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Abstaract− In this study, we define a new boundedness concept different from existing definitions.
Also we give some theorems and results in topological groups. The new definition more general
than boundedness definition in topological vector spaces.
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1 Introduction

There exists some works with regards to boundedness of topological groups. Bruguera,
Tkachenko and Hejcman have presented another boundedness definitions in topolog-
ical groups [1], [2]. In 1991, Atkin gave the boundedness concept in uniform spaces
which are more general structures than topological groups [3]. Then Hernandez pre-
sented Pontryagin duality for topological abelian groups in [4]. If a set is absorbed
by every neighbourhood of 0 the set is called as a bounded set in a topological vector
space. That is, there exists a number ε > 0 for each neighbourhood U of 0 such that
tA ⊆ U for every |t| < ε. The operation of scalar multiplication tA is very important
in this definition. There isn’t exist this operation in groups so it cannot be applied
directly to the topological groups. We know that every topological vector space has
an additive topological group structure so the boundedness definition is also gen-
eralization of current available boundedness definition in topological vector spaces.
Therefore we present a kind of boundedness definition in topological groups so sim-
ilar to those in topological vector spaces. The new definition is not a generalization
of existing boundedness definitions for topological groups.

2 Preliminaries

Let G be an abstract group, A and B be two subsets of G. Then AB is the set of all
elements of xy such that x ∈ A and y ∈ B. The definition of A2 and Am = Am−1A
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is clear by taking B = A for some m ∈ N. Further, A−1 = {a−1 : a ∈ A}, A−m =
(A−1)

m
and A0 = {e} for the unit element e of G. Given x ∈ Am there exist some

a1, a2, ..., am ∈ A such that x = a1a2...am. If xm ∈ Am and e /∈ A then xn may not
be an element of Am, for n < m. Hence we define the set A≤m by x = a1a2...an

for m,n ∈ N, a1, a2, ..., an ∈ A and some n ≤ m. It is clear that Am ⊆ A≤m and
Am = A≤m whenever e is contained by A.

It is known as every topological vector space is an additive group, it is written
mU instead of Um. Then a set B is bounded if and only if there exists a positive
integer m depend on U for every symmetrical neighbourhood U such that B ⊆ U or
1
m

B ⊆ U . This is known as boundedness definition in topological vector spaces.
Now we mention that some definitions and propositions in topological groups.

Since a topological group has a local basis of symmetrical neighbourhood of the unit
element e, a connected topological group G is generated by a neighbourhood U of
e i.e. all elements of G is denoted by finite multiplication of elements belong to U
[5]. A set S is called as precompact set in a topological group if there exists a finite
set F for each neighbourhood U of e such that S ⊆ FU . We have known that if a
set is bounded then it is metrically bounded i.e. boundedness with respect to the
semimetric in a topological vector space. But opposite of this proposition is not
correct [6].

Let G be a group and p : G → R be a function. p is called an absolute value
function on G if satisfies the following properties for each x, y, a ∈ G

(i) p (x) ≥ 0,
(ii) p (e) = 0 and p (x−1) = p (x) ,
(iii) p (xy) ≤ p (x) + p (y) ,
(iv) If p (xn) → 0 then p (axna−1) → 0 for every sequence (xn).
Last condition is unnecessary for abelian groups. The equality d (x, y) = p (x−1y)

defines a semimetric generating group topology on G. d is called a left invariant
semimetric if d (ax, ay) = d (x, y) for every x, y, a ∈ G. The topology of a topological
group first countable comes from a left invariant semimetric [7].

Let G is a topological group and B ⊆ G. If the set B absorbs every bounded set
then B is called a bornivorous.

Let G is a topological group. If every bornivorous in G is a neighbourhood of e
then G is called bornological group [5].

3 Main Results

In this section, we will give some new definitions and results in topological groups.

Definition 3.1. Let G be a topological group and A ⊆ G. The set A is called as
absorbing set if there exist a finite set Fx ⊆ G and a number m ∈ N for every x ∈ G
such that x ∈ FxA

m.

Definition 3.2. Let G be a topological group and A ⊆ G. The set A is called as
a bounded set if the set is absorbed by every neighbourhood of the unit element e
of G i.e. there exist a finite set F and a number m ∈ N for every U ∈ Ne such that
A ⊆ FUm = ∪

x∈F
{xUm}.

Proposition 3.3. According to this (boundedness) definition, boundedness of a set
A in a topological group (X, +) is equivalent to boundedness of A in the topological
vector space X.
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Proof. Now we take a subset A is bounded in the topological vector space X. There
exists a number λ > 0 for every U ∈ N0 such that A ⊆ λU . Therefore we get
A ⊆ ([[λ]] + 1)U . If we select F = {0} and ([[λ]] + 1) = m then

A ⊆ ([[λ]] + 1)U = F + mU = F + Um

Thus the subset A is bounded in the topological group (X, +).
On the contrary, A ⊆ F + Um = F + mU . If we take F = {0} and m = λ then

A ⊆ λU .

Theorem 3.4. Every singleton is bounded in a topological group.

Proof. If we take F = {a} and m = 1 then {a} ⊂ {a}U = {aU}. This completes
the proof, easily.

Theorem 3.5. Union of two bounded sets is also bounded in a topological group.

Proof. Let A and B be two bounded subsets in a topological group X. There exists
a finite set F ⊆ X and a number m ∈ N for every U ∈ Ne such that

A ∪B ⊆ FUn = ∪
x∈F

{xUm}

We suppose that the above inclusion isn’t true. Thus A ∪ B isn’t covered by FUm

for every finite set F ⊆ X and every number m ∈ N. Then A isn’t covered by FUm

or B isn’t covered by FUm. This contradict with our hypothesis.

Corollary 3.6. Every subset of a bounded set is bounded in a topological group.

Corollary 3.7. Intersection of two bounded sets is bounded in a topological group.

Theorem 3.8. Every finite set is bounded in a topological group.

Proof. It is easily seen that union of finite number of bounded sets is bounded by
induction method since we know that every set is written by union of singletons.

Theorem 3.9. Every precompact set is bounded in a topological group.

Proof. Let G be a topological group, S be a precompact set in G, U be any neigh-
bourhood of e and V be an other neighbourhood of e such that V V ⊂ U . There
exists a finite set F such that S ⊂ FV by hypothesis then F is bounded. Thus there
exist a number n ∈ N and a finite set G such that F ⊂ GV n. Then

S ⊂ FV ⊂ GV nV ⊂ GV nV n = G(V V )n ⊂ GUn

i.e. S is a bounded set.

Corollary 3.10. Every compact set is bounded in a topological group.

Lemma 3.11. Let X be a topological group and x ∈ X. Then xDr (e) = Dr (x).

Proof. y ∈ xDr (e) ⇔ if and only if there exists a point a ∈ Dr (e) such that y = xa.
Thus

a ∈ Dr (e) ⇔ d(e, a) < r
⇔ d(e, y

x
) < r

⇔ d(e, x−1y) < r

and also since d(e, x−1y) = d(xe, xx−1y) = d(x, y) then y ∈ Dr(x).
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Lemma 3.12. Let X be a topological group and x ∈ X then xDr(e)
m ⊆ (xDr(e))

m.

Lemma 3.13. Let X be a topological group and x ∈ X then Dr(x)m ⊆ Drm (x).

Proof. If y ∈ Dr (x)m there exist a1, a2, ..., am ∈ Dr (x) such that y = a1a2...am.
Hence

d(y, x) = d(a1a2...am, x)
< d(x, a1) + d(x, a2) + ... + d(x, am)
< r + r + ... + r
= mr

Thus y ∈ Drm(x).

Theorem 3.14. Let G be a semimetric group and A ⊆ G be a bounded set then A
is a metrically bounded.

Proof. Let G be a semimetric group and A ⊆ G. A set A is bounded if and only if
there exists a number m ∈ N and a finite set F such that A ⊆ FDr (e)m. Thus

A ⊆ FDr (e)m ⇔ A ⊆ ∪
x∈F

{xDr (e)m} ⊆ Drm (x) .

This completes the proof.

Proposition 3.15. A set is absorbed by each member of a local basis of neighbour-
hoods of e if and only if this set is bounded.

Proof. Let B = {Uα : α ∈ I} be a basis of neighbourhoods of e in a topological group
G. It is easily seen that a subset A ⊆ G is absorbed for every neighbourhood Uα. On
the contrary, if every U ∈ Ne then Uα ⊆ U for every α ∈ I. The set A is absorbed
by Uα for α ∈ A if and only if there exists a finite set FUα and a number m ∈ N such
that A ⊆ FUαUm

α ⊆ FUαUm. Thus the set A is bounded.

Proposition 3.16. Every bounded subset of a topological group is contained by the

set
−
{e}.

Proof. Let G be a topological group and S be a bounded subset of G. Now we show

that S ⊆
−
{e}. We assume that x ∈

−
{e} is wrong. U ∩ {e} = ∅ for a neighbourhood

U ∈ Nx if and only if U ⊆ {e}c or {e} ⊆ U c. There exists a finite set F and m ∈ N
such that x ∈ S ⊆ FWm because S is bounded and x ∈ S for every W ∈ Ne.
There exists f ∈ F and w ∈ Wm such that x = fw. Then FWm ∈ Nx. That is
FWm ∩ {e} = ∪

f∈F
{fWm} ∩ {e} 6= ∅. This is a contradiction.

Theorem 3.17. A set B is bounded if and only if every countable subset of B is
bounded in a topological space.

Proof. It is obvious that every countable subset of this set is bounded since if a set
is bounded then every subset of this set is bounded.

On the contrary, we assume that every countable subset of B is bounded, but B
isn’t bounded. There exists a neighbourhood U of e such that B isn’t included by
FUm for every number m ∈ N and a finite set F . Now, we construct the sequence
{xm}∞m=1 such that

x1 ∈ B\FU, x2 ∈ B\FU2, ..., xi ∈ B\FU i, ....

Obviously the sequence {xm}∞m=1 isn’t absorbed by U i.e. {xm}∞m=1 ⊂ B isn’t
bounded. This contradict with our hypothesis.
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Now we give definitions of bounded mapping, bornological group and then we
prove some theorems connected with these concepts.

Definition 3.18. If a mappings is conserved bounded sets between topological
groups then this mapping is called as bounded mapping.

Lemma 3.19. Let f be any homomorphism and m ∈ N then {f−1 (V )}m ⊆ f−1(V m).

Proof. For all z ∈ f−1 (V )m there exist a1, a2, ..., am ∈ f−1 (V ) such that z =
a1a2...am.

f (z) = f (a1a2...am) = f (a1)f(a2)...f(am) and f (ai) ∈ V for all 1 ≤ i ≤ m.
f (z) ∈ V m then z ∈ f−1 (V m). Since f (S) ⊆ ∪

x∈F
{f (x) f ({f−1 (V m)})} and

{f−1 (V )}m ⊆ f−1 (V m) then f (S) ⊆ ∪
x∈F

{f (x) f (f−1 (V m))}. Thus

f (S) ⊆ ∪
x∈F

{f (x) V m} = f(F )V m

Theorem 3.20. Every continuous homomorphism between topological groups must
be bounded.

Proof. Let G and G
′
be two topological groups, f : G → G

′
be a homomorphism and

S ⊆ G be bounded. Also let e and e
′
be unit elements of G and G

′
, respectively. Since

S is bounded there exists a number m ∈ N and a finite set F for every neighbourhood
U of e such that S ⊆ FUm = ∪

x∈F
{xUm}.

xUm ∈ Nx because Um ∈ Ne. If we take V ∈ Nep then f−1 (V ) ∈ Ne and

S ⊆ F
{
f−1 (V )

}m
= ∪

x∈F

{
xf−1 (V )m}

then

f

(
∪

x∈F

{
xf−1 (V )m})

= ∪
x∈F

{
f (x) f

(
f−1 (V )m)}

.

Hence
f (S) ⊆ ∪

x∈F

{
f (x) f({f−1 (V )}m)

}

and
f(S) ⊆ ∪

x∈F
{f(x)V m} = f(F )V m.

Definition 3.21. Let G be a topological group and B ⊆ G. If the set B absorbs
every bounded set then B is called as a bornivorous.

Definition 3.22. Let G be a topological group. If every bornivorous in G is a
neighbourhood of e then G is called as a bornological group.

Theorem 3.23. Every bornivorous in a semimetric group G is a neighbourhood of
e.
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Proof. Let B be a bornivorous in G. We assume that B isn’t a neighbourhood of e.
In this case, the set Bn isn’t also a neighbourhood of e for every number n ∈ N .

The open sphere D 1
n

(e) = {x : d (x, e) < 1
n
} isn’t contained by B, for every

number n. So this sphere isn’t contained the sets Bn because they aren’t also neigh-
bourhood of e. Then {D 1

n
(e)}\Bn 6= φ for every number n. The sequence {xm}∞m=1

which is constructed the style that

x1 ∈ {D1(e)}\B, x2 ∈ {D 1
2
(e)}\B≤2, ...

isn’t absorbed by the set B. But the sequence is bounded since {xm}∞m=1 is ab-
sorbed by neighbourhood D1 (e) of e. This case is contrary to the fact that B is a
bornivorous.

Remark 3.24. Obviously every neighbourhood of e is a bornivorous. Also it is
understand that every semimetric group is a bornological group by above theorem.

Proposition 3.25. Let G and H be two topological groups, f : G → H be a
bounded homomorphism. If A ⊆ G is a bornivorous, then f(A) is also a bornivorous
in H.

Proof. Let we take y ∈ f (S). Then

y ∈ f (S) ⇒ f (x) ∈ f(S)
⇒ x ∈ S
⇒ x ∈ FAn

Thus f (S) ⊆ f (FAn) = f( ∪
x∈F

{xAn}) = f( ∪
x∈F

{x}))f(An). f (A) is a bornivorous

in H because f(F ) is a finite set.

Proposition 3.26. Let G and H be two topological groups, f : G → H be a
bounded homomorphism. If B ⊆ f (G) is a bornivorous in H, then f−1(B) is also a
bornivorous in G.

Theorem 3.27. Let G be a bornological group. In this case, every bounded homo-
morphism f which is defined from G into any topological group H is continuous.

Proof. Let U be a neighbourhood of e in H then the set U absorbs every bounded
set in H. Thus the set U is a bornivorous. f−1 (U) is a bornivorous in G by above
proposition and G is also a neighbourhood of e by hypothesis i.e. f is continuous on
e. So f is continuous in everywhere.

Proposition 3.28. Let (X, τ) and (Y, τ p) be any topological groups and f : X → Y

be a continuous homomorphism. If A ⊆ X is bounded then
−

(f (A)) ⊆ Y is bounded.

Proof. Let we take any V ∈ Nep so f−1 (V ) ∈ Ne. Since A is bounded set, there
exists a finite set F and a number m ∈ N such that A ⊆ Ff−1 (V )m. Thus f (A) ⊆
f (F ) f (f−1 (V )m) ⊆ f (F ) f (f−1 (V m)) ⊆ f (F ) V m and then

−
(f (A)) ⊆ f (F ) V m+1

i.e.
−

(f (A)) is bounded.

Proposition 3.29. Let (Xi, τi)i∈I is any family of topological groups, X = Π
i∈I

Xi

and Πi : X → Xi be the projection. A ⊆ X is bounded if and only if Πi (A) ⊆ Xi is
bounded for every i ∈ I.
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Proof. If A is bounded in (X, τ) there exists a finite set F and m ∈ N such that
A ⊆ (

Π−1
i (Vi)

)m
F . Πi (A) ⊆ Πi

(
Π−1

i (Vi)
m)

Πi (F ). Then

Πi (A) ⊆ Πi

({Π−1
i (Vi)}m

)
Πi (F ) ⊆ Πi

(
Π−1

i (V m
i )

)
Πi (F ) ⊆ V m

i Πi (F ) .

On the contrary, let Πi (A) is bounded in (Xi, τi) for every i ∈ I.
We take any V ∈ Ne. For every i ∈ I and Vi ∈ Ni (ei), V = Π

i∈I
Vi. There exists a

finite set Fi and m ∈ N such that Πi (A) ⊆ V m
i Fi because Πi (A) is bounded for every

i ∈ I. Let we take Πi (A) = Ai. Therefore Π
i∈I

Ai ⊆ Π
i∈I

(V m
i Fi) =

(
Π
i∈I

Vi

)m

Π
i∈I

Fi.

Thus A ⊆ V mF i.e. A ⊆ X is bounded.
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