\leq \frac{(b-a)^{3}}{16}(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)(\max\{|a^{\alpha}|, |b^{\alpha}|\}).$$

Proof. The assertion follows from inequality (4) applied to the mapping (7).

Theorem 3.5. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$\left| 12A^{\alpha+4}(a^{\alpha+4}, b^{\alpha+4}) - 12L_{\alpha+4}(a, b) - (b-a)^{2}(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a, b) \right|$$

$$\leq \frac{(b-a)^{3}}{8} \left(\frac{1}{p+1}\right)^{\frac{1}{p}} (\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4) \left(\max\{|a^{\alpha}|^{q}, |b^{\alpha}|^{q}\}\right)^{\frac{1}{q}}$$

Proof. The assertion follows from inequality (5) applied to the mapping (7). \Box

Theorem 3.6. For positive numbers a and b such that b > a and $0 < \alpha \le 1$, we have

$$\left| 12A^{\alpha+4}(a^{\alpha+4}, b^{\alpha+4}) - 12L_{\alpha+4}(a, b) - (b-a)^{2}(\alpha+3)(\alpha+4)(\alpha+4)L_{\alpha+2}(a, b) \right|$$

$$\leq \frac{(b-a)^{3}}{16}(\alpha+1)(\alpha+2)(\alpha+3)(\alpha+4)\left(\max\{|a^{\alpha}|^{q}, |b^{\alpha}|^{q}\}\right)^{\frac{1}{q}}.$$

Proof. The assertion follows from inequality (6) applied to the mapping (7).

Acknowledgement

The authors are grateful for financial support from Higher Education Commission of Pakistan.

References

- [1] M. Alomari, M. Darus, U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special mean, Comp.Math.Appl.59(2010)225-232.
- [2] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA 13(2) (2010). Article No. 3 Preprint.
- [3] M. Alomari, M. Darus, On Hermite-Hadamard type inequalities for log-convex functions on coordinates, J. Ineq. Appl. Volume 2009, Article ID 283147, 13pp. doi:http//dx.doi.org/10.1155/2009/283147.
- [4] S.S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl. 167(1992) 49-56.
- [5] S.S. Dragomir, Y.J.Cho, S.S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245(2000)289-501.
- [6] D.A. Ion, Some estimates on the Hermite-Hadamard inequalty through quasiconvex functions, Ann. Univ. Craiova Math. Com. Sci. Ser. 34(2007) 82-87.
- [7] C.E.M. Peearce, J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett. 13 (2000) 51-55.
- [8] S. Qaisar, S. Hussain, C. He, On new inequalities of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex with applications, Journal of the Egyptian Mathematical Society 22 (2014) 19-22.