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Abstract - The notion of single valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy 
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with proofs and examples. 
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1.  Introduction 

 
Neutrosophic sets (NSs) proposed by Smarandache [12, 13] is a powerful  mathematical 

tool for dealing with incomplete, indeterminate and inconsistent information in real world. 

they are a generalization of the theory of fuzzy sets [24], intuitionistic fuzzy sets [21, 23] 

and interval valued intuitionistic fuzzy sets [22]. The neutrosophic sets are characterized by 

a truth-membership function (t), an indeterminacy-membership function (i) and a falsity-

membership function (f) independently, which are within the real standard or nonstandard 

unit interval ]
−
0, 1

+
[. In order to practice NS in real life applications conveniently, Wang et 

al.[16] introduced the concept of a single-valued neutrosophic sets (SVNS), a subclass of 

the neutrosophic sets. The SVNS is a generalization of intuitionistic fuzzy sets, in which 

three membership functions are independent and their value belong to the unit interval [0, 

1]. Some more work on  single valued neutrosophic sets and their extensions may be found 

on [2, 3, 4, 5,15, 17, 19, 20, 27, 28, 29, 30]. 
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Graph theory has now become a major branch of applied mathematics and it is generally 

regarded as a branch of combinatorics. Graph is a widely used tool for solving 

combinatorial problems in different areas such as geometry, algebra, number theory, 

topology, optimization and computer science. Most important thing which is to be noted is 

that, when we have uncertainty regarding either the set of vertices or edges or both, the 

model becomes a fuzzy graph. Lots of works on fuzzy graphs and intuitionistic fuzzy 

graphs [6, 7, 8, 25, 27] have been carried out and all of them have considered the vertex 

sets and edge sets as fuzzy and /or intuitionistic fuzzy sets. But, when the relations between 

nodes(or vertices) in problems are indeterminate, the fuzzy graphs and intuitionistic fuzzy 

graphs are failed. For this purpose, Samarandache [9, 10, 11, 14, 34] have defined  four 

main categories of neutrosophic graphs, two based on literal indeterminacy (I), which 

called them; I-edge neutrosophic graph and I-vertex neutrosophic graph, these concepts are 

studied deeply and has gained popularity among the researchers due to its applications via 

real world problems [1, 33, 35]. The two others graphs are based on (t, i, f) components and 

called them; The (t, i, f)-Edge neutrosophic graph and the (t, i, f)-vertex neutrosophic 

graph, these concepts are not developed at all. In the literature the study of single valued 

neutrosophic graphs (SVN-graph) is still blank, we shall focus on the study of single 

valued neutrosophic graphs in this paper.  
 

In this paper, some certain types of single valued neutrosophic graphs are developed and 

some interesting properties are explored. 
 

 

2. Preliminaries  

 
In this section, we mainly recall some notions related to neutrosophic sets, single valued 

neutrosophic sets, fuzzy graph and  intuitionistic fuzzy graph  relevant to the present work. 

See especially [6, 7, 12, 13, 16] for further details and background. 

 

Definition 2.1 [12]. Let X  be a space of points (objects) with generic elements in X 

denoted by x;  then the neutrosophic set A (NS A) is an object having the form 

 

A = {< x:      ,      ,      >, x   X} 

 

where the functions T, I, F: X→]
−
0,1

+
[  define respectively the a truth-membership 

function, an indeterminacy-membership function, and a falsity-membership function of the 

element x   X to the set A with the condition 

 

                      
−
0 ≤      +      +      ≤ 3

+
               (1)             

 

The functions      ,       and       are real standard or nonstandard subsets of ]
−
0,1

+
[. 

 

Since it is difficult to apply NSs to practical problems, Wang et al. [16] introduced the 

concept of a SVNS, which is an instance of a NS and can be used in real scientific and 

engineering applications. 

 

Definition 2.2 [16]. Let X be a space of points (objects) with generic elements in X denoted 

by x. A single valued neutrosophic set A (SVNS A) is characterized by truth-membership 

function      , an indeterminacy-membership function      , and a falsity-membership 
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function      . For each point x in X       ,      ,         [0, 1]. A SVNS A can be 

written as  

 

             A = {< x:      ,      ,      >, x   X}                  (2) 

 

Definition 2.3 [6]. A fuzzy graph is a pair of functions G = (σ, µ) where σ is a fuzzy subset 

of a non empty set V and     is a symmetric fuzzy relation on σ. i.e  σ : V → [ 0,1] and  

 : VxV [0,1] such that     (  ) ≤ σ(u)   σ(v)  for all u, v   V where uv denotes the edge 

between u and v and σ(u)   σ(v) denotes the minimum of σ(u) and σ(v). σ is called the 

fuzzy vertex set of V and    is called the fuzzy edge set of E. 

 

 

 
 

 

 

 

 

 

                                                                 

                                                       

 

 

 

Figure 1: Fuzzy Graph 

 

Definition 2.4 [6]. The fuzzy subgraph H = (τ, ρ) is called a fuzzy subgraph of G = (σ, µ) 

If τ(u) ≤ σ(u) for all u   V and ρ(u, v) ≤   ( ,  )  for all u, v   V. 

 

Definition 2.5 [7]. An Intuitionistic fuzzy graph is of the form G =(V, E ) where 

 

i. V={  ,   ,….,    } such that   : V  [0,1] and   : V   [0,1] denote the degree of 

membership and nonmembership of the element      V, respectively, and  

0 ≤   (  ) +   (  )) ≤ 1   for every        V, (i = 1, 2, ……. n), 

 

ii.  E      V x V where    : VxV [0,1] and    : VxV  [0,1] are such that 

  (  ,   ) ≤ min [  (  ),   (  )] and   (  ,   )   max [  (  ),   (  )]  

and 0 ≤   (  ,   ) +   (  ,   ) ≤ 1 for every (  ,   )   E, ( i, j = 1,2, ……. n) 

 
 

 

 

 

 

 

 

 

 

                              

 
 

 

Figure 2: Intuitionistic Fuzzy Graph 
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Definition 2.6 [31]. Let A = (  ,    ,   ) and B = (  ,    ,   )  be single valued 

neutrosophic sets on a set X. If A = (  ,    ,   ) is a single valued neutrosophic relation on a 

set X, then A =(  ,    ,   ) is called a single valued neutrosophic relation on B = (  ,    , 

  ) if 

 

  (x, y) ≤ min(  (x),   (y))  

  (x, y) ≥ max(  (x),   (y)) and 

  (x, y) ≥ max(  x),    y)) for all x, y   X.  

 

A single valued neutrosophic relation A on X  is called symmetric if  

 

  (x, y) =   (y, x),  

  (x, y) =   (y, x),   (x, y) =   (y, x) and  

  (x, y) =   (y, x),   (x, y) =   (y, x) and  

  (x, y) =   (y, x) for all x, y   X. 

 

 

3. Single Valued Neutrosophic Graphs 
 

Throught this paper, we denote    = (V, E) a crisp graph, and G =(A, B) a single valued 

neutrosophic graph. 

 

Definition 3.1. A single valued neutrosophic graph (SVN-graph) with underlying set V is 

defined to be a pair G= (A,  B) where  

 

1.The functions   :V [0, 1],   :V [0, 1] and   :V [0, 1] denote the degree of truth-

membership, degree of indeterminacy-membership and falsity-membership of the element 

     V, respectively,  and 

 

0         +   (  ) +        3 for all      V (i=1, 2, …,n) 

 

2. The functions     : E   V x V  [0, 1],   :E   V x V  [0, 1] and   : E   V x V  [0, 1] 

are defined by 

 

              min [      ,       ], 

              max [      ,       ] and 

              max [      ,       ] 

 

Denotes the degree of truth-membership, indeterminacy-membership and falsity-

membership of the edge (  ,   )   E respectively, where 

 

 0              +            +              3  for all           E (i, j = 1, 2,…, n) 

 

We call A the single valued neutrosophic vertex set of V, B the single valued neutrosophic 

edge set of E, respectively, Note that B is a symmetric single valued neutrosophic relation 

on A. We use the notation         for an element of E Thus, G = (A, B) is a single valued 

neutrosophic graph of   = (V, E) if  
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            min [      ,       ], 

            max [      ,       ] and 

            max [      ,       ]     for all           E 

 

Example 3.2. Consider  a graph    such that V= {  ,   ,   ,   }, E={    ,     ,     , 

    }. Let A be a single valued neutrosophic subset of V and let B a single valued 

neutrosophic subset of E denoted by  
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Figure 3: G: Single valued neutrosophic graph 

 

In figure 3,  (i)   (  ,0.5, 0.1,0.4) is a single valued neutrosophic vertex or SVN-vertex 

 

(ii) (    , 0.2, 0.3, 0.4) is a single valued neutrosophic edge or SVN-edge 

 

(iii) (  , 0.5, 0.1, 0.4) and (  , 0.6, 0.3, 0.2) are single valued neutrosophic adjacent 

vertices. 

 

(iv) (    , 0.2, 0.3, 0.4)  and (    , 0.1, 0.2, 0.5)   are  a single valued neutrosophic 

adjacent edge. 

 

Note 1. (i) When       =      =       for some i and j, then there is no edge between    and    

. 

Otherwise there exists an edge between    and    . 

(ii)If one of the inequalities is not satisfied in (1) and (2), then G is not an SVNG 

 

The single valued neutrosophic graph G depicted in figure 3 is represented by the following  

adjacency  matrix     
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   = [

                                                

                                                 

                                                 

                                                  

] 

 
 

Definition 3.3. A partial SVN-subgraph of  SVN-graph G= (A, B)  is a SVN-graph  

H = (   ,   ) such that  

 

(i)       , where     
       ,     

       ,     
        for all       . 

(ii)       , where      
       ,      

        ,      
         for all (         . 

 

Definition 3.4. A SVN-subgraph of  SVN-graph G= (V, E)  is a SVN-graph H = (   ,   ) 

such that  

 

(i)       , where     
        ,     

       ,     
        for all     in the vertex set of     . 

(ii)       , where      
       ,      

        ,      
         for every (          in the 

edge set of    . 

 

Example 3.5.     in Figure 4   is a SVN-graph .    in Figure 5 is a partial SVN-subgraph and 

 

   in Figure 6  is a SVN-subgraph of    

 

 

 

 

 

 

 

 
Figure 4:   , a single valued neutrosophic graph 

 

 

 

                                     

 

 

 

 

 

 
Figure 5:   , a partial SVN-subgraph of     

 

 

 

 

 

                                 

 
Figure 6:   , a SVN-subgraph of    . 
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Definition 3.6. The two vertices are said to be adjacent in a single valued neutrosophic  

graph  G= (A, B) if             min [      ,       ],             max [      ,       ] and  

            max [      ,       ]. In this case,    and    are said to be neighbours and (  , 

  ) is incident at    and    also. 

 

Definition 3.7. A path  P  in a single valued neutrosophic  graph G= (A, B) is a sequence of 

distinct vertices   ,   ,    ,…     such that                  0,                 0 and 

               0  for  0  i   1. Here n   1 is called the length of the path P. A single node 

or vertex    may also be considered as a path. In this case the path is of the length (0, 0, 0). 

The consecutive pairs            are called edges of the path.We call P a cycle if   =    

and n 3. 

 

Definition 3.8. A single valued neutrosophic graph G= (A, B) is said to be connected if 

every pair of vertices has at least one single valued neutrosophic path between them, 

otherwise it is disconnected. 

 

Definition 3.9. A vertex     V of single valued neutrosophic graph G= (A, B) is said to be 

an isolated vertex if there is no effective edge incident at   . 

 

 

 

 

 

 

 

 
Figure 7: Example of single valued neutrosophic graph 

 

In figure 7, the single valued neutrosophic vertex      is an isolated vertex. 

 

Definition 3.10. A vertex in a single valued neutrosophic G= (A, B) having exactly one 

neighbor is called a pendent vertex. Otherwise, it is called non-pendent vertex. An edge in 

a single valued neutrosophic graph incident with a pendent vertex is called a pendent edge. 

Otherwise it is called non-pendent edge. A vertex in a single valued neutrosophic graph 

adjacent to the pendent vertex is called a support of the pendent edge 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8 :  Incident SVN-graph. 
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Definition 3.11. A single valued neutrosophic graph G= (A, B) that has neither self loops 

nor parallel edge is called simple single valued neutrosophic graph. 

  

Definition  3.12. When a vertex    is end vertex of some edges (  ,   )  of any SVN-graph  

G= (A, B). Then     and (  ,   ) are said to be incident to each other. In Figure 8,     , 

     and       are incident on   . 

 

Definition 3.13. Let G= (A, B) be a single valued neutrosophic graph. Then the degree of 

any vertex v is sum of degree of truth-membership, sum of degree of indeterminacy-

membership and sum of degree of falsity-membership of all those edges which are incident 

on vertex v denoted by d(v)= (     ,      ,      ) where  

 

     =∑            denotes  degree of truth-membership vertex. 

     =∑            denotes degree of indeterminacy-membership vertex. 

     =∑            denotes degree of falsity-membership vertex. 

 

Example 3.14. Let us consider a single valued  neutrosophic graph  G= (A, B) of     = (V, 

E) where V ={  ,   ,   ,   } and E={    ,     ,      ,     }.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Degree of vertex of single  valued neutrosophic graph 

 

We have, the degree of each vertex as follows: 

 

     =   0.3, 0.5, 0.9),      =   0.5, 0.6, 0.8),      =   0.5, 0.6, 0.9),      =   0.3, 0.5, 1) 

 

Definition 3.15 . A single valued neutrosophic graph G= (A, B) is  called constant if 

degree of each vertex is k =(  ,   ,   ). That is, d( ) = (  ,   ,   ) for all     V.  

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Constant SVN-graph. 
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Example 3.16. Consider a single valued  neutrosophic graph  G such that V ={  ,   ,   , 

  } and E={    ,     ,      ,     }.  

 

Clearly, as it is seen in Figure 10, G is constant SVN-graph since the degree of    ,   ,    

and    is (0.4, 0.6, 0.8). 

 

Definition 3.17. A single valued neutrosophic graph G=(A, B) of   = (V, E) is called  

strong single valued neutrosophic graph if  

 

            min [      ,        ] 

            max [      ,        ]  

            max [      ,       ]  

For all          E. 

 

Example 3.18. Consider  a graph    such that V= {  ,   ,   ,   }, E={    ,     ,     , 

    }. Let A be a single valued neutrosophic subset of V and let B a single valued 

neutrosophic subset of E denoted by  
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Figure 11: Strong SVN-graph 

 

By routing computations, it is easy to see that G is a strong single valued neutrosophic of 

  . 

 

Proposition 3.19. A single valued neutrosophic graph is the generalization of fuzzy graph 
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Proof: Suppose G= (V, E) be a single valued neutrosophic graph. Then by setting the 

indeterminacy- membership and falsity- membership values of vertex set and edge set  

equals to zero reduces the single valued neutrosophic graph to fuzzy graph. 

 

Proposition 3.20. A single valued neutrosophic graph is the generalization of intuitionistic 

fuzzy graph. 

 

Proof: Suppose G=(V, E) be a single valued neutrosophic graph. Then by setting the 

indeterminacy- membership value of vertex set and edge set equals to zero reduces the 

single valued neutrosophic graph to  intuitionistic fuzzy graph. 

 

Definition 3.21. The complement of a single valued neutrosophic graph G (A, B) on     is 

a single valued neutrosophic graph  ̅ on    where: 

 

1.  ̅ =A 

2.   
̅̅ ̅(   =       ,    ̅(   =       ,    

̅̅ ̅(    =       , for all     V. 

3.   
̅̅ ̅(      =     [         (  )] -  (     ) 

  ̅(      =     [         (  )]  -  (     ) and 

  
̅̅ ̅(      =     [         (  )]  -  (     ),  For all          E 

 

Remark 3.22. if G= (V, E) is  a single valued neutrosophic graph on    . Then from above 

definition, it follow that  ̅ ̅ is given by the single valued neutrosophic graph   ̅ ̅ =( ̅ ̅,  ̅ ̅) on 

   where 

 

  ̅ ̅=V and   
̅̅ ̅̅̅ ̅(      =     [         (  )]-  (     ),  

   ̅
̅ (      =     [         (  )]-  (     ),and 

   
̅̅ ̅̅̅ ̅(       =     [         (  )]-  (     ) For all          E. 

 

Thus    
̅̅ ̅̅̅ ̅ =  ,    ̅

̅  =  ,  and   
̅̅ ̅̅̅ ̅ =    on V, where E =(   ,    ,    ) is the  single valued 

neutrosophic relation on V. For any single valued neutrosophic graph G,  ̅ is strong single 

valued neutrosophic graph and  G    ̅. 

 

Proposition 3.23. G=  ̅ ̅ if and only if G is a strong single valued  neutrosophic graph. 

 

Proof. it is obvious. 

 

 

 

 

 
        

 

 

 

 

 
              Figure 12: G: Strong SVN- graph                                  Figure 13:  ̅ Strong SVN- graph 
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Figure 14:  ̅ ̅ Strong SVN- graph 

 

Definition 3.24. A strong single valued neutrosophic graph G is called self complementary 

if G   ̅. Where  ̅ is the complement of single valued neutrosophic graph G. 

 

Example 3.25. Consider a graph    = (V, E) such that V ={  ,   ,   ,   }, E={    ,     , 

    ,     }. Consider a single valued  neutrosophic graph G as in Figure 12 and 13, 

 

Clearly, as it is seen in Figure 14, G   ̅ ̅. Hence  G is self complementary. 

 

Proposition 3.26. Let G=(A, B) be a strong single valued neutrosophic graph. If 

 

            min [      ,       ], 

            max[      ,       ] and 

            max [      ,       ] for all        V.  

 

Then G is self complementary. 

 

Proof. Let G=(A, B) be a strong single valued neutrosophic graph such that  

 

            min [      ,       ] 

             max [      ,       ]  

             max [      ,       ]  

 

For all        V. Then G    ̅ ̅ under the identity map I: V  V. Hence G is self 

complementary . 

 

Proposition 3.27. Let G be a self complementary  single valued neutrosophic graph. Then 
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 ∑                         

 

∑               
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∑               
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∑                         

 

 

Proof. If G be a self complementary single valued neutrosophic graph. Then there exist an 

isomorphism  f:       satisfying   
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We have  
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That is 
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From these equations, Proposition 3.27 holds 

 

Proposition 3.28. Let    and    be strong single valued neutrosophic graph,   
̅̅ ̅      

̅̅ ̅ 

(isomorphism) 

 

Proof. Assume that    and    are isomorphic, there exist a bijective map  f:        

satisfying   

 

    
(  ) =   

(     ),  

    
(  ) =   

(     ), 

    
(  ) =   

(     )    for all       .  

 

And  
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By definition 3.21, we have  
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              =   
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For all            . Hence   
̅̅ ̅     

̅̅ ̅  The converse  is straightforward. 

 

4. Complete Single Valued Neutrosophic Graphs 

 
For the sake of simplicity we denote      ) by     ,      ) by    , and      ) by    . Also 

        ) by      ,         ) by      and         ) by     . 

 

Definition 4.1.  A single valued neutrosophic graph G= (A, B) is called complete  if   

    = min(   ,    ),      = max(   ,    ) and     = max(   ,    ) for all        V. 

 

Example 4.2. Consider a graph    = (V, E) such that V ={   ,   ,   ,   }, 

E={    ,     ,     ,     ,      ,     }. Then  G= (A, B) is a complete single valued  

neutrosophic graph of   . 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 13: Complete single valued neutrosophic graph 

 

Definition 4.3. The complement of a complete single valued neutrosophic    graph G =( A, 

B) of     = (V, E) is a single valued neutrosophic complete graph  ̅= ( ̅,  ̅) on   = ( ,  ̅)  

where 

 

1.  ̅ =V 

2.   
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̅̅ ̅(   =       , for all     V.  
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  ̅(      =     [         (  )]      (     ) and 

  
̅̅ ̅(      =     [         (  )]      (     ) for all          E 

 

Proposition 4.4. The complement of complete SVN-graph is a SVN-graph with no edge. 

Or if G is a complete then in  ̅ the edge is empty. 

 

Proof. Let G= (A, B) be a complete SVN-graph. So   

 

     = min(   ,    ),      = max(   ,    ) and     = max(   ,    )  for all        V 

 

Hence in  ̅, 

 

  ̅   =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

 

and 

 

   ̅  =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

Also 

 

 ̅   =     [       ]        for all i, j,…..,n 

        =     [       ]       [       ] for all i, j,…..,n 

       = 0      for all i, j,…..,n 

 

Thus ( ̅   ,   ̅  ,  ̅   ) = (0 , 0, 0) 

 

Hence, the edge set of  ̅ is empty if G is a complete SVN-graph. 

 

4. Conclusion  

 
Neutrosophic sets is a generalization of the notion of fuzzy sets and intuitionistic fuzzy 

sets. Neutrosophic models gives more precisions, flexibility and compatibility to the 

system as compared to the classical, fuzzy and/or intuitionistic fuzzy models. In this paper, 

we have introduced certain types of  single valued neutrosophic graphs, such as  strong 

single valued neutrosophic graph, constant single valued neutrosophic graph and complete 

single valued neutrosophic graphs. In future study, we plan to extend our research to 

regular and irregular single valued neutrosophic graphs, bipolar single valued neutrosophic 

graphs, interval valued neutrosophic graphs, strong interval valued neutrosophic, regular 

and irregular interval valued neutrosophic. 
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