ISSN: 2149-1402

A STUDY ON PRE-m_x CONTINUOUS FUNCTION

Sharmistha Bhattacharya (Halder)^{1,*} Gour Pal²

<halder 731@rediffmail.com> <gourpal74@gmail.com>

¹Tripura University, Mathematics Department, India. ²Women's College, Agartala, Mathematics Department, Tripura, India.

Abstract – The aim of this paper is to introduce the concept of pre m_X continuous function and to show some of its application. Also the concept of pre m_X open mapping and pre m_X homeomorphism is studied. The concept of pre m_X open set has already been introduced by the authors in 2011. In this paper a topology is considered which is generated from m_X structure and it is denoted as T_{m_X} . The concept of pre m_X continuous function is discussed in the topological space (X, T_{m_X}) generated from (X, m_X) .

Keywords – Pre m_X continuous function, Pre m_X open mapping, Topology generated by m_X structure.

1. Introduction and Preliminaries

The concept of m_x-open set has been introduced by H. Maki in 1996.[8] and the concept of preopen set has been introduced by Mashour et al [9]. Lots of applications of preopen set and m_x structure in ordinary topological space has been introduced by various researchers.[1][2][3]. The concept of m_x pre-open set has been introduced by Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero [17]. And the concept of Pre m_X open set has been introduced by the authors in 2011[4]. In this paper the concept of Pre m_X continuous function, Pre m_X irresolute continuous function, Pre m_X open mapping, Introduction. Pre m_X irresolute mapping, Pre m_X homeomorphism etc are introduced and some properties are discussed.

In the second section the concept of pre m_x-continuous function, pre m_x irresolute continuous function is discussed.

In the third section, the concept of pre m_X open mapping etc is introduced and their connection are shown. Lastly the concept of pre m_X homeomorphism is introduced and some of its utility is studied.

^{**} Edited by Oktay Muhtaroğlu (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*}Corresponding Author.

Let us rememorize some of the basic concepts used by various researchers.

Defintion 1.1. [8] A structure is said to be a m_X structure iff $\phi \in m_X$, $X \in m_X$. From this structure the following operators may be defined as below:

For any subset A of X

 $m_X \text{ IntA} = \bigcup \{G: G \subseteq A, G \text{ is a } m_X \text{ open set in } X \}$ $m_X \text{ ClA} = \bigcap \{G: G \supseteq A, G \text{ is a } m_X \text{ closed set in } X \}$

The subset A of X is said to be a

1.[8] open m_{X} set in a m_X structure if m_X intA=A

2. [9] Preopen set in ordinary topological space if Acint(cl(A))

3. [14] m_X -regular open set in m_X structure if $A = m_X$ -int m_X -clA.

4. [8] m_X -generalized closed set in m_X structure if there exist a m_X -open set containing A such that m_X ClA \subset U whenever A \subset U.

5. [17] m_X --preopen set in X if $A \subseteq m_X Int(m_X Cl(A))$

6. [4] Pre-m_X open set on an m_X structure if $A \subseteq Int(m_X \cdot Cl(A)))$.

From the above definitions a connection between the sets are shown in the following figure

$$m_X$$
- dense
 \downarrow
 m_X - open \rightarrow m_X-pre open \rightarrow pre-m_X open \rightarrow b-m_Xopen
 \uparrow
regular m_X-open

Definition 1.2. A mapping $f: X \rightarrow Y$ is said to be a

1. [9] pre continuous function in an ordinary topological space if $f^{-1}(A) \subset PO(X)$ for every open set A in Y.

2. [14] m_X -regular continuous function in a m_X structure if $f^{-1}(A)$ is a m_X regular open set in X for every m_X -regular open set A in Y.

3. [13] m_X -generalized continuous function in a m_X structure if $f^{-1}(A)$ is a m_X closed set in X for every m_X -closed set A in Y.

4. [8] m_X -continuous function in a m_X structure if $f^{-1}(A)$ is a m_X open set in X whenever A is an m_X open set in Y.

5. [9] Preopen mapping in an ordinary topological space if the image of each open set in X is a preopen set in Y.

6. [8] m_X -open mapping in a m_X structure if image of each m_X -open set in X is a m_X - open set in Y.

7. [14] m_X - regular-open mapping in a m_X structure if the image of each m_X -open set in X is a m_X - regular open set in Y.

8.[9] pre irresolute continous function in an ordinary topological space if $f^{-1}(U) \subset PO(X)$ for every $U \subset PO(Y)$,

9. [17] m_X pre irresolute continuous function in a m_X structure if the inverse image of every m_X pre open set in Y is a m_X pre open set in X.

Definition 1.3 [9] A bijective mapping $f : (X,\tau) \to (Y,\sigma)$ from X to Y is called a pre homeomorphism if both f and f^{-1} are pre irresolute mappings.

Throughout this paper we are considering the topological space as the structure formed by introducing the missing elements in $m_{\rm X}$ structure i.e. along with the elements of $m_{\rm X}$ structure we are also introducing the elements which are essentially needed for a topological space .Let us name this type of topological space as a topological space generated by an $m_{\rm X}$ structure and denote it as $T_{m_{\rm X}}$.

Let X = {a,b,c} and the corresponding m_X structure be { ϕ , X, {a,b},{b,c}}. It is not a topology since finite intersection of the elements in m_X is not in m_X . Now $T_{m_X} = {\phi, X, {a,b}, {b,c}, {b}}$. This is a topology generated by an m_X structure.

For a topology generated by m_X structure let us denote the interior as Int_{Tm_X} and the closure as Cl_{Tm_X} . Now since $m_X \subseteq T_{m_X}$, m_X Int $\leq Int_{Tm_X} \leq Cl_{Tm_X} \leq m_X$ Cl.

2. Pre m_x Continuous Function

In this section the concept of pre m_X continuous function, pre m_X irresolute continuous mapping, pre m_X open mapping, pre m_X homeomorphism are introduced and their properties are studied.

Definition 2.1. A function $f:(X, T_{m_X}) \rightarrow (Y, T_{m_Y})$ is said to be a pre m_X-continuous function if the inverse image of each m_X-open set in Y is a pre m_X -open set in X.

Example 2.2. Let $X = \{a, b, c, d\}$ and the m_X structure be $m_X = \{\phi, X, \{a,b\}, \{c\}\}, Tm_x = \{\phi, X, \{a,b\}, \{c\}, \{a,b,c\}\}.$

Let $Y=\{x,y,z,\ t\}$ then m_X structure is $m_X(y){=}\{\varphi,\ Y,\ \{x\},\ \{y\}\}$ and $Tm_x{=}\{\varphi,Y,\{x\},\{y\},\{x,y\}\}$

Let us consider a mapping $f: (X,T_{m_X}) \rightarrow (Y,T_{m_Y})$ such that f(a) = x, f(b)=y, f(c)=z, f(d)=t. Now the inverse image of each m_X open set in Y are respectively ϕ , X, {a}, {b}. Now a subset A of X is said to be a Pre-m_X open set on an m_X structure if $A \subseteq Int_{Tm_X}(m_X.Cl(A))$. Here ϕ , X, {a}, {b} are all pre m_X open set. Hence f is a pre m_X continuous function.

Theorem 2.3. Let $f : (X,T_{m_X}) \to (Y,T_{m_Y})$ be a mapping from X to Y. Every m_X continuous function f is also a pre m_X –continuous function.

Proof: Let $x \in X$ and V be any m_X open set containing f(x).Since f is a m_X – continuous function there exist $U \in m_X(X)$ containing x such that $f^{-1}(V)$ is m_X - open in X. By the figure indicating the connection of the set ,it is shown that every m_X open set is a pre m_X open set, thus $f^{-1}(V)$ is a pre m_X -open set. Hence the proof.

Remark 2.4. The converse of the theorem is not true, which follows from the example 2.2. Here the function is a pre m_X continuous function but not a m_X continuous function since the inverse image of $\{x\}, \{y\}$ are respectively $\{a\}, \{b\}$ which are not a m_X open set in X.

Theorem 2.5. Let $f : (X, T_{m_X}) \to (Y, T_{m_Y})$ be a mapping from X to Y. Every m_X - preirresolute continuity is pre m_X -continuous.

Proof: Let V be a m_X -open set in Y. Since every m_X open set in Y is also a m_X pre open set in Y thus V is a m_X pre open set in Y and f being m_X pre irresolute continuous function from definition 1.1(9), f⁻¹ (V) is a m_X -preopen set in X i.e. inverse image of a m_X open set in Y is a m_X -preopen set in X. Again since m_X -preopen set is a pre m_X -open set in X. Hence f is a pre m_X -continuous

Remark 2.6. The converse of the theorem is not true which follows from the following example: Let

$$\begin{split} &X{=}\{a,b,c,d\},\\ &m_X{=}\;\{\varphi,X,\{a\},\{b\},\{a,c\},\{b,c\}\},\\ &Tm_X{=}\{\varphi,X,\{a\},\{b\},\{c\},\{a,b,c\}\},\\ &Y{=}\;\{m,n,l\}\;\text{and}\;\;m_Y{=}\;\{\varphi,Y,\{m\},\{l\},\{n,l\},\{m,n\}\},\\ &Tm_Y{=}\{\varphi,Y,\{m\},\{l\},\{n\},\{m,l\},\{n,l\},\{m,n\}\}. \end{split}$$

Let f: X \rightarrow Y be a mapping defined by f(a)= m, f(b)=l, f(c) = f(d)= n. Then clearly f is pre m_X- continuous but it is not a m_X-preirresolute continuity. Since

 $f^{-1}(\{m,n\}) = \{a,d\} \not\subset m_X - PO(X).$

Theorem 2.7. Let $f : (X, T_{m_X}) \rightarrow (Y, T_{m_Y})$. Every m_X - regular continuity is pre m_X -continuity.

Proof: Let $x \in X$ and V be any m_X open set of Y containing f(x). Since f is m_X – regular continuous there exist $U \in m_X$ containing x such that $f^1(V)$ is m_X - regular open in X. By figure indicating connections between various set, $f^1(V)$ is pre m_X - open in X. Hence the proof.

Remark 2.8. The converse of the theorem is not true, which follows from the following example : Let

$$\begin{split} &X = \{a,b,c,d\}, \\ &m_X = \{\phi,X,\{d\},\{b\},\{c\},\{a,b\},\{a,c\}\}, \\ &Tm_{X=}\{\phi,X,\{d\},\{b\},\{c\},\{a\},\{a,b\},\{a,c\},\{b,d\},\{d,c\},\{a,b,c\},\{a,b,d\},\{a,c,d\}\} and \\ &Y = \{m,n,l\} and m_Y = \{\phi,Y,\{l\},\{m,n\},\{n,l\}\} and Tm_Y = \{\phi,Y,\{l\},\{n\},\{m,n\},\{n,l\}\}. \end{split}$$

Let $f:(X, Tm_X) \rightarrow (Y, Tm_Y)$ be a function defined by f(a) = m, f(b)=l, f(c) = f(d)= n. Then clearly f is pre m_X-continuous but it is not a m_X - regular continuous. Since

 $f^{-1}(\{m,n\}) = \{a,d\} \not\subset Tm_x$

We denote the relation discussed above by a figure below.

Definition 2.9. Let (X, Tm_X) be a space with a m_X –structure. For A $\subseteq X$, the pre-m_Xclosure and the pre- m_X -interior of A, denoted by $Pm_XCl(A)$ and $Pm_XInt(A)$ respectively are defined as the following:

 $Pm_XCl(A) = \cap \{F \subseteq X : A \subseteq F, F \text{ is } Pre m_X \text{-closed in } X\}$ and $Pm_XInt(A) = \cup \{U \subseteq X : U \subseteq A, U \text{ is } Pre \text{-}m_X \text{ open in } X\}$.

Theorem 2.10.

(1) A is a pre-m_X-open set iff $Pm_XInt(A) = A$

(2) A is a pre-m_X-closed set iff $Pm_XCl(A) = A$

Proof : (1) Let if possible A be a pre- m_X -open set then obviously $Pm_XInt(A) = A$ Conversely let $Pm_XInt(A) = A$, then

 $Pm_XInt(A) = A = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } Pre-m_X \text{ open in } X \}.$

Since arbitrary union of pre- m_X -open set is a pre- m_X -open set[From theorem 3.3 of [17], and A being the arbitrary union of pre- m_X -open set, A is a pre- m_X -open set. This proves the theorem.

(2) can be proved similarly.

Lemma 2.11. For any subset A, B of X the following properties hold.

- (i) $Pm_XInt(\phi) = \phi, Pm_XInt(X) = X, Pm_XCl(\phi) = \phi, Pm_XCl(X) = X$
- (ii) $Pm_XInt Pm_XInt(A) = Pm_XInt(A), Pm_XClPm_XCl(A) = Pm_XCl(A)$
- (iii) $Pm_XInt(A) \subseteq A \subseteq Pm_XCl(A)$
- (iv) $Pm_XInt(A) \subseteq Pm_XInt(B)$, $Pm_XCl(A) \subseteq Pm_XCl(B)$ whenever $A \subseteq B$
- (v) $Pm_XInt(\cup A_i: i \in I) \supseteq \cup \{Pm_XInt(A_i): i \in I\}, Pm_XCl(\cap A_i: i \in I) \subseteq \cap \{Pm_XCl(A_i): i \in I\}$
- (vi) $Pm_{X}Cl(\cup A_{i}: i \in I) \supseteq \cup \{Pm_{X}Cl(A_{i}): i \in I\},$ $Pm_{X}Int(\cap A_{i}: i \in I) \subseteq \cap \{Pm_{X}Int(A_{i}): i \in I\}$
- (vii) $Pm_XInt(X-A) = X Pm_XCl(A)$.

Proof : (i), (iii), (iv), (v), (vi) and (vii) are obvious.

To prove (ii)

From (iii), $Pm_XInt(A) \subseteq A$ and from (iv), $Pm_XIntPm_XInt(A) \subseteq Pm_XInt(A)$

Now we have to prove that

 $Pm_XIntPm_XInt(A) \supseteq Pm_XInt(A)$

From definition it follows that,

 $Pm_XInt(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } Pre-m_X \text{ open in } X \} \supseteq U$

So $Pm_XInt Pm_XInt(A) \supseteq Pm_XInt (U) = U$, U is a Pre-m_X open set in X

Thus $Pm_XInt(A) \supseteq \cup \{U \subseteq X : U \subseteq A, U \text{ is } Pre-m_X \text{ open in } X\} = Pm_XInt(A)$

Thus $Pm_XInt Pm_XInt(A) = Pm_XInt(A)$

Remark 2.12: From Lemma 2.11(ii) and theorem 2.10, it is obvious that $Pm_XInt(A)$ is a Pre m_X open set and $Pm_XCl(A)$ is a Pre m_X Closed set

Theorem 2.13: Let $f:(X,Tm_X) \rightarrow (Y,Tm_Y)$ be a function from X to Y. Then the followings are equivalent.

- i) f is a pre m_X -continuous function.
- ii) for each m_X open set V in Y, $f^{-1}(V)$ is pre m_X open.
- iii) for each m_X closed set B in Y, $f^{-1}(B)$ is pre m_X closed.
- iv) $f(p m_X Cl(A)) \subseteq m_X Cl(f(A))$ for $A \subseteq X$.
- v) $p m_X Cl(f^{-1}(B)) \subseteq f^{-1}(m_X Cl(B))$ for $B \subseteq Y$.
- vi) $f^{-1}(m_X Int(B)) \subseteq p m_X Int(f^{-1}(B))$ for $B \subseteq Y$.

Proof: (i) \Leftrightarrow (ii). Obvious.

(ii) \Rightarrow (iii). Obvious.

(iii) \Rightarrow (iv). For A \subseteq X.

 $f^{-1}(m_X Cl(f(A))) = f^{-1}(\cap \{F \subseteq Y : f(A) \subseteq F \text{ and } F \text{ is } m_X \text{ closed in } Y\})$ $\supseteq \cap \{f^{-1}(F) \subseteq X : A \subseteq f^{-1}(F) \text{ and } f^{-1}(F) \text{ is pre } m_X \text{ closed in } X\}$

[since every m_X closed in X is a pre m_X closed set in X, so arbitrary intersection of m_X closed set in X containing f(A) is a superset of intersection of Pre m_X closed set in X containing f(A). And f being pre m_X -continuous function, f⁻¹(F) is pre m_X closed in X whenever F is a m_X closed in Y]

 $= p m_X Cl(A)$

implies $f^{-1}(m_X Cl(f(A))) \supseteq p m_X Cl(A)$

i.e. $f(f^{-1}(m_X Cl(f(A)))) \supseteq f(p m_X Cl(A))$

i.e. $m_X Cl(f(A)) \supseteq f(f^{-1}(m_X Cl(f(A)))) \supseteq f(p m_X Cl(A))$

i.e. $m_X Cl(f(A)) \supseteq f(p m_X Cl(A))$

(iv) \Rightarrow (v). Let A=f⁻¹(B) then f(A) =ff⁻¹(B) \subseteq B. From (iv)

$$\begin{split} &f(p\ m_X\ Cl(A)\)=f(\ p\ m_X\ Cl(f^{-1}(B)))\subseteq m_XCl(f(A))\subseteq m_XCl((B))\\ \Rightarrow\ f^{-1}f\ (\ p\ m_X\ Cl(f^{-1}(B)))\subseteq f^{-1}m_XCl((B))\\ \Rightarrow\ pm_XCl(f^{-1}(B)))\subseteq f^{-1}f\ (\ p\ m_X\ Cl(f^{-1}(B)))\subseteq f^{-1}m_XCl((B)). \end{split}$$

 $(\mathbf{v}) \Rightarrow (\mathbf{vi})$. from $(\mathbf{v}) \ge \operatorname{Pm}_{X} \operatorname{Cl}(f^{-1}(B))) \supseteq X - f^{-1}(\operatorname{Cl}((B)) \Rightarrow \operatorname{Pm}_{X}\operatorname{Int}(f^{-1}(B)) \supseteq f^{-1}(\operatorname{Int}(B))$.

(vi) \Rightarrow (i). For $x \in X$ and for each m_X open set V containing f(x), from (vi), it follows

 $x \in f^{-1}(V) = f^{-1}(m_X \operatorname{Int}(V)) \subseteq pm_X \operatorname{Int}(f^{-1}(V))$

From lemma 2.11(iii), $pm_XInt(f^{-1}(V)) \subseteq f^{-1}(V)$. So $pm_XInt(f^{-1}(V)) = f^{-1}(V)$. Thus $f^{-1}(V)$ is a m_X open set in X. This implies that f is a pre m_X continuous function.

Theorem 2.14. Let $f : (X, Tm_X) \rightarrow (Y, Tm_Y)$ be a pre m_X-continuous function. Then the following statements holds:

(i) $f^{-1}(V) \subseteq Pm_XInt(m_XCl(f^{-1}(V)))$ for each m_X open set V in Y.

(ii) $\operatorname{Pm}_{X}\operatorname{Cl}(\operatorname{m}_{X}\operatorname{Int}(f^{-1}(G))) \subseteq f^{-1}(G)$ for each m_{X} closed set G in Y.

(iii) $f(Pm_XCl(m_XInt(A))) \subseteq m_XCl(f(A))$ for $A \subseteq X$.

(iv) $\operatorname{Pm}_{X}\operatorname{Cl}(m_{X}\operatorname{Int}(f^{-1}(B))) \subseteq f^{-1}(m_{X}\operatorname{Cl}(B))$ for $B \subseteq Y$.

(v) $f^{-1}(m_X Int(C)) \subseteq Pm_X Int(m_X Cl(f^{-1}(C)))$ for $C \subseteq Y$.

Proof: To Prove (i) Let V be a m_X open set in Y. Since f is a pre m_X -continuous function, $f^{-1}(V)$ is pre m_X -open in X. Therefore $f^{-1}(V) = Pm_XInt(f^{-1}(V) \subseteq Pm_XInt(m_XCl(f^{-1}(V))))$.

(i) \Rightarrow (ii). Let G =Y -V be a m_X-closed set in Y.From (ii)

 $X - f^{-1}(V) \supseteq X - Pm_XInt(m_XCl(f^{-1}(V)))$

 $\Rightarrow f^{-1}(G) \supseteq Pm_X Cl(m_X Int(X - f^{-1}(V)))$ $\Rightarrow f^{-1}(G) \supset Pm_X Cl(m_X Int(f^{-1}(G))).$

(ii) \Rightarrow (iii). Let A= f⁻¹(G) then from (iii)

 $Pm_{X}Cl(m_{X}Int(A)) \subseteq A \Longrightarrow f(Pm_{X}Cl(m_{X}Int(A))) \subseteq f(A) \subseteq m_{X}Cl(f(A)).$

(iii) \Rightarrow (iv). Let $f(A)=B \Rightarrow A \subseteq f^{-1}(B)$ then from (iv)

$$\begin{split} f(Pm_XCl(m_XInt(A))) &\subseteq f(Pm_XCl(m_XInt(f^{-1}(B)))) \subseteq m_XCl(B) \\ \Rightarrow Pm_XCl(m_XInt(f^{-1}(B))) \subseteq f^{-1}f(Pm_XCl(m_XInt(A))) \subseteq f^{-1}(m_XCl(B)). \end{split}$$

 $(iv) \Rightarrow (v)$. it is obvious.

Definition 2.15.A function f: $(X, Tm_X) \rightarrow (Y, Tm_Y)$ is said to be a pre m_X irresolute continuous function iff the inverse image of each pre-m_X-open set in Y is a pre m_X open set in X.

Theorem 2.16. Consider a function f: $(X, Tm_X) \rightarrow (Y, Tm_Y)$. Every pre m_X -irresolute continuous function is a pre m_X -continuous function.

Proof: Let $x \in X$ and V be any m_X open in Y. Then we have V is a pre m_X -open in Y containing f(x). Since f is pre m_X irresolute map then f⁻¹(V) is pre m_X -open in X. Hence the theorem.

Remark 2.17. The converse of the theorem is not true, which follows from the following example: Let

$$\begin{split} X &= \{a, b, c, d\}, \\ m_X &= \{\phi, X, \{a, b\}, \{b, c\}, \{a, c, d\}\}, \\ Tm_{X^{=}} \{\phi, X, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b\}\}, \\ Y &= \{x, y, z, t\} \\ m_Y &= \{\phi, Y, \{x, y\}, \{y, z\}\} \\ Tm_{y^{=}} \{\phi, Y, \{x, y\}, \{y, z\}, \{x, y, z\}, \{y\}\} \end{split}$$

Let f: X \rightarrow Y be a mapping defined by f(a)=x, f(b)=y, f(c)=z, f(d)=t. Then clearly f is pre m_X - continuous, but it is not a pre m_X -irresolute map. since f⁻¹({y}) = {b} is not a pre m_X open set in X.

We denote the relation discussed above by a figure below.

Theorem 2.18. The following statements are equivalent for a function

$$f:(X, Tm_X) \rightarrow (Y, Tm_Y)$$

(i) f is pre m_X irresolute.

(ii) For each point x of X and each pre m_X neighborhood V of f(x), there exists a pre m_X - neighborhood U of x such that $f(U) \subseteq V$.

(iii) For each $x \in X$ and each $V \subset Pm_XO(Y)$, there exists $U \subset Pm_XO(X)$ such that $f(U) \subset V$.

Proof. (i) \Rightarrow (ii). Assume that $x \in X$ and V is a pre m_X - open set in Y containing f(x). Since f is a pre m_X - irresolute and let $U = f^{-1}(V)$ be a pre m_X - open set in X containing x and hence $f(U) = f f^{-1}(V) \subseteq V$.

(ii) \Rightarrow (iii). Assume that $V \subseteq Y$ is a pre m_X open set containing f(x). Then by (ii), there exists a pre m_X open set G such that $x \in G \subseteq f^{-1}(V)$. Therefore, $x \in f^{-1}(V)$. This shows that $f^{-1}(V)$ is a pre m_X neighborhood of x.

(iii) \Rightarrow (i). Let V be a pre m_X -open set in Y, then $f^{-1}(V)$ is pre m_X neighborhood each x of X. Thus, for each x is a pre m_X interior point of $f^{-1}(V)$ which implies that $f^{-1}(V) \subset Int(m_X Cl(f^{-1}(V)))$. Therefore $f^{-1}(V)$ is a pre m_X open set in X and hence f is a pre m_X -reirresolute.

Theorem 2.19. The following are equivalent for a function $f: (X, Tm_x) \rightarrow (Y, Tm_y)$

- (i) f is pre m_X -irresolute continuous.
- (ii) $f(Pm_XCl(v)) \subseteq Pm_X-Clf(v)$.
- (iii) $Pm_{X}Cl(f^{-1}(B)) \subseteq f^{-1}(Pm_{X}-Cl(B))$.
- (iv) Pm_X -Int(f⁻¹(A)) \supseteq f⁻¹(Pm_X Int(A)).
- (v) $f(Pm_X-Int(B)) \supseteq Pm_X-Intf(B)$ if f is bijective.

Proof: (i) \Rightarrow (ii). Let $x \in X$ and $V \subseteq X$ then

 $Pm_{X}Cl(v) \subseteq Pm_{X}Cl(f^{-1}(f(v))) \subseteq Pm_{X}-Cl(f^{-1}(Pm_{X}-Cl(f(v)))) = f^{-1}(Pm_{X}-Cl(v))$ $\Rightarrow f(Pm_{X}-Cl(v)) \subseteq ff^{-1}(Pm_{X}-Cl(f(v))) \subseteq Pm_{X}-Cl(f(v)).$

Therefore $f(Pm_XCl(v)) \subseteq Pm_X-Clf(v)$.

(ii) \Rightarrow (iii). Let $x \in X$ and $V \subseteq X$ and $B \subseteq Y$ such that $V = f^{-1}(B)$ then

$$\begin{split} &f(Pm_X\text{-}Cl(f^{-1}(B))) \subseteq Pm_XCl \ ff^{-1}(B) \subseteq Pm_XCl \ (B) \\ \Rightarrow f^{-1}f(Pm_XCl(f^{-1}(B))) \subseteq f^{-1}(Pm_XCl \ (B)) \Rightarrow Pm_XCl \ f^{-1}((B)) \subseteq f^{-1}(Pm_XCl(B)). \end{split}$$

(iii) \Rightarrow (iv) Let A be any subset of Y such that B^C=A. By (iii)

X - Pm_X-Cl(f⁻¹(B))⊇X - f⁻¹(Pm_X-Cl(B)) ⇒ Pm_XIntf⁻¹(B^C)⊇f⁻¹(Pm_XInt (B^C)) ⇒Pm_XIntf⁻¹(A)⊇f⁻¹(Pm_XInt (A)). $(iv) \Rightarrow (i)$ Let C be any sub set of Y such that A=Pm_XIntC. By (iv)

 $Pm_XIntf^{-1}(Pm_XIntC) \supseteq f^{-1}(Pm_XInt(C)) \supseteq Pm_XIntf^{-1}(Pm_XIntC)$

Therefore $f^{-1}(Pm_XInt(C))=Pm_Xintf^{-1}(Pm_XIntC)$.

Therefore f is a pre m_X irresolute continuous.

 $(ii) \Leftrightarrow (v)$ Let A be a subset of X and f is a bijective then

f(X - A) = X - f(A) and $X - A = A^{C} = B$ (say)

Now,

 $f(Pm_{X}cl(A)) \subseteq Pm_{X}-clf(A)$ $\Rightarrow X-f(Pm_{X}cl(A)) \supseteq X-Pm_{X}-clf(A)$ $\Rightarrow f(Pm_{X}int(B)) \supseteq Pm_{X}Int(f(B))$

Converse part holds similarly Hence the statements are equivalent is proved as follows

$$\begin{array}{c} \text{(i)} \Rightarrow \text{(ii)} \Rightarrow \text{(iii)} \Rightarrow \text{(iv)} \Rightarrow \text{(i)} , \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)$$

Theorem 2.20.

(1) If $f:(X, Tm_X) \rightarrow (Y, Tm_Y)$ is pre m_X irresolute and $g:(Y, Tm_Y) \rightarrow (Z, Tm_Z)$ is pre m_X continuous then gof is pre m_X continuous.

(2) If $f:(X, Tm_X) \rightarrow (Y, Tm_Y)$ is pre m_X irresolute and $g:(Y, Tm_Y) \rightarrow (Z, Tm_Z)$ is m_X continuous then gof is pre m_X continuous.

(3) If $f:(X, Tm_X) \rightarrow (Y, Tm_Y)$ is pre m_X continuous and $g:(Y, Tm_Y) \rightarrow (Z, Tm_Z)$ is m_X continuous then gof is pre m_X continuous.

(4) If $f:(X, Tm_X) \rightarrow (Y, Tm_Y)$ is pre m_X irresolute continuous and $g:(Y, Tm_Y) \rightarrow (Z, Tm_Z)$ is pre m_X irresolute continuous then gof is pre m_X irresolute continuous.

Proof: To Prove (1) Let W be any m_X -open set of Z. since f is pre m_X irresolute then

$$(gof)^{-1}(w)=f^{-1}(g^{-1}(w))$$

is pre m_X open in X and hence gof is a pre m_X continuous function.

The other can be proved similarly.

3. Pre m_x Open Mapping

In this section the concept of Pre m_X open mapping is introduced and also the concept of Pre m_X irresolute mapping is introduced and some of its properties were discussed.

Definition 3.1. A function $f: (X, Tm_X) \rightarrow (Y, Tm_Y)$ is said to be a pre m_X -open mapping if the image of each Pre m_X open set in X is a m_X -open set in Y.

Example 3.2. Let $X = \{a,b,c\}$ and $Y = \{x,y,z\}$. Let $m_X = \{\phi,X,\{a,b\},\{c,b\}\}$. Then $Tm_x = \{\phi,X,\{a,b\},\{b,c\},\{b\}\}$. Here the pre m_X open sets are $\phi,X,\{a,b\},\{c,b\},\{b\}$. Let

 $m_{Y} = \{\phi, Y, \{x, y\}, \{y, z\}, \{y\}\} \text{ and } Tm_{Y} = \{\phi, X, \{x, y\}, \{y, z\}, \{y\}\}.$

Let $f : (X, Tm_X) \rightarrow (Y, Tm_Y)$ be a mapping such that f(a)=x, f(b)=y, f(c)=z. Then the mapping is a pre m_X open mapping.

Theorem 3.3. Consider a function $f : (X, Tm_X) \rightarrow (Y, Tm_Y)$. Every pre m_X open map is a open map.

Proof: Let A be a open set in (X, Tm_X) then A is a pre m_X open set in (X, Tm_X) . Since f is a pre m_X open map, f(A) is a m_X open set in (Y, Tm_Y) . Since every m_X open set in (Y, Tm_Y) is also a open set . So f is a open map

Remark 3.4. The converse of the theorem is not true which follows from the following example : Let

 $X = \{x, y, z, t\},$ $m_X = \{\phi, X, \{x, y\}, \{y, z\}\} and$ $Tm_X = \{\phi, X, \{x, y\}, \{y, z\}, \{x, y, z\}, \{y\}\}.$

Let

 $Y = \{a,b,c,d\}, \\ m_Y = \{\phi,Y, \{a,b\}, \{b,c\}, \{a,c,d\}\} \\ Tm_Y = \{\phi,Y, \{a,b\}, \{b,c\}, \{a,c,d\}, \{b\}, \{a,b,c\}\}.$

Let $f: (X, Tm_X) \rightarrow (Y, Tm_Y)$ is a map defined by f(x)=a, f(y)=b and f(z)=c, f(t)=d. Here f is a open map but not a pre m_X open mapping

Definition 3.5. A function $f: (X, Tm_X) \rightarrow (Y, Tm_Y)$ is said to be a pre m_X -irresolute mapping if the image of each Pre m_X open set in X is a pre m_X -open set in Y.

Example 3.6. The example 3.2 is also an example of Pre m_X -irresolute mapping

Theorem 3.7. Consider a function $f : (X, Tm_X) \rightarrow (Y, Tm_Y)$. Every Pre m_X – open map is also a Pre m_X –irresolute map

Proof: Let A be a Pre m_X –open set in X. Since f is a Pre m_X –open map, f(A) is m_X –open set in Y. Every m_X –open set is also an open set and a Pre m_X –open set. Thus f(A) is a Pre m_X –open set. This proves that f is a Pre m_X –irresolute mapping.

Remark 3.8. The converse of the above theorem need not be true which follows from the following example : Let

$$\begin{split} &X = \{a,b,c,d\} \text{ and } Y = \{x,y,z,t\} , \\ &m_X = \{\varphi, X, \{a\}, \{b\}, \{c\}\} \text{ and } \\ &Tm_X = \{\varphi, X, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}, \\ &m_Y = \{\varphi, Y, \{x\}, \{y\}, \{z\}\} \text{ and } \\ &Tm_Y = \{\varphi, Y, \{x\}, \{y\}, \{z\}, \{x,y\}, \{x,z\}, \{y,z\}\}, \end{split}$$

Let $f: (X, Tm_X) \rightarrow (Y, Tm_Y)$ is a map defined by f(x)=a, f(y)=b and f(z)=c, f(t)=d. Then f is a pre m_X irresolute map but not a Pre m_X open map.

We denote the relation discussed above by a figure below.

Theorem 3.9. The following are equivalent for a function $f: (X, Tm_x) \rightarrow (Y, Tm_y)$

(i) f is pre- m_X irresolute mapping. (ii) $f^{-1}(Pm_XInt(v)) \supseteq Pm_X Int(f^{-1}(v))$ (iii) $f^{-1}(Pm_X Cl(v)) \subseteq Pm_XCl(f^{-1}(v))$ (iv) $Pm_XIntf(A)\supseteq f(Pm_XInt(A))$ (v) $f(Pm_XCl(B)) \supseteq Pm_XClf(B)$ if f is bijective.

Proof : (i) \Rightarrow (ii). Let $x \in X$ and $V \subseteq X$ then

 $Pm_{X}Int(v) \supseteq Pm_{X}Intff^{-1}(v)) \supseteq Pm_{X}Intf(Pm_{X}Intf^{-1}(v)) = f(Pm_{X}Intf^{-1}(v))$ $\Rightarrow f^{-1}(Pm_{X}Int(v)) \supseteq f^{-1}f(Pm_{X}Intf^{-1}(v)) \supseteq Pm_{X}Int(f^{-1}(v)).$

Therefore

$$f^{-1}(Pm_XInt(v)) \supseteq Pm_XInt(f^{-1}(v)).$$

(ii) ⇔(iii). From (ii),

X -
$$f^{-1}(Pm_Xint(v)) \subseteq X - Pm_Xint(f^{-1}(v)) \Rightarrow f^{-1}(Pm_Xclv) \subseteq Pm_Xcl(f^{-1}(v))$$

The converse part may be proved similarly.

(ii) \Rightarrow (iv). Let $x \in X$ and $V \subseteq X$ and let $f^{-1}(v) = A$. From (ii),

 $f^{-1}(Pm_Xintf(A)) \supseteq Pm_Xint(A)$

Therefore $Pm_Xintf(A)) \supseteq f(Pm_Xint(A))$.

 $(iv) \Rightarrow i$) Let A=Pm_Xint(C).From (iv),

 $Pm_Xintf(Pm_Xint(C)) \supseteq f(Pm_Xint(Pm_Xint(C)) = f(Pm_Xint(C)) \supseteq Pm_Xintf(Pm_Xint(C))$

Therefore $f(Pm_Xint(C))$ is a pre-m_Xopen i.e. the image of a pre m_X open set is a pre m_X open set

(iv) \Leftrightarrow (v)Let A be any subset of X and f is a bijective mapping then f(X - A) = X - f(A) and X - A = B(say). Therefore from (iv)

$$\begin{split} f(Pm_X intB) &\subseteq Pm_X intf(B) \\ \Rightarrow Y-f(Pm_X intB) \supseteq Y-Pm_X int(f(B)) \\ \Rightarrow f(Y - Pm_X int(B)) \supseteq Pm_X clf(B) \\ \Rightarrow f(Pm_X cl(B)) \supseteq Pm_X clf(B). \end{split}$$

Converse part can be proved similarly. The equivalence relation is proved as below

4. Pre m_X Homeomorphism

In this section we introduce the concept of Pre m_X homeomorphism and study some of its properties.

Definition 4.1: A bijective mapping $f:(X,m_X) \to (Y,Tm_Y)$ from a space X into a space Y is called pre-m_X homeomorphism if f and f⁻¹ are pre m_X-irresolute mapping.

Theorem 4.2:Let $f:(X,m_X) \rightarrow (Y,m_Y)$ be a bijective mapping from a m_X structure(X,m_X) to a topological space (Y, Tm_y). The following statements are equivalent.

- (i) f is a pre m_X homeomorphism.
- (ii) f^{-1} is a pre m_X homeomorphism.
- (iii) f is a pre m_X irresolute mapping and a pre m_X irresolute continuous.
- (iv) The image of a pre m_X open set in X is a pre m_X open set in Y and a pre m_X continuous mapping.
- (v) $f^{-1}(P m_X Int(v)) = Pm_X Int(f^{-1}(v)).$
- (vi) $f^{-1}(Pm_XCl(B)) = Pm_X cl(f^{-1}(B)).$
- (vii) $Pm_XIntf(A) = f(Pm_XInt(A))$.
- (viii) $f(Pm_XCl(B)) = Pm_XClf(B)$.

Proof: (i) \Leftrightarrow (ii). it follows from the definition.

(i) \Leftrightarrow (iii). Let f be a pre m_X homeomorphism implies that f and f⁻¹ are pre m_X irresolute mapping .Now f⁻¹ is a pre m_X irresolute mapping implies that (f⁻¹)⁻¹(A) i.e f(A) is a pre m_X open for each A being a pre m_X open set in X. Therefore f is a pre m_X irresolute mapping and a pre m_X irresolute continuous.

Converse: since f is a pre m_X irresolute mapping then f⁻¹ is a pre m_X irresolute continuous. Hence f and f⁻¹ are pre m_X irresolute continuous mapping. Then obviously f is a pre m_X homeomorphism.

(iii) \Leftrightarrow (iv). Let f be a pre m_X irresolute mapping then for each pre m_X open set A of X, f(A) is a pre m_X open and f is also pre m_X irresolute continuous then by theorem 2.5 we say that image of a pre m_X open set in X is a pre m_X open set in Y and hence f is a pre m_X irresolute continuous mapping.

(iii) \Rightarrow (v). Let Let $x \in X$ and $V \subseteq X$, if f is pre m_X irresolute continuous then from theorem 3.7(iv)

$$Pm_X Intf^{-1}(A) \supseteq f^{-1}(Pm_X Int(A))....(a)$$

and if f is pre m_X irresolute mapping then from theorem 3.8(ii)

 $f^{-1}(Pm_XInt(v)) \subseteq Pm_XInt(f^{-1}(v))$ (b).

Combining (a) and (b) we get the result.

 $(\mathbf{v}) \Rightarrow (\mathbf{vi})$ since f is bijective and from (\mathbf{v})

 $X - f^{-1}(Pm_Xint(v)) = X - Pm_Xint(f^{-1}(v))$ $\Rightarrow f^{-1}(X - Pm_Xint(v)) = Pm_X Cl(f^{-1}(v))$ $\Rightarrow f^{-1}(Pm_XCl(v)) = Pm_XCl(f^{-1}(v))$

 $(vi) \Rightarrow (v)$. It is obvious.

 $(\mathbf{v}) \Rightarrow (\mathbf{vii})$. Let $x \in X$ and $V \subseteq X$ and let $f^{-1}(v) = A$ then from(v),

 $Pm_XInt(v) = f(Pm_XInt(f^{-1}(v)) \Longrightarrow Pm_X intf(A) = f(Pm_Xint(A)).proof.$

 $(vii) \Rightarrow (viii)$. It is obvious.

References

- M. Alimohammady a,b,*, M. Roohi c, Fuzzy Um-sets and fuzzy (U;m)-continuous functions, Chaos, Solitons and Fractals 28 (2006) 20–25
- [2] M. Alimohammady a,b,*, M. Roohi c, Separation of fuzzy sets in fuzzy minimal spaces Chaos, Solitons and Fractals 31 (2007) 155–161
- [3] M. Alimohammady a,b,*, M. Roohi c, Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos, Solitons and Fractals 27 (2006) 599–605.
- [4] Sharmistha Bhattacharya (Halder) and Gour Pal, Study on Pre- m_X open Set International Mathematical forum ,Vol.6,2011,no.45,2231-2237..
- [5] A.Csaszar, generalized open set in generalized topologies, Acta Math, Hungar, 106(2005), 53-66.
- [6] Won Keun Min and Young Key Kim, On minimal precontinuous functions, Journal of the Chungoheong Mathematical, Society, Vol-22, no.1, December 2009.

- [7] N. Levine, Generalized closed sets in topology, Rend. circ. Mat .palermo(2) 19(197
- [8] H. Maki ; On generalizing semi open and preopen sets ,Report of meeting of topological spaces theory and application ;Yazsushiro college of Technology; August-1996. 13-18
- [9] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb (On pre-continuous and weak Pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53
- [10] A.S.Mashour, M.E Abd El-Monsef and S.N El-Deep, on pre-continuous and week precontinuous, proc, Math phys, soc, Egypt 53(1982)47-53.
- [11] G.B.Navalagi; on Semi-precontinuous fuction and properties of generalized Semi-pre closed Sets inTopological Spaces, IJMMS 29(2002)85-98. Hindawi Publishing Corp.
- [12] T.Nori and V.pora ,on upper and lower M-continuous multifunction ,Filomat 14(200),73-86.
- [13] Popa and T.Nori ; on the definition of some generalized forms of continuity under minimal conditions, mem. Fac sci Kochi Univ(Math), 22(2001), 9-18
- [14] V.popa and T.Noiri, on M-continuous functions, Anal. Univ. "Dunarea de jos" Galati, ser. Mat. Fiz. Mec. Teor.(2),18(23)(2000),31-41.
- [15] I.L.Reilly and M.K.Vamanamurthy on alpha –continuity in topological space Acta Math.Hungar.45(1985),no1-2,27-32.
- [16] Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Some New Types of Open and Closed Sets in Minimal Structures-II¹, International Mathematical Forum, 4, 2009, no. 44, 2185 – 2198
- [17] D.Sivaraj, semi-homeomorphism, Acta Math. Hungar, 48(1986), no.1-2, 139-145.