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Abstaract− In the present paper, we introduce a new subclass Sm
s (b, γ, A,B), of starlike functions

with respect to m-symmetric points. Some basic properties, Integral representations, first Hankel
determinant and convolution properties for the functions belonging to this class are investigated.
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1 Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

n=2

anzn, (1)

which are analytic in the open unit disc E = {z : z ∈ C and |z| < 1}. Denote by E,
the class of functions

w(z) =
∞∑

k=1

ckz
k, (2)

which are analytic in the open unit disk E and satisfies the conditions w (0) =
0 and |w(z)| < 1. For two functions f(z) and g(z) analytic in E, we say that
f(z) is subordinate to g(z), denoted by f ≺ g or f(z) ≺ g(z), if there exists an
analytic function w(z) with |w(z)| ≤ |z| such that f(z) = g (w(z)). If g(z) is
univalent in E then f(z) ≺ g(z) if and only if f (0) = g (0) and f (E) ⊂ g (E). The
idea of subordinations goes back to Lindelöf [8]. Subordination was more formally
introduced and studied by Littelwood [9] and later by Rogosinski [15] and [16]. The
concept of subordination was considered by Miller [12] and further investigated by
Noor et al [13] and many others see [8, 17].

**Edited by Ali Yakar and Naim Çağman (Editor-in-Chief).
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Sakaguchi [18] introduced a class of functions starlike with respect to symmetric
points, it consists of functions f(z) ∈ S, satisfying the inequality

Re

{
zf ′(z)

f(z)− f (−z)

}
> 0, (z ∈ E) . (3)

Chand and Singh [2] introduced a class Sm
s of functions starlike with respect to

m-symmetric points, which consists of functions f(z) ∈ S satisfying the inequality

Re

{
zf ′(z)

fm(z)

}
> 0, (z ∈ E) , (4)

where

fm(z) =
1

m

m−1∑
υ=0

ε−υf (ευz) , (εm = 1 : m ∈ N) . (5)

From (5), we can write

fm(z) =
1

m

m−1∑
υ=0

ε−υf (ευz) =
1

m

m−1∑
υ=0

ε−υ

[
ευz +

∞∑
n=2

an (ευz)n

]
(6)

= z +
∞∑

n=2

anψnz
n, (7)

where,

ψn =
1

m

m−1∑
υ=0

ε(n−1)υ, (m ∈ N; n ≥ 2; εm = 1) . (8)

Note that the following identities follow directly from the above definition (5),

fm (ευz) = ευfm(z), (9)

f ′m (ευz) = fm(z) =
1

m

m−1∑
υ=0

f (ευz) , (z ∈ E) . (10)

Using the concept of subordination we introduce a subclass Sm
s (b, γ, A, B) as

follows.

Definition 1.1. A function f ∈ A is said to be in the class Sm
s (b, γ, A, B), if it

satisfies the following subordination condition:

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
≺

(
1 + Az

1 + Bz

)γ

, (z ∈ E) , (11)

where b ∈ C \ {0}, −1 ≤ B < A ≤ 1 and 0 < γ ≤ 1.

Where fm(z) is defined in equation (5). To avoid repetitions, it is admitted once
that b ∈ C \ {0}, −1 ≤ B < A ≤ 1 and 0 < γ ≤ 1.

Special Cases;
(i) For b = 1, γ = 1, we obtain the class studied by Al-Shaqsi and Darus [1].
(ii) For b = 1, γ = 1, A = β, B = −αβ, we obtain the class studied by Gao and

Zhou [3].
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(iii) For m = 1, b = 1, γ = 1, we obtain the class studied by Janowski [4].
(iv) For m = 1, b = e−iλλ, γ = 1, A = 1 − 2δ, B = −1, we obtain the class

studied by Keogh and Markes [5].
(v) For m = 1, b = (1− ρ) e−iβ, γ = 1, A = 1, B = −1, we obtain the class studied

by Libera [7].
(vi) For b = 1, A = 1, B = −1, we obtain the class studied by Ming-Sheng Liu

and Yu-Can Zhu [10].
(vii) For m = 2, b = 1, A = 1, B = −1, we obtain the class studied by V.

Ravichandran [14].
(viii) For m = 2, b = 1, γ = 1, A = 1, B = −1, we obtain the class studied by

Sakaguchi [18].

2 Preliminary

To prove our main results we need the following Lemmas.

Lemma 2.1. [11] If p(z) = 1+ c1z + c2z
2 + . . . is analytic function with positive real

part in E and υ is a complex number, then

∣∣c2 − υc2
1

∣∣ ≤ 2 max{1, |2υ − 1|}.

The result is sharp for the functions given by

p(z) =
1 + z

1− z
, p(z) =

1 + z2

1− z2
.

Lemma 2.2. [11] If p(z) = 1+ c1z + c2z
2 + . . . is analytic function with positive real

part in E, then

∣∣c2 − υc2
1

∣∣ ≤



−4υ + 2, (υ ≤ 0) ,
2, (0 ≤ υ ≤ 1) ,
4υ − 2, (υ ≥ 1).

When υ < 0 or υ > 0, equality holds if and only if p(z) = 1+z
1−z

or one of its rotations.

If 0 < υ < 1, then the equality holds if and only if p(z) = 1+z2

1−z2 or one of its rotations.
If υ = 0, the equality holds if and only if

p(z) =

(
1 + ξ

2

)(
1 + z

1− z

)
+

(
1− ξ

2

)(
1− z

1 + z

)
, (0 ≤ ξ ≤ 1) ,

or one of its rotations. For υ = 1, equality holds if and only if p(z) is the reciprocal
of one of the functions such that equality holds in the case of υ = 0. Although the
above upper bound is sharp, it can be improved as follows when 0 < υ < 1 :

∣∣c2 − υc2
1

∣∣ + υ |c1|2 ≤ 2, (0 < υ ≤ 1

2
),

∣∣c2 − υc2
1

∣∣ + (1− υ) |c1|2 ≤ 2, (
1

2
≤ υ < 1).

In this paper, we investigate integral representation, Feketo-Szegö inequality and
convolution properties for the class Sm

s (b, γ, A, B). The motivation of this paper is
to improve and generalize previously known results.
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3 Main Results

3.1 Integral Representation

First we give meaningful conclusion about the class Sm
s (b, γ, A, B).

Theorem 3.1. Let f(z) ∈ Sm
s (b, γ, A, B), then fm(z) ∈ S∗ (b, γ, A, B) ⊂ S.

Proof. For f(z) ∈ Sm
s (b, γ, A, B), we can obtain

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
≺

(
1 + Az

1 + Bz

)γ

, (z ∈ E) . (12)

Substituting z by εµz respectively (υ = 0, 1, 2, 3, . . . , m− 1), we have

1 +
1

b

(
ευzf ′ (ευz)

fm (ευz)
− 1

)
≺

(
1 + A(ευz)

1 + B(ευz)

)γ

≺
(

1 + Az

1 + Bz

)γ

, (z ∈ E) . (13)

By definition of fm(z) and ε = exp
(

2π
m

)
, we know ε−υfm (ευz) = fm(z). Then

equation (13) becomes

1 +
1

b

(
zf ′ (ευz)

fm (ευz)
− 1

)
≺

(
1 + Az

1 + Bz

)γ

, (z ∈ E) . (14)

Let υ = 0, 1, 2, 3, . . . , m− 1 in (14), respectively and sum them we can get

1 +
1

b

(
zf ′m(z)

fm(z)
− 1

)
= 1 +

1

b

(
1

m

m−1∑
µ=0

zf ′ (ευz)

fm(z)
− 1

)
≺

(
1 + Az

1 + Bz

)γ

, (z ∈ E) .

That is, fm(z) ∈ Sm
s (b, γ, A, B) ⊂ S.

Putting b = 1, γ = 1 in Theorem 3.1, we can obtain the following result obtained
by O. Kwon and Y. Sim [6].

Corollary 3.2. Let f(z) ∈ Sm
s (A, B), then fm(z) ∈ S∗ (A,B) ⊂ S.

Putting b = 1, γ = 1, A = 1, B = −1 and m = 2, in Theorem 3.1, we can obtain
the Corollary 3.3, below which is comparable to the corollary of O. Kwon and Y.
Sim [6, Cor.2.2].

Corollary 3.3. Let f(z) ∈ Sm
s , defined as (3). Then the odd function,

1

2
(f(z)− f (−z)) ,

is a starlike function.

Now we give the integral representations of the functions belonging to the class
Sm

s (b, γ, A, B).

Theorem 3.4. Let f(z) ∈ Sm
s (b, γ, A, B). Then

fm(z) = z · exp

ευz∫

0

{
b

m

m−1∑
υ=0

1

t

((
1 + Aw (t)

1 + Bw (t)

)γ

− 1

)}
dt. (15)

where fm(z) is define by (5), w(z) is analytic in E with w (0) = 0, and |w(z)| < 1.
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Proof. Suppose that f(z) ∈ Sm
s (b, γ, A, B). It is easy to know that condition (11),

can be written as

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
=

(
1 + Aw(z)

1 + Bw(z)

)γ

, (16)

where w(z) is analytic in E and w (0) = 0, |w(z)| < 1. Substituting z by ευz
respectively (υ = 0, 1, 2, . . . ,m− 1), we have

zf ′ (ευz)

ε−υfm (ευz)
= b

((
1 + Aw (ευz)

1 + Bw (ευz)

)γ

− 1

)
+ 1. (17)

Letting υ = 0, 1, 2, . . . , m− 1 in (17), respectively and summing them we can obtain

zf ′m(z)

fm(z)
=

1

m

m−1∑
υ=0

{
b

((
1 + Aw (ευz)

1 + Bw (ευz)

)γ

− 1

)
+ 1

}
. (18)

From the equality (18), we can obtain

f ′m(z)

fm(z)
− 1

z
=

1

m

m−1∑
υ=0

1

z

{
b

((
1 + Aw (ευz)

1 + Bw (ευz)

)γ

− 1

)
+ 1

}
− 1

z
. (19)

Integrating equality (19), we have

log
fm(z)

z
=

z∫

0

{
1

m

m−1∑
υ=0

1

ζ

{
b

((
1 + Aw (ευζ)

1 + Bw (ευζ)

)γ

− 1

)
+ 1

}
− 1

ζ

}
dζ

=

ευz∫

0

{
1

m

m−1∑
υ=0

1

t

{
b

((
1 + Aw (t)

1 + Bw (t)

)γ

− 1

)
+ 1

}
− 1

t

}
dt. (20)

That is

fm(z) = z · exp

ευz∫

0

{
1

m

m−1∑
υ=0

b

t

((
1 + Aw (t)

1 + Bw (t)

)γ

− 1

)}
dt.

Hence the proof of the Theorem 3.4 is complete.

Putting b = 1 and γ = 1 in Theorem 3.4, we can obtain the following result
obtained by O. Kwon and Y. Sim [6].

Corollary 3.5. Let f(z) ∈ Sm (A,B). Then

fm(z) = z · exp





A−B

m

m−1∑
υ=0

ευz∫

0

w (t)

t (1 + Bw (t))
dt



 ,

where fm(z) is define by (5) and w(z) is analytic in E with w (0) = 0, |w(z)| < 1.

Theorem 3.6. Let f(z) ∈ Sm
s (b, γ, A, B). Then

f(z) =

z∫

0





exp
ευz∫
0

{
b
m

m−1∑
υ=0

1
t

((
1+Aw(t)
1+Bw(t)

)γ

− 1
)}

dt

×
(
1 + b

((
1+Aw(ζ)
1+Bw(ζ)

)γ

− 1
))





dζ, (21)

where fm(z) is define by (5) and w(z) is analytic in E with w (0) = 0, |w(z)| < 1.
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Proof. Let f(z) ∈ Sm
s (b, γ, A, B). Then from equalities (15) and (16) we have

f ′(z) =
fm(z)

z
·
(

1 + b

((
1 + Aw(z)

1 + Bw(z)

)γ

− 1

))

f ′(z) = exp

ευz∫

0

{
1

m

m−1∑
υ=0

1

t

{
b

((
1 + Aw (t)

1 + Bw (t)

)γ

− 1

)
+ 1

}
− 1

t

}
dt

×
(

1 + b

((
1 + Aw(z)

1 + Bw(z)

)γ

− 1

))
.

Integrating the above equality, we can obtain (21). Hence the proof of the Theorem
3.6 is complete.

Putting b = 1 and γ = 1 in Theorem 3.6, we can obtain the following result
obtained by O. Kwon and Y. Sim [6].

Corollary 3.7. Let f(z) ∈ Sm
s (A,B). Then

f(z) =

z∫

0

exp





A−B

m

m−1∑
υ=0

ευζ∫

0

w (t)

t (1 + Bw (t))
dt



 ·

(
1 + Aw (ζ)

1 + Bw (ζ)

)
dζ,

where fm(z) is define by (5) and w(z) is analytic in E with w (0) = 0, |w(z)| < 1.

3.2 Coefficient Problems

A typical problem in geometric function theory is to study a functional made up of
combinations of the coefficients of the original function. Usually, there is a parameter
over which the extremal value of the functional is needed. Here we deals with one
important functional of this type the Fekete-Szegö functional. In this sections, we
proved the first Hankel determinant and Feketo-Szegö inequality for the functions
belonging to the class Sm

s (b, γ, A, B).

Theorem 3.8. Let f(z) ∈ Sm
s (b, γ, A,B). Then

∣∣a3 − µa2
2

∣∣ ≤ |b| γ (A−B)

(3− ψ3)

max



1,

∣∣∣∣∣∣

2
(2−ψ2)2

{(2− ψ2
2) [B + 1

2
(1− γ) (A−B)]− bγ (A−B)

((2− ψ2)ψ2 − (3− ψ3) µ)− (2− ψ2)
2}

∣∣∣∣∣∣



 ,

where ψn, is given in (8). The result is sharp.

Proof. Suppose that f(z) ∈ Sm
s (b, γ, A, B). It is easy to know that condition (11),

can be written as

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
=

(
1 + Aw(z)

1 + Bw(z)

)γ

, (22)

where w(z) is analytic in E and w (0) = 0, |w(z)| < 1. We can write equation (22),
as

zf ′(z)

fm(z)
= 1 + b

((
1 + Aw(z)

1 + Bw(z)

)γ

− 1

)
. (23)
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By expanding the L.H.S of (23), we can obtain

1 + (2− ψ2) a2z +
(
(3− ψ3) a3 +

(
ψ2

2 − 2ψ2

)
a2

2

)
z2 + · · · , (24)

similarly expanding the R.H.S of (23), we can obtain

1+b×(γ (A−B) c1z

+(γ (A−B) c2 − γ (A−B) [B +
1

2
(1− γ) (A−B)]c2

1)z
2 + · · · ). (25)

Equating the coefficients of z and z2 in (24) and (25) we have

a2 =
bγ (A−B)

(2− ψ2)
c1, (26)

and

a3 =
bγ (A−B)

(3− ψ3)
c2 − bγ (A−B)

(3− ψ3) (2− ψ2)

×
(

(2− ψ2) [B +
1

2
(1− γ) (A−B)]− bψ2γ (A−B)

)
c2
1. (27)

For any complex number µ, we have

a3−µa2
2 =

bγ (A−B)

(3− ψ3)
c2− bγ (A−B)

(2− ψ2)
2 (3− ψ3)

×
{

(2− ψ2)
2 [B +

1

2
(1− γ) (A−B)]− bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)

}
c2
1

or

a3 − µa2
2 =

bγ (A−B)

3− ψ3

×

c2 − 1

(2− ψ2)
2





(2− ψ2)
2 [B + 1

2
(1− γ) (A−B)]

−bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)



 c2

1


 ,

we can write

a3 − µa2
2 =

bγ (A−B)

(3− ψ3)

{
c2 − νc2

1

}
,

where

ν =
1

(2− ψ2)
2

×
{

(2− ψ2)
2 × [B +

1

2
(1− γ) (A−B)]− bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)

}
,

our result now follows directly by an applications of Lemma 2.1. Equality can be
attained by the function

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
=

(
1 + Az

1 + Bz

)γ

,
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or

1 +
1

b

(
zf ′(z)

fm(z)
− 1

)
=

(
1 + Az2

1 + Bz2

)γ

.

Hence the proof of the Theorem 3.8 is complete.

Putting b = 1, γ = 1, A = 1 and B = −1 in Theorem 3.8, we can obtain the
following Corollary.

Corollary 3.9. Let f(z) ∈ Sm
s . Then

∣∣a3 − µa2
2

∣∣ ≤ 2

(3− ψ3)

max

{
1,

∣∣∣∣
2

(2− ψ2)
2{

(
2− ψ2

2

)
+ 2 ((2− ψ2) ψ2 − (3− ψ3) µ)}+ 1

∣∣∣∣
}

,

where ψn, is given by (8). The result is sharp.

Setting m = 1, b = 1, A = 1 and B = −1 in Theorem 3.8, we can obtain
Corollary 2.2, below which is comparable to the result obtain by Cho and Owa [19,
Th. 2.1,α = 0].

Corollary 3.10. Let f(z) ∈ S̃∗γ . Then

∣∣a3 − µa2
2

∣∣ ≤ γ max {1 , |(3− 4µ) γ|} ,

Putting b = 1, γ = 1, µ = 1, A = 1 and B = −1 in Theorem 3.8, we can obtain
the following Corollary.

Corollary 3.11. Let f(z) ∈ Sm
s . Then

∣∣a3 − a2
2

∣∣ ≤ 2

(3− ψ3)

max

{
1,

∣∣∣∣
2

(2− ψ2)
2{

(
2− ψ2

2

)
+ 2 ((2− ψ2) ψ2 − (3− ψ3))}+ 1

∣∣∣∣
}

,

where ψn, is given by (8). The result is sharp.

Theorem 3.12. Let f(z) ∈ Sm
s (b, γ, A, B). If b > 0, then

|a3 − µa2
2| ≤




2bγ(A−B)

(3−ψ3)(2−ψ2)2
[2bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)

−2 (2− ψ2)
2 (

B + 1
2
(1− γ) (A−B)

)
+ (2− ψ2)

2], (µ ≤ σ1) ,

4bγ(A−B)
(3−ψ3)

, (σ1 ≤ µ ≤ σ2) ,

2bγ(A−B)

(3−ψ3)(2−ψ2)2
[2 (2− ψ2)

2 [
(
B + 1

2
(1− γ) (A−B)

)

−2bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)− (2− ψ2)
2], (µ ≥ σ2),
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where

σ1 =
bγ (A−B) (2− ψ2) ψ2 − (2− ψ2)

2 [B + 1
2
(1− γ) (A−B)]

bγ (A−B) (3− ψ3)
, (28)

and

σ2 =
(2− ψ2)

2 + bγ (A−B) (2− ψ2) ψ2 − (2− ψ2)
2 [B + 1

2
(1− γ) (A−B)]

bγ (A−B) (3− ψ3)
, (29)

where ψn, is given by (8). The result is sharp.

Proof. Since

∣∣a3 − µa2
2

∣∣ ≤ γb (A−B)

(3− ψ3)

×

c2 − 1

(2− ψ2)
2





(2− ψ2)
2 (

B + 1
2
(1− γ) (A−B)

)

−bγ (A−B) ((2− ψ2) ψ2 − (3− ψ3) µ)



 c2

1


 ,

therefore using Lemma (2.2), we can get the required result. To show that the
bounds are sharp, we defined the functions F (z), as follows:

1 +
1

b

(
zF ′(z)

Fm(z)
− 1

)
=

(
1 + Az

1 + Bz

)γ

, if µ < σ1, µ > σ2,

1 +
1

b

(
zF ′(z)

Fm(z)
− 1

)
=

(
1 + Az2

1 + Bz2

)γ

, if σ1 < µ < σ1,

1 +
1

b

(
zF ′(z)

Fm(z)
− 1

)
=

(
1 + Aφ(z)

1 + Bφ(z)

)γ

, if µ = σ1,

1 +
1

b

(
zF ′(z)

Fm(z)
− 1

)
=

(
1− Aφ(z)

1−Bφ(z)

)γ

, if µ = σ2,

where φ(z) = z(z+η)
1+ηz

with 0 ≤ η ≤ 1.

Setting m = 1, b = 1, A = 1 and B = −1 in Theorem 3.12, we can obtain
Corollary 3.13, below which is comparable to the result obtain by Cho and Owa [19,
Th.2.1, α = 0].

Corollary 3.13. Let f(z) ∈ S̃∗γ . Then

∣∣a3 − µa2
2

∣∣ ≤





(3− 4µ) γ2
(
µ ≤ 3γ−1

4γ

)
,

γ,
(

3γ−1
4γ

≤ µ ≤ 3γ+1
4γ

)
,

(4µ− 3) γ2
(
µ ≥ 3γ+1

4γ

)
.

The result is sharp.
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Theorem 3.14. Let f(z) ∈ Sm
s (b, γ, A, B). If b > 0, then

∣∣a3 − µa2
2

∣∣+
(

µ− bγ (A−B) (2− ψ2) ψ2 − (2− ψ2)
2 [B + 1

2
(1− γ) (A−B)]

bγ (A−B) (3− ψ3)

)
|a2|2

≤ 4bγ (A−B)

(3− ψ3)
, (σ1 ≤ µ ≤ σ3) ,

∣∣a3 − µa2
2

∣∣

+

(
(2− ψ2)

2 + bγ (A−B) (2− ψ2) ψ2 − (2− ψ2)
2 [B + 1

2
(1− γ) (A−B)]

bγ (A−B) (3− ψ3)
− µ

)
|a2|2

≤ 4bγ (A−B)

(3− ψ3)
, (σ3 ≤ µ ≤ σ2) ,

where σ1 and σ2 are given by (28) and (29) and

σ3 =
(2− ψ2)

2

2bγ (A−B) (3− ψ3)

×
(

bγ (A−B) (2− ψ2) ψ2 − (2− ψ2)
2 [B +

1

2
(1− γ) (A−B)]

)
.

The result is sharp.

Proof. The proof of Theorem 3.14 is similar to the proof of Theorem 3.12 so the
details are omitted.

Putting b = 1, γ = 1, A = 1 and B = −1 in Theorem (3.14), we can obtain the
following Corollary.

Corollary 3.15. Let f(z) ∈ Sm
s (b, γ, A, B). If b > 0, then

∣∣a3 − µa2
2

∣∣ +

(
µ− 2 (2− ψ2) ψ2 + (2− ψ2)

2

2 (3− ψ3)

)
|a2|2

≤ 8

(3− ψ3)
, (σ1 ≤ µ ≤ σ3) ,

∣∣a3 − µa2
2

∣∣ +

(
(2− ψ2)

2 + 2 (2− ψ2) ψ2 + (2− ψ2)
2

2 (3− ψ3)
− µ

)
|a2|2

≤ 8

(3− ψ3)
, (σ3 ≤ µ ≤ σ2) ,

where σ1 and σ2 are given by (28) and (29) and

σ3 =
(2 + ψ2) (2− ψ2)

3

4 (3− ψ3)
.

The result is sharp.
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3.3 Convolution Properties

In this sections the necessary and sufficient conditions are given in terms of convo-
lution operators for a function to be in the class Sm

s (b, γ, A, B).

Theorem 3.16. A function f(z) ∈ Sm
s (b, γ, A, B), if and only if

1

z

{
f(z) ∗

(
z

(1− z)2

((
1 + B(eiθ)

)γ)− ((
1 + A(eiθ)

)γ)
h(z)

)}
6= 0, (30)

for all z ∈ E and 0 ≤ θ < 2π, where h(z) is given by (36).

Proof. Assume that f(z) ∈ Sm
s (b, γ, A, B), then we have

zf ′(z)

fm(z)
≺

(
1 + Az

1 + Bz

)γ

, (z ∈ E) . (31)

If and only if
zf ′(z)

fm(z)
6=

(
1 + A(eiθ)

1 + B(eiθ)

)γ

, (32)

for all z ∈ E, and 0 ≤ θ < 2π. The condition (32), can be written as

1

z

{
zf ′(z)

[(
1 + B(eiθ)

)γ]− fm(z)
[(

1 + A(eiθ)
)γ]} 6= 0. (33)

On the other hand it is well known that

zf ′(z) = f(z) ∗ z

(1− z)2 . (34)

And from the definition of fm(z), we have

fm(z) = z +
∞∑

n=2

anψnzn = (f ∗ h) (z), (35)

where

h(z) = z +
∞∑

n=2

ψnzn, (36)

for

ψn =

{
1, n = lm + 1
0, n 6= lm + 1

(l ∈ N0) ,

substituting (34) and (35) in (33) we can get (30). This completes the proof of
the Theorem 3.16.

4 Conclusion

In this paper, we have used the techniques of differential subordination and convo-
lution to obtain inclusion theorems and subordination theorems. Many interesting
particular cases of the main theorems are emphasized in the form of corollaries. The
ideas and techniques of this work may motivate and inspire the others to explore
this interesting field further.
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