

SOME RESULTS ON SEMI OPEN SETS IN FUZZIFYING BITOPOLOGICAL SPACES

Ahmed Abd El-Monsef Allam ${ }^{1}$ allam51ahmed@yahoo.com
Ahmed Mohammed Zahran ${ }^{2}$ amzahran@azhar.edu.eg
Ahmed Khalf Mousa ${ }^{2}$ akmousa@azhar.edu.eg
Hana Mohsen Binshahnah ${ }^{1, *}$ hmbsh2006@yahoo.com
${ }^{1}$ Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Abstract

Abstaract - In the present paper, we introduce and study the concepts of (i, j)-semi open set and $(i, j)-$ semi neighborhood system in fuzzifying bitopological spaces. Also, the concepts of (i, j)-semi derived set and (i, j)-semi closure, (i, j)-semi interior, (i, j)-semi exterior, (i, j)-semi boundary operators in fuzzifying bitopological spaces are introduced and studied. Furthermore, we introduce and study the concepts of (i, j)-semi convergence of nets and (i, j)-semi convergence of filters in fuzzifying bitopological spaces.

Keywords - Semiopen sets, Fuzzifying topology, fuzzifying bitopological space.

1 Introduction

In 1965 [13], Zadeh introduced the fundamental concept of fuzzy sets which to formed the backbone of fuzzy mathematics. Since Chang introduced fuzzy sets theory into topology in 1968 [1]. Wong, Lowen, Hutton, Pu and Liu, etc., discussed respectively various aspects of fuzzy topology $[3,7,8]$.

In 1991-1993 [10, 11, 12], Ying introduced the concept of the fuzzifying topology with the sematic method of continuous valued logic. In 1999 Khedr et al. [6] introduced the concept of semiopen sets and semicontinuity in fuzzifying topology.

The study of bitopological spaces was first initiated by Kelley [5] in 1963. In 2003 Zhang et al. [14], studied the concept of fuzzy $\theta_{i, j}$-closed, $\theta_{i, j}$-open sets in fuzzifying bitopological spaces. Also in [2], Gowrisankar et al. studied the concepts of (i, j)-pre open sets in fuzzifying bitopological spaces.

The contains of this paper are arranged as follows: In section (3) we introduce the concepts of (i, j)-semiopen sets in fuzzifying bitopological spaces. In section (4) we introduce and study the concepts of (i, j)-semi neighborhood system in fuzzifying bitopological spaces. In section (5) we introduce and study the concepts of

[^0](i, j)-semi derived sets and (i, j)-semi closure operator in fuzzifying bitopological space. In section (6) we introduce and study the concepts of (i, j)-semi interior and (i, j)-semi exterior, and (i, j)-semi boundary operators in fuzzifying bitopological spaces. In section (7) we introduce and study $(i, j)-$ semi convergence of nets in fuzzifying bitopological spaces. Finally in section (8) we study (i, j)-semi convergence of filters in fuzzifying bitopological spaces.

2 Preliminary

Firstly, we display the fuzzy logical and corresponding set-theoretical notations used in this paper.

For formula φ, the symbol $[\varphi]$ means the truth of φ, where the set of truth values is the unit interval $[0,1]$. A formula φ is valid, we write $\models \varphi$ if and only if $[\varphi]=1$ for every interpretation.
(1) $[\alpha]:=\alpha(\alpha \in[0,1]) ;[\alpha \wedge \beta]=\min ([\alpha],[\beta]) ;[\alpha \rightarrow \beta]=\min (1,1-[\alpha]+[\beta])$, $[\forall x \alpha(x)]=\inf _{x \in X}[\alpha(x)]$, where X is the universe of discourse.
(2) If $\widetilde{A} \in \Im(X)$, where $\Im(X)$ is the family of fuzzy sets of X, then $[x \in \widetilde{A}]:=\widetilde{A}(x)$.
(3) If X is the universe of discourse, then $[\forall x \alpha(x)]=\inf _{x \in X}[\alpha(x)]$.

In addition, the following derived formulae are given:
(1) $[\neg \alpha]:=[\alpha \rightarrow 0]=1-[\alpha]$.
(2) $[\alpha \vee \beta]:=[\neg(\neg \alpha \wedge \neg \beta)]=\max ([\alpha],[\beta])$.
(3) $[\alpha \leftrightarrow \beta]:=[(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)]$.
(4) $[\alpha \wedge \beta]:=[\neg(\alpha \rightarrow \neg \beta)]=\max (0,[\alpha]+[\beta]-1)$.
(5) $[\alpha \dot{\vee} \beta]:=[\neg \alpha \rightarrow \beta]=\min (1,[\alpha]+[\beta])$.
(6) $[\exists x \alpha(x)]:=[\neg(\forall x \neg \alpha(x))]$.
(7) If $\widetilde{A}, \widetilde{B} \in \Im(X)$, then
(a) $[\widetilde{A} \subseteq \widetilde{B}]:=[\forall x(x \in \widetilde{A} \rightarrow x \in \widetilde{B})]=\inf _{x \in X} \min (1,1-\widetilde{A}(x)+\widetilde{B}(x))$;
(b) $[A \equiv B]:=[(\widetilde{A} \subseteq \widetilde{B}) \wedge(\widetilde{B} \subseteq \widetilde{A})]$.

Secondly, we give the following definitions which are used in the sequel.
Definition 2.1. [10] Let X be a universe of discourse, $P(X)$ is the family of subsets of X and $\tau \in \Im(P(X))$ satisfy the following conditions:
(1) $\tau(X)=1$ and $\tau(\phi)=1$;
(2) for any $A, B, \tau(A \cap B) \geq \tau(A) \wedge \tau(B)$;
(3) for any $\left\{A_{\lambda}: \lambda \in \Lambda\right\}, \tau\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) \geq \bigwedge_{\lambda \in \Lambda} \tau\left(A_{\lambda}\right)$.

Then τ is a fuzzifying topology and (X, τ) a fuzzifying topological space.

Definition 2.2. [10] The family of fuzzifying closed sets is denoted by $F \in \Im(P(X))$, and defined as $A \in F:=X \sim A \in \tau$, where $X \sim A$ is the complement of A.

Definition 2.3. [10] Let $x \in X$. The neighborhood system of x is denoted by $N_{x} \in \Im(P(X))$ and defined as $N_{x}(A)=\sup _{x \in B \subseteq A} \tau(B)$.

Definition 2.4. [10] The closure $c l(A)$ of A is defined as $\operatorname{cl}(A)(x)=1-N_{x}(X \sim A)$. In Theorem 5.3 [10], M.S. Ying proved that the closure $c l: P(X) \rightarrow \Im(X)$ is a fuzzifying closure operator (see Definition 5.3 [10]) since its extension $c l: \Im(X) \rightarrow \Im(X), \operatorname{cl}(\widetilde{A})=\bigcup_{\alpha \in[0,1]} \operatorname{\alpha cl}\left(\widetilde{A}_{\alpha}\right), \widetilde{A} \in \Im(X)$ satisfies the following Kuratowski closure axioms:
(1) $\models \operatorname{cl}(\phi) \equiv \phi$;
(2) for any $\widetilde{\sim} \in \Im(X), \quad \models \widetilde{A} \subseteq \operatorname{cl}(\widetilde{A})$;
(3) for any $\widetilde{A}, \widetilde{B} \in \Im(X), \quad \models \operatorname{cl}(\widetilde{A} \cup \widetilde{B})=\operatorname{cl}(\widetilde{A}) \cup \operatorname{cl}(\widetilde{B})$;
(4) for any $\widetilde{A} \in \Im(X), \quad \models \operatorname{cl}(\operatorname{cl}(\widetilde{A})) \subseteq \operatorname{cl}(\widetilde{A})$.

Where $\widetilde{A}_{\alpha}=\{x: \widetilde{A}(x) \geq \alpha\}$ is the α-cut of \widetilde{A} and $\alpha \widetilde{A}(x)=\alpha \wedge \widetilde{A}(x)$.
Definition 2.5. [11] For any $A \in P(X)$, the interior of A is denoted by $\operatorname{int}(A) \in$ $\Im(P(X))$ and defined as follows: $\operatorname{int}(A)(x)=N_{x}(A)$.
Lemma 2.6. [6] Let (X, τ) be a fuzzifying topological space.If $[A \subseteq B]=1$. Then $(1) \models \operatorname{int}(A) \subseteq \operatorname{int}(B) ;(2) \models \operatorname{cl}(A) \subseteq \operatorname{cl}(B)$.
Definition 2.7. [14] Let $\left(X, \tau_{1}\right)$ and (X, τ_{2}) be two fuzzifying topological spaces. Then a system $\left(X, \tau_{1}, \tau_{2}\right)$ consisting of a universe of discourse X with two fuzzifying topologies τ_{1} and τ_{2} on X is called a fuzzifying bitopological space.

3 (i,j)-semiopen Sets in Fuzzifying Bitopological Spaces

Definition 3.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) The family of fuzzifying (i, j)-semiopen sets, denoted by $s \tau_{(i, j)} \in \Im(P(X))$, is defined as follows:

$$
A \in s \tau_{(i, j)}:=\forall x\left(x \in A \rightarrow x \in c l_{j}\left(i n t_{i}(A)\right)\right)
$$

i.e., $s \tau_{(i, j)}(A)=\inf _{x \in A} c l_{j}\left(i n t_{i}(A)\right)(x)$.
(2) The family of fuzzifying (i, j)-semiclosed sets, denoted by $s F_{(i, j)} \in \Im(P(X))$, is defined as follows:

$$
A \in s F_{(i, j)}:=X \sim A \in s \tau_{(i, j)}
$$

Lemma 3.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space.If $[A \subseteq B]=1$, then $\vDash c l_{j}\left(i n t_{i}(A)\right) \subseteq c l_{j}\left(i n t_{i}(B)\right)$.
Proof. It is obtained from Lemma (2.6) (1) and (2).
Lemma 3.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \subseteq X$. Then
(1) $\models=X \sim\left(c l_{j}\left(\operatorname{int}_{i}(A)\right)\right) \equiv \operatorname{int}_{j}\left(c l_{i}(X \sim A)\right)$;
(2) $\models=X \sim\left(\operatorname{int}_{j}\left(c l_{i}(A)\right)\right) \equiv \operatorname{cl}_{j}\left(\operatorname{int}_{i}(X \sim A)\right)$.

Proof. From Theorem 2.2 (5) in [11], we have
(1) $\left(X \sim\left(\operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right)\right)(x)=\left(\operatorname{int}_{j}\left(X \sim \operatorname{int}_{i}(A)\right)\right)(x)=\left(\operatorname{int}_{j}\left(c l_{i}(X \sim A)\right)\right)(x)$.
(2) $\left(X \sim\left(\operatorname{int}_{j}\left(l_{i}(A)\right)\right)\right)(x)=\left(c l_{j}\left(X \sim \operatorname{cl}_{i}(A)\right)\right)(x)=\left(\operatorname{cl}_{j}\left(\operatorname{int}_{i}(X \sim A)\right)\right)(x)$.

Theorem 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) $s \tau_{(i, j)}(X)=1, s \tau_{(i, j)}(\phi)=1$;
(2) For any $\left\{A_{\lambda}: \lambda \in \Lambda\right\}, s \tau_{(i, j)}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) \geq \bigwedge_{\lambda \in \Lambda} s \tau_{(i, j)}\left(A_{\lambda}\right)$.

Proof. The proof of (1) is straightforward.
(2) From Lemma (3.2), we have $\models c l_{j}\left(\operatorname{int}_{i}\left(A_{\lambda}\right)\right) \subseteq c l_{j}\left(i n t_{i}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)\right)$. So

$$
\begin{aligned}
s \tau_{(i, j)}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) & =\inf _{x \in\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)} c l_{j}\left(\operatorname{int}_{i}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)\right)(x) \\
& =\inf _{\lambda \in \Lambda} \inf _{x \in A_{\lambda}} c l_{j}\left(\operatorname{int}_{i}\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)\right)(x) \\
& \geq \inf _{\lambda \in \Lambda} \inf _{x \in A_{\lambda}} c l_{j}\left(i n t_{i}\left(A_{\lambda}\right)\right)(x)=\bigwedge_{\lambda \in \Lambda} s \tau_{(i, j)}\left(A_{\lambda}\right)(x) .
\end{aligned}
$$

Theorem 3.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) $s F_{(i, j)}(X)=1, s F_{(i, j)}(\phi)=1$;
(2) For any $\left\{A_{\lambda}: \lambda \in \Lambda\right\}, s F_{(i, j)}\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \geq \bigwedge_{\lambda \in \Lambda} s F_{(i, j)}\left(A_{\lambda}\right)$.

Proof. From Theorem (3.4) the proof is obtained.
Lemma 3.6. Let (X, τ_{1}, τ_{2}) be a fuzzifying bitopological space. Then
$(1) \models \tau_{i} \subseteq s \tau_{(i, j)} ; \quad(2) \models F_{i} \subseteq s F_{(i, j)}$.
Proof. (1) From Theorem 2.2 (3) in [11], we have

$$
\begin{aligned}
{\left[A \in \tau_{i}\right] } & =\left[A \equiv \operatorname{int}_{i}(A)\right] \\
& =\left[A \subseteq \operatorname{int}_{i}(A)\right] \wedge\left[\operatorname{int}_{i}(A) \subseteq A\right] \\
& =\left[A \subseteq \operatorname{int}_{i}(A)\right] \leq\left[A \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right]=\left[A \in \operatorname{s\tau _{(i,j})}\right]
\end{aligned}
$$

(2) From (1) above the proof is obtained.

Remark 3.7. The following example shows that
(1) $s \tau_{i} \subseteq s \tau_{(i, j)},(2) s \tau_{j} \subseteq s \tau_{(i, j)},(3) \tau_{j} \subseteq s \tau_{(i, j)}$ and (4) $s \tau_{(i, j)} \subseteq s \tau_{(j, i)}$ may not be true for any $\left(X, \tau_{1}, \tau_{2}\right)$ fuzzifying bitopological space.
Example 3.8. Let $X=\{a, b, c\}, A=\{a, b\}$ and τ_{1}, τ_{2} be two fuzzifying topologies on X defined as follow:

$$
\begin{gathered}
\tau_{1}(A)=\left\{\begin{array}{rll}
1 & \text { if } & A \in\{\phi, X,\{a\},\{a, c\}\}, \\
1 / 4 & \text { if } & A \in\{\{c\},\{b, c\}\}, \\
0 & \text { if } & A \in\{\{b\},\{a, b\}\} .
\end{array}\right. \\
\tau_{2}(A)=\left\{\begin{array}{rll}
1 & \text { if } & A \in\{\phi, X,\{b\},\{a, c\}\}, \\
1 / 4 & \text { if } & A \in\{\{a\},\{a, b\}\}, \\
0 & \text { if } & A \in\{\{c\},\{b, c\}\} .
\end{array}\right.
\end{gathered}
$$

We have $\operatorname{int}_{1}(A)(a)=1, \operatorname{int}_{1}(A)(b)=\operatorname{int}_{1}(A)(c)=0$,
$c l_{1}\left(i n t_{1}(A)\right)(a)=1, c l_{1}\left(i n t_{1}(A)\right)(b)=c l_{1}\left(i n t_{1}(A)\right)(c)=3 / 4 ;$
$s \tau_{1}(A)=3 / 4$ and $\operatorname{int}_{2}(A)(a)=1 / 4, \operatorname{int}_{2}(A)(b)=1, \operatorname{int}_{2}(A)(c)=0$,
$c l_{2}\left(\operatorname{int}_{2}(A)\right)(a)=c l_{2}\left(i n t_{2}(A)\right)(c)=1 / 4, l_{2}\left(i n t_{2}(A)\right)(b)=1 ; s \tau_{2}(A)=1 / 4$.
So $\operatorname{cl}_{2}\left(\operatorname{int}_{1}(A)\right)(a)=\operatorname{cl}_{2}\left(\operatorname{int}_{1}(A)\right)(c)=1, \operatorname{cl}_{2}\left(\operatorname{int}_{1}(A)\right)(b)=0, s \tau_{(1,2)}(A)=0$. Also $c l_{1}\left(i n t_{2}(A)\right)(a)=1 / 4=c l_{1}\left(\operatorname{int}_{2}(A)\right)(c), c l_{1}\left(i n t_{2}(A)\right)(b)=1 ; s \tau_{(2,1)}(A)=1 / 4$.
Therefore $s \tau_{2} \nsubseteq s \tau_{(1,2)}, s \tau_{1} \nsubseteq s \tau_{(1,2)}, \tau_{2} \nsubseteq s \tau_{(1,2)}$ and $s \tau_{(2,1)} \nsubseteq s \tau_{(1,2)}$.
Theorem 3.9. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) $\models c l_{j}(A) \equiv c l_{j}\left(\right.$ int $\left._{i}(A)\right) \longleftrightarrow A \in s \tau_{(i, j)}$;
(2) $\models \operatorname{int}_{j}(A) \equiv \operatorname{int}_{j}\left(c l_{i}(A)\right) \longleftrightarrow A \in s F(i, j)$.

Proof. (1) $\left[c l_{j}(A) \equiv c l_{j}\left(i n t_{i}(A)\right)\right]=\left[c l_{j}(A) \subseteq c l_{j}\left(\operatorname{int}_{i}(A)\right)\right] \wedge\left[c l_{j}\left(i n t_{i}(A)\right) \subseteq c l_{j}(A)\right]$.
We know that $\left[\operatorname{int}_{i}(A) \subseteq A\right]=1$, so $\left[c l_{j}\left(i n t_{i}(A)\right) \subseteq c l_{j}(A)\right]=1$. Then
$\left[c l_{j}(A) \equiv c l_{j}\left(\operatorname{int}_{i}(A)\right)\right]=\left[c l_{j}(A) \subseteq c l_{j}\left(\operatorname{int}_{i}(A)\right)\right] \leq\left[A \subseteq c l_{j}\left(i n t_{i}(A)\right)\right]=\left[A \in s \tau_{(i, j)}\right]$. Conversely, $\left[A \in s \tau_{(i, j)}\right]=\left[A \subseteq c l_{j}\left(i n t_{i}(A)\right)\right] \leq\left[c l_{j}(A) \subseteq c l_{j}\left(c l_{j}\left(i n t_{i}(A)\right)\right)\right]$.
From Definition (2.4) (4), we have $\left.\left[c l_{j}\left(c l_{j}\left(\operatorname{int}_{i}(A)\right)\right)\right] \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right]=1$. Therefore

$$
\begin{aligned}
{\left[A \in s \tau_{(i, j)}\right] } & \leq\left[c l_{j}(A) \subseteq c l_{j}\left(\operatorname{int}_{i}(A)\right)\right] \\
& =\left[c l_{j}(A) \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right] \wedge\left[c l_{j}\left(\operatorname{int}_{i}(A)\right) \subseteq c l_{j}(A)\right] \\
& =\left[c l_{j}(A) \equiv c l_{j}\left(i n t_{i}(A)\right)\right] .
\end{aligned}
$$

(2) From (1) above and Lemma (3.3) (2), the proof is obtained.

Theorem 3.10. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) $\models A \in s \tau_{(i, j)} \leftrightarrow \forall x\left(x \in A \rightarrow \exists B\left(B \in s \tau_{(i, j)} \wedge x \in B \subseteq A\right)\right)$;
(2) $\models A \in s F_{(i, j)} \leftrightarrow \forall x\left(x \in \operatorname{int}_{j}\left(c l_{i}(A)\right) \rightarrow x \in A\right)$.

Proof. (1) $\left[\forall x\left(x \in A \rightarrow \exists B\left(B \in s \tau_{(i, j)} \wedge x \in B \subseteq A\right)\right)\right]=\inf _{x \in A_{x} \in B \subseteq A} \sup _{(i, j)}(B)$.
First, we have $\inf _{x \in A_{x \in B \subseteq A}} \sup s \tau_{(i, j)}(B) \geq s \tau_{(i, j)}(A)$.
In the other hand, let $\beta_{x}=\{B: x \in B \subseteq A\}$. Then for any $f \in \prod_{x \in A} \beta_{x}$, we have

$$
\begin{aligned}
& \bigcup_{x \in A} f(x)=A, s \tau_{(i, j)}(A)=s \tau_{(i, j)}\left(\bigcup_{x \in A} f(x)\right) \geq \inf _{x \in A} s \tau_{(i, j)}(f(x)), \text { and so } \\
& s \tau_{(i, j)}(A) \geq \sup _{f \in \in_{x \in A} \beta_{x}} \inf _{x \in A} s \tau_{(i, j)}(f(x))=\inf _{x \in A} \sup _{f \in \in_{x \in A} \beta_{x}} s \tau_{(i, j)}(f(x))=\inf _{x \in A} \sup _{x \in B \subseteq A} s \tau_{(i, j)}(B) .
\end{aligned}
$$

(2) From Lemma (3.3) (2), we have

$$
\begin{aligned}
{\left[\forall x\left(x \in \operatorname{int}_{j}\left(c l_{i}(A)\right) \rightarrow x \in A\right)\right] } & =\left[\forall x\left(x \in X \sim A \rightarrow x \in X \sim \operatorname{int}_{j}\left(c l_{i}(A)\right)\right)\right] \\
& =\inf _{x \in X \sim A}\left(X \sim \operatorname{int}_{j}\left(c l_{i}(A)\right)\right)(x) \\
& =\inf _{x \in X \sim A}\left(c l_{j}\left(\operatorname{int}_{i}(X \sim A)\right)\right)(x) \\
& =\left[X \sim A \in s \tau_{(i, j)}\right]=\left[A \in s F_{(i, j)}\right] .
\end{aligned}
$$

Lemma 3.11. Let (X, τ_{1}, τ_{2}) be a fuzzifying bitopological space.Then
(1) $\vDash B \equiv{\dot{Ð} \operatorname{int}_{i}(A) \longrightarrow B \subseteq A \text {; }}$ (
(2) $\models B \equiv \operatorname{int}_{i}(A) \wedge A \in s \tau_{(i, j)} \longrightarrow A \subseteq \operatorname{cl}_{j}(B)$.

Proof. (1) $\left[B \equiv \operatorname{int}_{i}(A)\right]=\left[\left(B \subseteq \operatorname{int}_{i}(A)\right) \wedge\left(\operatorname{int}_{i}(A) \subseteq B\right)\right]$. If $[B \subseteq A]=0$, then $\left[B \subseteq \operatorname{int}_{i}(A)\right]=0$. Therefor $\left[B \equiv \operatorname{int}_{i}(A)\right]=0$.
$(2)\left[\left(B \equiv i n t_{i}(A)\right) \wedge A \in s \tau_{(i, j)}\right]=\left[\left(B \equiv i n t_{i}(A)\right) \wedge A \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right]\right.$

$$
\begin{aligned}
& \leq\left[\left(\operatorname{int}_{i}(A) \subseteq B\right) \wedge\left(A \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right)\right] \\
& \leq\left[\left(c l_{j}\left(\operatorname{int}_{i}(A)\right) \subseteq c l_{j}(B)\right) \wedge\left(A \subseteq l_{j}\left(\operatorname{int}_{i}(A)\right)\right)\right] \\
& \leq\left[A \subseteq c l_{j}(B)\right]
\end{aligned}
$$

Theorem 3.12. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. Then
(1) $\vDash \exists U\left(U \in \tau_{i} \wedge U \subseteq A \subseteq c l_{j}(U)\right) \longrightarrow A \in s \tau_{(i, j)}$;
(2) $\models \exists V\left(V \in F_{i} \wedge i n t_{j}(V) \subseteq A \subseteq V\right) \longrightarrow A \in s F_{(i, j)}$.

Proof. (1) From Theorem 2.2 (3) [11], we have

$$
\begin{aligned}
{\left[\exists U \left(U \in \tau_{i} \wedge U \subseteq A \subseteq\right.\right.} & \left.\left.\operatorname{ll}_{j}(U)\right)\right]=\sup _{U \in P(X)}\left(\left[U \in \tau_{i}\right] \wedge[U \subseteq A] \wedge\left[A \subseteq c l_{j}(U)\right]\right) \\
& =\sup _{U \subseteq A}\left(\left[U \subseteq \operatorname{int}_{i}(U)\right] \wedge[U \subseteq A] \wedge\left[A \subseteq c l_{j}(U)\right]\right) \\
& \leq \sup _{U \subseteq A}\left(\left[U \subseteq \operatorname{int}_{i}(U)\right] \wedge\left[\operatorname{int}_{i}(U) \subseteq i n t_{i}(A)\right] \wedge\left[A \subseteq c l_{j}(U)\right]\right) \\
& \leq \sup _{U \subseteq A}\left(\left[U \subseteq \operatorname{int}_{i}(A)\right] \wedge\left[A \subseteq c l_{j}(U)\right]\right) \\
& \left.\leq \sup _{U \subseteq A}\left(\left[c l_{j}(U) \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right] \wedge\left[A \subseteq c l_{j}(U)\right)\right]\right) \\
& \leq \sup _{U \subseteq A}\left[A \subseteq \operatorname{cl}_{j}\left(\operatorname{int}_{i}(A)\right)\right]=\left[A \in \operatorname{si}_{(i, j)}\right]
\end{aligned}
$$

(2) From (1) above and Theorem (2.2) (5) in [11], we have

$$
\begin{aligned}
{\left[A \in s F_{(i, j)}\right] } & =\left[X \sim A \in s \tau_{(i, j)}\right] \\
& \geq\left[\exists U\left(U \in \tau_{i} \wedge U \subseteq X \sim A \subseteq c l_{j}(U)\right)\right] \\
& =\left[\exists U\left(U \in \tau_{i} \wedge X \sim c l_{j}(U) \subseteq A \subseteq X \sim U\right)\right] \\
& =\left[\exists U\left(U \in \tau_{i} \wedge i n t_{j}(X \sim U) \subseteq A \subseteq X \sim U\right)\right] \\
& =\left[\exists V\left(V \in F_{i} \wedge i n t_{j}(V) \subseteq A \subseteq V\right)\right] .
\end{aligned}
$$

Remark 3.13. The proof of the inverse direction of Theorem (3.12) can be obtained by assuming that $\left[U \doteq i n t_{i}(A)\right]=1$, but the following example shows that even without the proposed requirement the proof is true. So the proof may be can obtained without the proposed requirement.

Example 3.14. From Example (3.8), $A=\{a, b\}, s \tau_{(2,1)}(A)=1 / 4$ and $\operatorname{int}_{2}(A)(a)=1 / 4, \operatorname{int}_{2}(A)(b)=1, \operatorname{int}_{2}(A)(c)=0$.
The family of all subsets of A is $\{\{a\},\{b\},\{a, b\}\}$ and $c l_{1}(\{a\})(a)=1$, $c l_{1}(\{a\})(b)=3 / 4, c l_{1}(\{a\})(c)=3 / 4$. Then $\left[A \subseteq c l_{1}(\{a\})\right]=\inf _{x \in A} c l_{1}(\{a\})(x)=3 / 4$.
So $\left[\tau_{2}(\{a\}) \wedge A \subseteq c l_{1}(\{a\})\right]=\min (1 / 4,3 / 4)=1 / 4$.
By the same way, we have $\left[\tau_{2}(\{b\}) \wedge A \subseteq c l_{1}(\{b\})\right]=\min (1,0)=0$ and $\left[\tau_{2}(\{a, b\}) \wedge A \subseteq c l_{1}(\{a, b\})\right]=\min (1 / 4,1)=1 / 4$.
Therefore $\left[\exists U\left(U \in \tau_{2} \wedge U \subseteq A \subseteq c l_{1}(U)\right)\right]=1 / 4=s \tau_{(2,1)}(A)$.
Note that $\left[U \equiv \operatorname{int}_{2}(A)\right]=\left[U \subseteq \operatorname{int}_{2}(A)\right] \wedge\left[\right.$ int $\left._{2}(A) \subseteq U\right]$ and
$\left[U \subseteq \operatorname{int}_{2}(A)\right]=\inf _{x \in U} \operatorname{int}_{2}(A)(x),\left[\operatorname{int}_{2}(A) \subseteq U\right]=\inf _{x \in X \sim U}\left(1-\operatorname{int}_{2}(A)(x)\right)$.
$\left[\{a\} \equiv \operatorname{int}_{2}(A)\right]=\max (0,1 / 4+0-1)=0 .\left[\{b\} \equiv \operatorname{int}_{2}(A)\right]=\max (0,1+3 / 4-1)=3 / 4$
$\left[\{a, b\} \equiv \operatorname{int}_{2}(A)\right]=\max (0,1+1 / 4-1)=1 / 4$.

4 (i,j)-semi Neighborhood System in Fuzzifying Bitopological Spaces

Definition 4.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $x \in X$. Then the (i, j)-semi neighborhood system of x is denoted by $s N_{x}^{(i, j)} \in \Im(P(X))$ and defined as

$$
A \in s N_{x}^{(i, j)}:=\exists B\left(B \in s \tau_{(i, j)} \wedge x \in B \subseteq A\right)
$$

i.e., $s N_{x}^{(i, j)}(A)=\sup _{x \in B \subseteq A} s \tau_{(i, j)}(B)$.

Theorem 4.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \in P(X)$. Then
(1) $\vDash A \in s \tau_{(i, j)} \longleftrightarrow \forall x\left(x \in A \rightarrow \exists B\left(B \in s N_{x}^{(i, j)} \wedge B \subseteq A\right)\right)$;
(2) $N_{x}^{i}(A) \leq s N_{x}^{(i, j)}(A)$.

Proof. (1) From Theorem (3.10) (1), we have

$$
\begin{aligned}
{\left[\forall x\left(x \in A \rightarrow \exists B\left(B \in s N_{x}^{(i, j)} \wedge B \subseteq A\right)\right)\right] } & =\inf _{x \in A} \sup _{B \subseteq A} s N_{x}^{(i, j)}(B) \\
& =\inf _{x \in A} \sup _{B \subseteq A} \sup _{x \in C \subseteq B} s \tau_{(i, j)}(C) \\
& =\inf _{x \in A} \sup _{x \in C \subseteq A} s \tau_{(i, j)}(C)=s \tau_{(i, j)}(A)
\end{aligned}
$$

(2) From Lemma (3.6) (1), we have
$s N_{x}^{(i, j)}(A)=\sup _{x \in B \subseteq A} s \tau_{(i, j)}(B) \geq \sup _{x \in B \subseteq A} \tau_{i}(B)=N_{x}^{i}(A)$.
Corollary 4.3. $s \tau_{(i, j)}(A)=\inf _{x \in A} s N_{x}^{(i, j)}(A)$.
Theorem 4.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. The mapping $s N^{(i, j)}: X \rightarrow \Im^{N}(P(X)), x \mapsto s N_{x}^{(i, j)}$, where $\Im^{N}(P(X))$ is the set of all normal fuzzy subset of $P(X)$, has the following properties:
(1) $\models A \in s N_{x}^{(i, j)} \rightarrow x \in A$;
(2) $\models A \subseteq B \rightarrow\left(A \in s N_{x}^{(i, j)} \rightarrow B \in s N_{x}^{(i, j)}\right)$;
(3) $\vDash A \in s N_{x}^{(i, j)} \rightarrow \exists H\left(H \in s N_{x}^{(i, j)} \wedge H \subseteq A \wedge \forall y\left(y \in H \rightarrow H \in s N_{y}^{(i, j)}\right)\right)$.

Proof. (1) If $\left[A \in s N_{x}^{(i, j)}\right]=0$, then (1) is obtain.
If $\left[A \in s N_{x}^{(i, j)}\right]=\sup _{x \in B \subseteq A} s \tau_{(i, j)}(B)>0$, then there exists B_{0} such that $x \in B_{0} \subseteq A$.
Now we have $[x \in A]=1$. Therefore $\left[A \in s N_{x}^{(i, j)}\right] \leq[x \in A]$.
(2) Immediate.
(3) $\left[\exists H\left(H \in s N_{x}^{(i, j)} \wedge H \subseteq A \wedge \forall y\left(y \in H \rightarrow H \in s N_{y}^{(i, j)}\right)\right)\right]$

$$
\begin{aligned}
& =\sup _{H \subseteq A}\left(s N_{x}^{(i, j)}(H) \wedge \inf _{y \in H} s N_{y}^{(i, j)}(H)\right) \\
& =\sup _{H \subseteq A}\left(s N_{x}^{(i, j)}(H) \wedge s \tau_{(i, j)}(H)\right) \\
& =\sup _{H \subseteq A} s \tau_{(i, j)}(H) \geq \sup _{x \in H \subseteq A} s \tau_{(i, j)}(H)=s N_{x}^{(i, j)}(A)=\left[A \in s N_{x}^{(i, j)}\right] .
\end{aligned}
$$

5 (i,j)-semi Derived Sets and (i,j)-semi Closure Operator in Fuzzifying Bitopological Spaces

Definition 5.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. The $(i, j)-$ semi derived set $s d_{(i, j)}(A)$ of A is defined as follows:

$$
x \in \operatorname{sd}_{(i, j)}(A):=\forall B\left(B \in s N_{x}^{(i, j)} \rightarrow B \cap(A \sim\{x\}) \neq \phi\right)
$$

i.e., $s d_{(i, j)}(A)(x)=\inf _{B \cap(A \sim\{x\})=\phi}\left(1-s N_{x}^{(i, j)}(B)\right)$.

Lemma 5.2. $s d_{(i, j)}(A)(x)=1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\})$.
Proof.

$$
\begin{aligned}
s d_{(i, j)}(A)(x) & =1-\sup _{B \cap A \sim\{x\}=\phi} s N_{x}^{(i, j)}(B)=1-\sup _{B \subseteq(X \sim A) \cup\{x\}} \sup _{x \in C \subseteq B} s \tau_{(i, j)}(C) \\
& =1-\sup _{x \in C \subseteq(X \sim A) \cup\{x\}} s \tau_{(i, j)}(C)=1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\}) .
\end{aligned}
$$

Theorem 5.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A, B \in P(X)$. Then
(1) $\models \operatorname{sd}_{(i, j)}(\phi) \equiv \phi$;
(2) $\vDash A \subseteq B \longrightarrow s d_{(i, j)}(A) \subseteq s d_{(i, j)}(B)$;
(3) $\vDash A \in s F_{(i, j)} \longleftrightarrow s d_{(i, j)}(A) \subseteq A$;
(4) $\models s d_{(i, j)}(A) \subseteq d_{i}(A)$.

Proof. (1) From Lemma (5.2), we have

$$
\begin{aligned}
s d_{(i, j)}(\phi)(x) & =1-s N_{x}^{(i, j)}((X \sim \phi) \cup\{x\}) \\
& =1-s N_{x}^{(i, j)}(X)=1-1=0 .
\end{aligned}
$$

(2) Let $A \subseteq B$, then From Lemma (5.2) and Theorem (4.4) (2), we have

$$
\begin{aligned}
s d_{(i, j)}(A)(x) & =1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\}) \\
& \leq 1-s N_{x}^{(i, j)}((X \sim B) \cup\{x\})=s d_{(i, j)}(B)(x) .
\end{aligned}
$$

(3) From Lemma (5.2) and Theorem (4.2) (1), we have

$$
\begin{aligned}
{\left[s d_{(i, j)}(A) \subseteq A\right] } & =\inf _{x \in X \sim A}\left(1-s d_{(i, j)}(A)(x)\right)=\inf _{x \in X \sim A} s N_{x}^{(i, j)}((X \sim A) \cup\{x\}) \\
& =\inf _{x \in X \sim A} s N_{x}^{(i, j)}(X \sim A)=\inf _{x \in X \sim A} \sup _{x \in B \subseteq X \sim A} s \tau_{(i, j)}(B) \\
& =s \tau_{(i, j)}(X \sim A)=s F_{(i, j)}(A)=\left[A \in s F_{(i, j)}\right] .
\end{aligned}
$$

(4) From Theorem (4.2) (2) and Lemma (5.1) in [10], we have $s d_{(i, j)}(A)(x)=1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\}) \leq 1-N_{x}^{i}((X \sim A) \cup\{x\})=d_{i}(A)(x)$.
Definition 5.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. The Fuzzifying (i, j)-semi closure of A, is denoted and defined as follows:
$x \in \operatorname{scl}_{(i, j)}(A):=\forall B\left((B \supseteq A) \wedge\left(B \in s F_{(i, j)}\right) \rightarrow x \in B\right)$,
i.e., $\operatorname{scl}_{(i, j)}(A)(x)=\inf _{x \notin B \supseteq A}\left(1-s F_{(i, j)}(B)\right)$.

Lemma 5.5. [6] For any $A \in P(X)$ and $\widetilde{B} \in \Im(X)$, then $[\widetilde{B} \subseteq A]=[\widetilde{B} \cup A \subseteq A]$.
Theorem 5.6. Let (X, τ_{1}, τ_{2}) be a fuzzifying bitopological space, $A, B \in P(X)$ and $x \in X$. Then
(1) $\operatorname{scl}_{(i, j)}(A)(x)=1-s N_{x}^{(i, j)}(X \sim A)$;
(2) $\models \operatorname{scl}_{(i, j)}(\phi)=\phi$;
(3) $\models A \subseteq \operatorname{scl}_{(i, j)}(A)$;
(4) $\models \operatorname{scl}_{(i, j)}(A) \equiv s d_{(i, j)}(A) \cup A$;
(5) $\models x \in \operatorname{scl}_{(i, j)}(A) \longleftrightarrow \forall B\left(B \in s N_{x}^{(i, j)} \longrightarrow A \cap B \neq \phi\right)$;
(6) $\models A \equiv \operatorname{scl}_{(i, j)}(A) \longleftrightarrow A \in s F_{(i, j)}(A)$;
(7) $\models \operatorname{scl}_{(i, j)}(A) \subseteq \operatorname{cl}_{i}(A)$;
(8) $\vDash A \subseteq B \longrightarrow \operatorname{scl}_{(i, j)}(A) \subseteq \operatorname{scl}_{(i, j)}(B)$;
(9) $\models B \doteq$ scl $_{(i, j)}(A) \longrightarrow B \in s F_{(i, j)}$.

Proof.

$$
\text { (1) } \begin{aligned}
s c l_{(i, j)}(A)(x) & =\inf _{x \notin B \supseteq A}\left(1-s F_{(i, j)}(B)\right) \\
& =\inf _{x \notin B \supseteq A}\left(1-s \tau_{(i, j)}(X \sim B)\right) \\
& =1-\sup _{x \in X \sim B \subseteq X \sim A} s \tau_{(i, j)}(X \sim B)=1-s N_{x}^{(i, j)}(X \sim A) .
\end{aligned}
$$

(2) $\operatorname{scl}_{(i, j)}(\phi)(x)=1-s N_{x}^{(i, j)}(X \sim \phi)=1-s N_{x}^{(i, j)}(X)=0$.
(3) Let $A \in P(X)$ and for any $x \in X$. If $x \notin A$, then $[x \in A] \leq\left[x \in \operatorname{scl}_{(i, j)}(A)\right]$. If $x \in A$, then $\operatorname{scl}_{(i, j)}(A)(x)=1-s N_{x}^{(i, j)}(X \sim A)=1-0=1$.
So $[x \in A] \leq\left[x \in \operatorname{scl}_{(i, j)}(A)\right]$. Therefore $\left[A \subseteq \operatorname{scl}_{(i, j)}(A)\right]=1$.
(4) From Lemma (5.2) and (3) above, for any $x \in X$ we have $\left[x \in\left(s d_{(i, j)}(A) \cup A\right)\right]=\max \left(1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\}), A(x)\right)$.
If $x \in A$, then $\left[x \in\left(\operatorname{sd}_{(i, j)}(A) \cup A\right)\right]=A(x)=1=\left[x \in \operatorname{scl}_{(i, j)}(A)\right]$. If $x \notin A$, then $\left[x \in \operatorname{sd}_{(i, j)}(A) \cup A\right]=1-s N_{x}^{(i, j)}(X \sim A)=\left[x \in \operatorname{scl}_{(i, j)}(A)\right]$.
Therefore $\left[\operatorname{scl}_{(i, j)}(A)\right]=\left[\operatorname{sd}_{(i, j)}(A) \cup A\right]$.

$$
\begin{align*}
{\left[\forall B\left(B \in s N_{x}^{(i, j)} \rightarrow A \cap B \neq \phi\right)\right] } & =\inf _{B \subseteq X \sim A}\left(1-s N_{x}^{(i, j)}(B)\right) \tag{5}\\
& =1-s N_{x}^{(i, j)}(X \sim A) \\
& =\left[x \in \operatorname{scl}_{(i, j)}(A)\right] .
\end{align*}
$$

(6) From Theorem (5.3) (3), Lemma (5.5), (4) above and since $\left[A \subseteq s d_{(i, j)}(A) \cup A\right]=1$, we have

$$
\begin{aligned}
s F_{(i, j)}(A) & =\left[s d_{(i, j)}(A) \subseteq A\right]=\left[s d_{(i, j)}(A) \cup A \subseteq A\right] \\
& =\left[s d_{(i, j)}(A) \cup A \subseteq A\right] \wedge\left[A \subseteq \operatorname{sd}_{(i, j)}(A) \cup A\right] \\
& =\left[s d_{(i, j)}(A) \cup A \equiv A\right]=\left[A \equiv \operatorname{scl}_{(i, j)}(A)\right] .
\end{aligned}
$$

(7) From Lemma (3.6) (2), we have

$$
\operatorname{scl}_{(i, j)}(A)(x)=\inf _{x \notin B \supseteq A}\left(1-s F_{(i, j)}(B)\right) \leq \inf _{x \notin B \supseteq A}\left(1-F_{i}(B)\right)=c l_{i}(A) .
$$

(8) Let $A \subseteq B$, then $X \sim B \subseteq X \sim A$. From (1) above and Theorem (4.4) (2), we have $\quad \operatorname{scl}_{(i, j)}(A)(x)=1-s N_{x}^{(i, j)}(X \sim A) \leq 1-s N_{x}^{(i, j)}(X \sim B)=\operatorname{scl}_{(i, j)}(B)(x)$.
(9) If $[A \subseteq B]=0$, then $\left[B \doteq \operatorname{scl}_{(i, j)}(A)\right]=0$. Now suppose that $[A \subseteq B]=1$. We have $\left[B \subseteq \operatorname{scl}_{(i, j)}(A)\right]=1-\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$ and
$\left[\operatorname{scl}_{(i, j)}(A) \subseteq B\right]=\inf _{x \in X \sim B} s N_{x}^{(i, j)}(X \sim A)$. Therefore
$\left[B \doteq \operatorname{scl} l_{(i, j)}(A)\right]=\max \left(0 \inf _{x \in X \sim B} s N_{x}^{(i, j)}(X \sim A)-\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)\right)$.
Let $\left[B \doteq \operatorname{scl}_{(i, j)}(A)\right]>t$. Then $\inf _{x \in X \sim B} s N_{x}^{(i, j)}(X \sim A)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$. For any $x \in X \sim B$, we have $s N_{x}^{(i, j)}(X \sim A)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$. Therefore $\sup _{x \in C \subseteq X \sim A} s \tau_{(i, j)}(C)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$, i.e., there exists C_{x} such that $x \in C_{x} \subseteq X \sim A$ and $s \tau_{(i, j)}\left(C_{x}\right)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$. Now we want to prove $C_{x} \subseteq X \sim B$. If not, then there exists $x^{\prime} \in C_{x}$ and $x^{\prime} \in B \sim A$. Hence we obtain $\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A) \geq s N_{x^{\prime}}^{(i, j)}(X \sim A) \geq s \tau_{(i, j)}\left(C_{x}\right)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)$, a contradiction. Therefore $s F_{(i, j)}(B)=s \tau_{(i, j)}(X \sim B)=\inf _{x \in X \sim B} s N_{x}^{(i, j)}(X \sim B) \geq$ $\inf _{x \in X \sim B} s \tau_{(i, j)}\left(C_{x}\right) \geq s \tau_{(i, j)}\left(C_{x}\right)>t+\sup _{x \in B \sim A} s N_{x}^{(i, j)}(X \sim A)>t$. Since t is arbitrary, it holds that $\left[B \doteq \operatorname{scl}_{(i, j)}(A)\right] \leq\left[B \in s F_{(i, j)}\right]$.

6 (i,j)-semi Interior, (i,j)-semi Exterior and (i,j)semi Boundary Operators in Fuzzifying Bitopological Spaces

Definition 6.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \in P(X)$, the (i, j)-semi interior of A is defined as follows:

$$
\operatorname{sint}_{(i, j)}(A)(x)=s N_{x}^{(i, j)}(A)
$$

Theorem 6.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space, $A, B \in P(X)$ and $x \in X$.Then
(1) $\models \operatorname{sint}_{(i, j)}(X) \equiv X$;
(2) $\models \operatorname{sint}_{(i, j)}(A) \subseteq A$;
(3) $\models \operatorname{int}_{i}(A) \subseteq \operatorname{sint}_{(i, j)}(A)$;
(4) $\vDash B \in s \tau_{(i, j)} \wedge B \subseteq A \longrightarrow B \subseteq \operatorname{sint}_{(i, j)}(A)$;
(5) $\models A \equiv \operatorname{sint}_{(i, j)}(A) \longleftrightarrow A \in s \tau_{(i, j)}$;
(6) $\models A \subseteq B \longrightarrow \operatorname{sint}_{(i, j)}(A) \subseteq \operatorname{sint}_{(i, j)}(B)$;
(7) $\models \operatorname{sint}_{(i, j)}(A) \equiv X \sim \operatorname{scl}_{(i, j)}(X \sim A)$;
(8) $\vDash \operatorname{sint}_{(i, j)}(A) \equiv A \cap\left(X \sim s d_{(i, j)}(X \sim A)\right)$;
(9) $\vDash B \equiv \dot{\doteq} \operatorname{sint}_{(i, j)}(A) \longrightarrow B \in s \tau_{(i, j)}$.

Proof. (1) $\operatorname{sint}_{(i, j)}(X)(x)=s N_{x}^{(i, j)}(X)=1$. Therefore $\operatorname{sint}_{(i, j)}(X) \equiv X$.
(2) Let $A \in P(X)$ and $x \in X$. If $x \notin A$, then $\operatorname{sint}_{(i, j)}(A)(x)=s N_{x}^{(i, j)}(A)=0$. Therefore $\operatorname{sint}_{(i, j)}(A) \subseteq A$.
(3) From Theorem (4.2) (2), we have $\operatorname{int}_{i}(A)(x)=N_{x}^{i}(A) \leq s N_{x}^{(i, j)}(A)=\operatorname{sint}_{(i, j)}(A)(x)$.
(4) If $B \nsubseteq A$, then $\left[\left(B \in s \tau_{(i, j)}\right) \wedge(B \subseteq A)\right]=0$. If $B \subseteq A$, then

$$
\begin{aligned}
{\left[B \subseteq \operatorname{sint}_{(i, j)}(A)\right] } & =\inf _{x \in B} \operatorname{sint}_{(i, j)}(A)(x) \\
& =\inf _{x \in B} s N_{x}^{(i, j)}(A) \\
& \geq \inf _{x \in B} s N_{x}^{(i, j)}(B)=s \tau_{(i, j)}(B)=\left[\left(B \in s \tau_{(i, j)}\right) \wedge(B \subseteq A)\right]
\end{aligned}
$$

$$
\begin{align*}
{\left[A \equiv \operatorname{sint}_{(i, j)}(A)\right] } & =\min \left(\inf _{x \in A} \operatorname{sint}_{(i, j)}(A)(x), \inf _{x \in X \sim A}\left(1-\operatorname{sint} t_{(i, j)}(A)(x)\right)\right) \tag{5}\\
& =\min \left(\inf _{x \in A} s N_{x}^{(i, j)}(A), \inf _{x \in X \sim A}\left(1-s N_{x}^{(i, j)}(A)\right)\right) \\
& =\inf _{x \in A} s N_{x}^{(i, j)}(A)=s \tau_{(i, j)}(A)=\left[A \in s \tau_{(i, j)}\right] .
\end{align*}
$$

(6) From Definition (6.1) and Theorem (4.4) (2), the proof is straightforward.
(7) From Theorem (5.6) (1), we have
$\left(X \sim \operatorname{scl}_{(i, j)}(X \sim A)\right)(x)=1-\left(1-s N_{x}^{(i, j)}(A)\right)=s N_{x}^{(i, j)}(A)=\operatorname{sint}_{(i, j)}(A)(x)$.
(8) From Lemma (5.2), we have
$\left[A \cap\left(X \sim s d_{(i, j)}(X \sim A)\right)\right]=\min \left(A(x), s N_{x}^{(i, j)}(A \cup\{x\})\right)$
If $x \notin A$, then $\left[A \cap\left(X \sim s d_{(i, j)}(X \sim A)\right)\right]=0=s N_{x}^{(i, j)}(A)=\operatorname{sint}_{(i, j)}(A)(x)$.
If $x \in A$, then $\left[A \cap\left(X \sim \operatorname{sd}_{(i, j)}(X \sim A)\right)\right]=s N_{x}^{(i, j)}(A)=\operatorname{sint}_{(i, j)}(A)(x)$.
(9) From Theorem (5.6) (9) and (7) above, we have
$\left[B \doteq \operatorname{sint}_{(i, j)}(A)\right]=\left[X \sim B \doteq \operatorname{scl}_{(i, j)}(X \sim A)\right] \leq\left[X \sim B \in s F_{(i, j)}\right]=\left[B \in s \tau_{(i, j)}\right]$.
Definition 6.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \subseteq X$. The (i, j)-semi exterior of A is defined as follows:
$x \in \operatorname{sext}_{(i, j)}(A):=x \in \operatorname{sint}_{(i, j)}(X \sim A)$,
i.e., $\operatorname{sext}_{(i, j)}(A)(x)=\operatorname{sint}_{(i, j)}(X \sim A)(x)$.

Theorem 6.4. For any A
(1) $\models \operatorname{sext}_{(i, j)}(\phi) \equiv X$;
(2) $\models \operatorname{sext}_{(i, j)}(A) \subseteq X \sim A$;
(3) $\models \operatorname{ext}_{i}(A) \subseteq \operatorname{sext}_{(i, j)}(A)$;
(4) $\models A \in s F_{(i, j)} \longleftrightarrow \operatorname{sext}_{(i, j)}(A) \equiv X \sim A$;
(5) $\models B \in s F_{(i, j)} \wedge A \subseteq B \longrightarrow X \sim B \subseteq \operatorname{sext}_{(i, j)}(A)$;
(6) $\vDash B \subseteq A \longrightarrow \operatorname{sext}_{(i, j)}(B) \subseteq \operatorname{sext}_{(i, j)}(A)$;
(7) $\vDash \operatorname{sext}_{(i, j)}(A) \equiv(X \sim A) \cap\left(X \sim \operatorname{sd}_{(i, j)}(A)\right)$;
(8) $\models \operatorname{sext}_{(i, j)}(A) \equiv X \sim \operatorname{scl}_{(i, j)}(A)$;
(9) $\vDash x \in \operatorname{sext}_{(i, j)}(A) \longleftrightarrow \exists B\left(x \in B \in s \tau_{(i, j)} \wedge B \cap A=\phi\right)$.

Proof. From Theorem (6.2), we obtain (1),(2),(3),(4),(5),(6),(7) and (8).
(9)

$$
\begin{aligned}
{\left[\exists B\left(x \in B \in s \tau_{(i, j)} \wedge B \cap A=\phi\right)\right]=\sup _{x \in B \subseteq X \sim A} s \tau_{(i, j)}(B) } & =s N_{x}^{(i, j)}(X \sim A) \\
& =\operatorname{sint}_{(i, j)}(X \sim A)(x) .
\end{aligned}
$$

Definition 6.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \subseteq X$. The (i, j)-semi boundary of A is defined as follows:
$x \in s b_{(i, j)}(A):=\left(x \notin \operatorname{sint}_{(i, j)}(A)\right) \wedge\left(x \notin \operatorname{sint}_{(i, j)}(X \sim A)\right)$,
i.e., $s b_{(i, j)}(A)(x)=\min \left(1-\operatorname{sint}_{(i, j)}(A)(x), 1-\operatorname{sint}_{(i, j)}(X \sim A)(x)\right)$.

Lemma 6.6. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space, $A \in P(X)$ and $x \in$ X. Then $\models x \in s b_{(i, j)}(A) \longleftrightarrow \forall B\left(B \in s N_{x}^{(i, j)} \rightarrow(B \cap A \neq \phi) \wedge(B \cap(X \sim A) \neq \phi)\right)$.

Proof. $\left[\forall B\left(B \in s N_{x}^{(i, j)} \rightarrow(B \cap A \neq \phi) \wedge(B \cap(X \sim A) \neq \phi)\right)\right]$

$$
\begin{aligned}
& =\min \left(\inf _{B \subseteq A}\left(1-s N_{x}^{(i, j)}(B)\right), \inf _{B \subseteq X \sim A}\left(1-s N_{x}^{(i, j)}(B)\right)\right) \\
& =\min \left(1-s N_{x}^{(i, j)}(A), 1-s N_{x}^{(i, j)}(X \sim A)\right) \\
& =\min \left(1-\operatorname{sint}_{(i, j)}(A)(x), 1-\operatorname{sint}_{(i, j)}(X \sim A)(x)\right)=\left[x \in s b_{(i, j)}(A)\right] .
\end{aligned}
$$

Theorem 6.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $A \in P(X)$. Then
(1) $\models=\operatorname{sb}_{(i, j)}(A) \equiv \operatorname{scl}_{(i, j)}(A) \cap \operatorname{scl}_{(i, j)}(X \sim A)$;
(2) $\vDash s b_{(i, j)}(A) \equiv s b_{(i, j)}(X \sim A)$;
(3) $\vDash=X \sim s b_{(i, j)}(A) \equiv \operatorname{sint} t_{(i, j)}(A) \cup \operatorname{sint}_{(i, j)}(X \sim A)$;
(4) $\models \operatorname{scl}_{(i, j)}(A) \equiv A \cup s b_{(i, j)}(A)$;
(5) $\vDash s b_{(i, j)}(A) \subseteq A \longleftrightarrow A \in s F_{(i, j)} ;$
(6) $\models \operatorname{sint}_{(i, j)}(A) \equiv A \cap\left(X \sim s b_{(i, j)}(A)\right)$;
(7) $\vDash\left(s b_{(i, j)}(A) \cap A \equiv \phi\right) \longleftrightarrow A \in s \tau_{(i, j)}$;
(8) $\models s b_{(i, j)}(A) \subseteq b_{i}(A)$;
(9) $\vDash=X \sim s b_{(i, j)}(A) \equiv \operatorname{sint}_{(i, j)}(A) \cup \operatorname{sext}_{(i, j)}(A)$.

Proof. (1) From Theorem (6.2) (7), we obtain

$$
\begin{aligned}
\left(\operatorname{scl}_{(i, j)}(A) \cap \operatorname{scl}_{(i, j)}(X \sim A)\right)(x) & =\min \left(\operatorname{scl}_{(i, j)}(A)(x), \operatorname{scl}_{(i, j)}(X \sim A)(x)\right) \\
& =\min \left(1-\operatorname{sint}_{(i, j)}(X \sim A)(x), 1-\operatorname{sint}_{(i, j)}(A)(x)\right) \\
& =\operatorname{sb}_{(i, j)}(A)(x) .
\end{aligned}
$$

(2) Straightforward.
(3) From (1) above and Theorem (6.2) (7), we obtain

$$
\begin{aligned}
X \sim s b_{(i, j)}(A) & \equiv X \sim\left(\operatorname{scl}_{(i, j)}(A) \cap \operatorname{scl}_{(i, j)}(X \sim A)\right) \\
& \equiv\left(X \sim \operatorname{scl}_{(i, j)}(A)\right) \cup\left(X \sim \operatorname{scl}_{(i, j)}(X \sim A)\right) \\
& \equiv \operatorname{sint}_{(i, j)}(X \sim A) \cup \operatorname{sint}_{(i, j)}(A) .
\end{aligned}
$$

(4) If $x \in A$, then $\operatorname{scl}_{(i, j)}(A)(x)=1=\left(A \cup s b_{(i, j)}(A)\right)(x)$.

If $x \notin A$, then

$$
\begin{aligned}
\left(A \cup s b_{(i, j)}(A)\right)(x) & =\operatorname{sb}_{(i, j)}(A)(x) \\
& =\min \left(1-\operatorname{sint}_{(i, j)}(A)(x), 1-\operatorname{sint}_{(i, j)}(X \sim A)(x)\right) \\
& =1-\operatorname{sint}_{(i, j)}(X \sim A)(x)=\operatorname{scl}_{(i, j)}(A)(x) .
\end{aligned}
$$

(5) From Theorem (5.3) (3), Theorem (5.6) (4), Lemma (5.5) and (4) above, we obtain

$$
\begin{aligned}
A \in s F_{(i, j)} & \longleftrightarrow s d_{(i, j)}(A) \subseteq A \\
& \longleftrightarrow A \cup s d_{(i, j)}(A) \subseteq A \\
& \longleftrightarrow \operatorname{scl}_{(i, j)}(A) \subseteq A \\
& \longleftrightarrow A \cup s b_{(i, j)}(A) \subseteq A \\
& \longleftrightarrow s b_{(i, j)}(A) \subseteq A
\end{aligned}
$$

(6) From Theorem (6.2) (7) and (4) above, we obtain

$$
\begin{aligned}
\operatorname{sint}_{(i, j)}(A) & \equiv X \sim \operatorname{scl}_{(i, j)}(X \sim A) \\
& \equiv X \sim\left(X \sim A \cup s b_{(i, j)}(X \sim A)\right) \\
& \equiv A \cap\left(X \sim s b_{(i, j)}(X \sim A)\right) \equiv A \cap\left(X \sim s b_{(i, j)}(A)\right)
\end{aligned}
$$

(7) From Theorem (6.2) (5) and (6) above, we obtain

$$
\begin{aligned}
s b_{(i, j)}(A) \cap A \equiv \phi & \longleftrightarrow\left(X \sim s b_{(i, j)}(A)\right) \cup(X \sim A) \equiv X \\
& \longleftrightarrow A \subseteq X \sim s b_{(i, j)}(A) \\
& \longleftrightarrow A \cap\left(X \sim s b_{(i, j)}(A)\right) \equiv A \\
& \longleftrightarrow \operatorname{sint}_{(i, j)}(A) \equiv A \longleftrightarrow A \in s \tau_{(i, j)}
\end{aligned}
$$

(8) From Theorem (6.2) (3), we have

$$
\begin{aligned}
s b_{(i, j)}(A)(x) & =\min \left(1-\operatorname{sint}_{(i, j)}(A)(x), 1-\operatorname{sint}_{(i, j)}(X \sim A)(x)\right) \\
& \leq \min \left(1-\operatorname{int}_{i}(A)(x), 1-\operatorname{int}_{i}(X \sim A)(x)\right)=b_{i}(A)(x) .
\end{aligned}
$$

(9) From (3) above, we have
$X \sim s b_{(i, j)}(A) \equiv \operatorname{sint}_{(i, j)}(A) \cup \operatorname{sint}_{(i, j)}(X \sim A) \equiv \operatorname{sint}_{(i, j)}(A) \cup \operatorname{sext}_{(i, j)}(A)$.

7 (i,j)-semi Convergence of Nets in Fuzzifying Bitopological Spaces

Definition 7.1. :Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. The class of all nets in X is denoted by $N(X)=\{S \mid S: D \rightarrow X$, where (D, \geq) is a directed set $\}$.
Definition 7.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space.The binary fuzzy predicates $\triangleright_{(i, j)}^{s}, \quad \propto_{(i, j)}^{s} \in \Im(N(X) \times X)$, are defined as follows:
$S \triangleright_{(i, j)}^{s} x:=\forall A\left(A \in s N_{x}^{(i, j)} \rightarrow S \subsetneq A\right)$,
$S \propto_{(i, j)}^{s} x:=\forall A\left(A \in s N_{x}^{(i, j)} \rightarrow S \sqsubseteq A\right), S \in N(X)$,
where $S \triangleright_{(i, j)}^{s} x, S \propto_{(i, j)}^{s} x$ stand for " S is (i, j)-semi converges to x ", " x is (i, j)-semi accumulation point of $S "$. Also, \subsetneq and \subsetneq are the binary crisp predicates "almost in" and "often in", respectively.
Definition 7.3. The fuzzy sets,

$$
\begin{aligned}
\lim _{(i, j)}^{s} T(x) & =\left[T \triangleright_{(i, j)}^{s} x\right] ; \\
\operatorname{adh}_{(i, j)}^{s} T(x) & =\left[T \propto_{(i, j)}^{s} x\right],
\end{aligned}
$$

where $T \in N(X)$, are called (i, j)-semi limit and (i, j)-semi adherence of T, respectively.
Theorem 7.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space, $x \in X, A \in P(X)$ and $S \in N(X)$.Then
(1) $\models \exists S\left((S \subseteq A \sim\{x\}) \wedge\left(S \triangleright_{(i, j)}^{s} x\right)\right) \longrightarrow x \in s d_{(i, j)}(A)$;
(2) $\models \exists S\left((S \subseteq A) \wedge\left(S \triangleright_{(i, j)}^{s} x\right)\right) \longrightarrow x \in \operatorname{scl}_{(i, j)}(A)$;
(3) $\models A \in s F_{(i, j)} \longrightarrow \forall S\left(S \subseteq A \rightarrow \lim _{(i, j)}^{s} S \subseteq A\right)$;
(4) $\models \exists T\left((T<S) \wedge\left(T \triangleright_{(i, j)}^{s} x\right)\right) \longrightarrow S \propto_{(i, j)}^{s} x$,
where $S \subseteq A$ and $T<S$ stand for " S is all in A ", " T is a subnet of S ", respectively.

Proof. (1) We know that, $\left[S \triangleright_{(i, j)}^{s} x\right]=\inf _{S \nsubseteq A}\left(1-s N_{x}^{(i, j)}(A)\right)$.Also, $\left[\exists S\left((S \subseteq A \sim\{x\}) \wedge\left(S \triangleright_{(i, j)}^{s} x\right)\right)\right]=\sup _{S \subseteq A \sim\{x\} S \not{ }_{\neq} B} \inf _{B}\left(1-s N_{x}^{(i, j)}(B)\right)$.
First, for any $S \in N(X)$ such that $S \subseteq A \sim\{x\}$, we have $S \not \square(X \sim A) \cup\{x\}$.
Therefore, $\quad \inf _{S \nexists B}\left(1-s N_{x}^{(i, j)}(B)\right) \leq 1-s N_{x}^{(i, j)}((X \sim A) \cup\{x\})=\left[x \in s d_{(i, j)}(A)\right]$.
(2) If $x \in A$, then from Theorem (5.6) (1) we can prove this similar (1) above. If $x \notin A$, then $A \sim\{x\}=A$ from Theorem (5.6) (1) and (1) above we have,
$\left[\exists S\left((S \subseteq A) \wedge\left(S \triangleright_{(i, j)}^{s} x\right)\right)\right]=\left[\exists S\left((S \subseteq A \sim\{x\}) \wedge\left(S \triangleright_{(i, j)}^{s} x\right)\right)\right]$

$$
\leq 1-s N_{x}^{(i, j)}(X \sim A)=\operatorname{scl}_{(i, j)}(A)(x)=\left[x \in \operatorname{scl}_{(i, j)}(A)\right] .
$$

$$
\begin{align*}
{\left[\forall S\left(S \subseteq A \rightarrow \lim _{(i, j)}^{s} S \subseteq A\right)\right] } & =\inf _{S \subseteq A} \inf _{x \notin A}\left(1-\inf _{S \nsubseteq B}\left(1-s N_{x}^{(i, j)}(B)\right)\right) \tag{3}\\
& =\inf _{S \subseteq A} \inf _{x \notin A} \sup _{S \nsubseteq B} s N_{x}^{(i, j)}(B) .
\end{align*}
$$

In the other hand, from Theorem (5.6) (6) and (2) above, we have

$$
\begin{aligned}
{\left[A \in s F_{(i, j)}\right] } & =\left[A \equiv \operatorname{scl}_{(i, j)}(A)\right]=\left[\operatorname{scl}_{(i, j)}(A) \subseteq A\right] \wedge\left[A \subseteq \operatorname{scl}_{(i, j)}(A)\right] \\
& =\left[\operatorname{scl}_{(i, j)}(A) \subseteq A\right]=\left[X \sim A \subseteq X \sim \operatorname{scl}_{(i, j)}(A)\right] \\
& =\inf _{x \in X \sim A}\left(1-\operatorname{scl}_{(i, j)}(A)(x)\right) \\
& \leq \inf _{x \in X \sim A}\left(1-\sup _{S \subseteq A S \nsubseteq B} \inf _{S}\left(1-s N_{x}^{(i, j)}(B)\right)\right) \\
& =\inf _{x \notin A} \inf _{S \subseteq A} \sup _{S \nsubseteq B} s N_{x}^{(i, j)}(B)=\left[\forall S\left(S \subseteq A \rightarrow \lim _{(i, j)}^{s} S \subseteq A\right)\right] .
\end{aligned}
$$

$$
\begin{align*}
& {\left[S \propto_{(i, j)}^{s} x\right]=\inf _{S \nexists A}\left(1-s N_{x}^{(i, j)}(A)\right),} \tag{4}\\
& {\left[\exists T\left((T<S) \wedge\left(T \triangleright_{(i, j)}^{s} x\right)\right)\right]=\sup _{T<S T \not \subset A} \inf _{\nexists A}\left(1-s N_{x}^{(i, j)}(A)\right) .}
\end{align*}
$$

Set $\mathcal{A}_{S}=\{A \mid S \not \neg A\}, \mathcal{B}_{T}=\{A \mid T \not \approx A\}$. Then for any $T<S$, we have $\mathcal{A}_{S} \subseteq \mathcal{B}_{T}$. In fact, suppose $T=S \circ K$. If $S \not \square A$, then there exists $\sigma_{0} \in \mathcal{D}_{S}$ such that $S(\sigma) \notin A$ when $\sigma \geq \sigma_{0}$. Now, we will show that $T \not \approx A$. If not, then there exists $\mu_{0} \in \mathcal{D}_{T}$ such that $T(\mu) \in A$, when $\mu \geq \mu_{0}$. Moreover, there exists $\mu_{1} \in \mathcal{D}_{T}$ such that $K\left(\mu_{1}\right) \geq \sigma_{0}$ because $T<S$, and there exists $\mu_{2} \in \mathcal{D}_{T}$ such that $\mu_{2} \geq \mu_{0}, \mu_{1}$ because \mathcal{D}_{T} is directed. In this way, $K\left(\mu_{2}\right) \geq \sigma_{0}, S\left(K\left(\mu_{2}\right)\right) \notin A$ and $S\left(K\left(\mu_{2}\right)\right)=T\left(\mu_{2}\right) \in A$, a contradiction. Therefore,

$$
\begin{aligned}
{\left[\exists T\left((T<S) \wedge\left(T \triangleright_{(i, j)}^{s} x\right)\right)\right] } & =\sup _{T<S} \inf _{A \in \mathcal{B}_{T}}\left(1-s N_{x}^{(i, j)}(A)\right) \\
& \leq \inf _{A \in \mathcal{A}_{S}}\left(1-s N_{x}^{(i, j)}(A)\right)=\left[S \propto_{(i, j)}^{s} x\right] .
\end{aligned}
$$

Theorem 7.5. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space. If T is a universal net, then $\models \lim _{(i, j)}^{s} T=a d h_{(i, j)}^{s} T$.

Proof. For any net $T \in N(X)$ and any $A \subseteq X$ one can obtain that if $T \not \approx A$, then $T \not \square A$. Suppose T is a universal net in X and $T \not \approx A$. Then, $T \subsetneq X \sim A$. So $T \not \sharp A$ (Indeed, $T \subsetneq X \sim A$ if and only if there exists $m \in D$ such that for every $n \in D$, $n \geq m, T(n) \in X \sim A$ if and only if there exists $m \in D$ such that for every $n \in D$,
$n \geq m, T(n) \notin A$ if and only if $T \nexists A$.). Hence for any universal net T in X, we have
$\lim _{(i, j)}^{s} T(x)=\inf _{T \not \subset A}\left(1-s N_{x}^{(i, j)}(A)\right)=\inf _{T_{\sim}^{\square 己} A}\left(1-s N_{x}^{(i, j)}(A)\right)=a d h_{(i, j)}^{s} T(x)$.
Lemma 7.6. Let (X, τ_{1}, τ_{2}) be a fuzzifying bitopological space.
$\left.\vDash\left(T \triangleright_{(i, j)}^{s} x\right)\right) \longleftrightarrow \forall A\left(x \in A \in s \tau_{(i, j)} \rightarrow T \subsetneq A\right)$.
Proof. If $B \subseteq A$ and $T \not \approx A$, then $T \not \approx B$

$$
\begin{aligned}
{\left.\left[T \triangleright_{(i, j)}^{s} x\right)\right] } & =\inf _{T \nsubseteq A}\left(1-s N_{x}^{(i, j)}(A)\right) \\
& =1-\sup _{T \nsubseteq A} \sup _{x \in B \subseteq A} s \tau_{(i, j)}(B) \\
& \geq 1-\sup _{T \nsubseteq B, x \in B} s \tau_{(i, j)}(B) \\
& =\inf _{T \nsubseteq B, x \in B}\left(1-s \tau_{(i, j)}(B)\right)=\left[\forall A\left(x \in A \in s \tau_{(i, j)} \rightarrow T \subsetneq A\right)\right] .
\end{aligned}
$$

Conversely, since

$$
\begin{aligned}
{\left[\forall A\left(x \in A \in s \tau_{(i, j)} \rightarrow T \subsetneq A\right)\right] } & =\inf _{T \nsubseteq A, x \in A}\left(1-s \tau_{(i, j)}(A)\right) \\
& =\inf _{T \nsubseteq A, x \in A}\left(1-\inf _{x \in A} \sup _{B \subseteq A} s N_{x}^{(i, j)}(B)\right) \\
& \geq 1-\sup _{T \nsubseteq B, x \in B} s N_{x}^{(i, j)}(B) \\
& =\inf _{T \nsubseteq B, x \in B}\left(1-s N_{x}^{(i, j)}(B)\right)=\left[T \triangleright_{(i, j)}^{s} x\right] .
\end{aligned}
$$

8 (i,j)-semi Convergence of Filters in Fuzzifying Bitopological Spaces

Definition 8.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space and $F(X)$ be the set of all filters on X. The binary fuzzy predicates $\triangleright_{(i, j)}^{s}, \quad \propto_{(i, j)}^{s} \in \Im(F(X) \times X)$ are defined as follows:
$K \triangleright_{(i, j)}^{s} x:=\forall A\left(A \in s N_{x}^{(i, j)} \rightarrow A \in K\right)$,
$K \propto_{(i, j)}^{s} x:=\forall A\left(A \in K \rightarrow x \in \operatorname{scl}_{(i, j)}(A)\right)$, where $K \in F(X)$.
Definition 8.2. The fuzzy sets,

$$
\begin{aligned}
\lim _{(i, j)}^{s} K(x) & =\left[K \triangleright_{(i, j)}^{s} x\right] ; \\
a d h_{(i, j)}^{s} K(x) & =\left[K \propto_{(i, j)}^{s} x\right],
\end{aligned}
$$

are called (i, j)-semi limit and (i, j)-semi adherence sets K, respectively.
Theorem 8.3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a fuzzifying bitopological space.
(1) If $T \in N(X)$ and K^{T} is the filter corresponding to T, i.e., $K^{T}=\{A \mid T \subsetneq A\}$, then
(a) $\models \lim _{(i, j)}^{s} K^{T}=\lim _{(i, j)}^{s} T$;
(b) $\models a d h_{(i, j)}^{s} K^{T}=a d h_{(i, j)}^{s} T$.
(2) If $K \in F(X)$ and T^{K} is the net corresponding to K, i.e., $T^{K}: D \rightarrow X$,
$(x, A) \mapsto x,(x, A) \in D$, where $D=\{(x, A) \mid x \in A \in K\},(x, A) \geq(y, B)$ iff $A \subseteq B$, then
(a) $\models \lim _{(i, j)}^{s} T^{K}=\lim _{(i, j)}^{s} K$;
(b) $\models a d h_{(i, j)}^{s} T^{K}=a d h_{(i, j)}^{s} K$.

Proof. (1) For any $x \in X$, we have
(a) $\lim _{(i, j)}^{s} K^{T}(x)=\inf _{A \notin K^{T}}\left(1-s N_{x}^{(i, j)}(A)\right)=\inf _{T \nRightarrow A}\left(1-s N_{x}^{(i, j)}(A)\right)=\lim _{(i, j)}^{s} T(x)$.

$$
\text { (b) } \begin{aligned}
a d h_{(i, j)}^{s} K^{T}(x) & =\inf _{A \in K^{T}} s c l_{(i, j)}(A)(x)=\inf _{T \approx A}\left(1-s N_{x}^{(i, j)}(X \sim A)\right) \\
& =\inf _{T \not \subset X \sim A}\left(1-s N_{x}^{(i, j)}(X \sim A)\right)=a d h_{(i, j)}^{s} T(x) .
\end{aligned}
$$

(2) (a) First we prove that $T^{K} \subsetneq A$ if and only if $A \in K$. If $A \in K$, then $A \neq \phi$ and there exists at least an element $x \in A$. So for $(x, A) \in D$ and $(y, B) \in D$ such that $(y, B) \geq(x, A)$, then $B \subseteq A$ and so $T^{K}(y, B)=y \in B \subseteq A$. Thus $T^{K} \subseteq A$.

Conversely, suppose $T^{K} \subsetneq A$, then there exists $(y, B) \in D$, for all $(z, C) \in D$, such that $(z, C) \geq(y, B)$ and we have $T^{K}(z, C) \in A$. So for every $z \in B,(z, B) \geq(y, B)$ and $T^{K}(z, B)=z \in A$ implies $B \subseteq A$. Then $A \in K$. Thus $T^{K} \not \neg A$ if and only if $A \notin K$. Now,

$$
\begin{aligned}
\lim _{(i, j)}^{s} T^{K}(x) & =\left[T^{K} \triangleright_{(i, j)}^{s} x\right]=\inf _{T^{K} \not \notin A}\left(1-s N_{x}^{(i, j)}(A)\right) \\
& =\inf _{A \notin K}\left(1-s N_{x}^{(i, j)}(A)\right)=\lim _{(i, j)}^{s} K(x) .
\end{aligned}
$$

(b) First we prove that $X \sim A \in K$ if and only if $T^{K} \not \square A$. Suppose $T^{K} \not \neg A$, then there exists $(z, B) \in D$ such that for every $(y, C) \in D$ with $(y, C) \geq(z, B), T^{K}(y, C) \notin$ A. Now for every $x \in B,(x, B) \geq(z, B)$ and $T^{K}(x, B)=x \notin A$, i.e., $B \cap A=\phi$ so $B \subseteq X \sim A$ and then $X \sim A \in K$.

Conversely, suppose $X \sim A \in K$, then $X \sim A \neq \phi$ and thus it contains at least an element x. Now, for any $(z, C) \in D$ such that $(z, C) \geq(x, X \sim A)$, one can have that $T^{K}(z, C)=z \notin A$. Hence, $T^{K} \nsucceq A$. Now,

$$
\begin{aligned}
a d h_{(i, j)}^{s} T^{K}(x) & =\left[T^{K} \propto_{(i, j)}^{s} x\right]=\inf _{T^{K} \not \subset A}\left(1-s N_{x}^{(i, j)}(A)\right) \\
& =\inf _{X \sim A \in K} \operatorname{scl}_{(i, j)}(X \sim A)=\inf _{B \in K} \operatorname{scl}_{(i, j)}(B)=a d h_{(i, j)}^{s} K(x) .
\end{aligned}
$$

Acknowledgement

The authors would like to thank the referees for their valuable comments which led to the improvement of this paper.

References

[1] Chang, C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968)190-201.
[2] Gowrisankar N., Rajesh N., Vijayabharathi V., Properties of preopen sets in fuzzifying bitopological spaces (submitted).
[3] Hutton B., Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50(1975)74-79.
[4] Kelley J. L., General Topology , Van Nostrand Company, New York(1955).
[5] Kelley J. L., Bitopological spaces, Proc. London Math. Soc.,(3)13(1963)71-89.
[6] Khedr F. H., Zeyada F. M., Sayed O. R., Fuzzy semi-continuity and fuzzy csemi-continuity in fuzzifying topology, J. Math. Inst. 7(1)(1999) 105-124.
[7] Lowen R., Fuzzy topological spaces and compactness, J. Math. Anal. Appl., 56(1976)621-633.
[8] Pu P.M., Liu Y.M., Fuzzy topology I, Neighborhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl., 76(1980)571-599.
[9] Thakur S. S., Malviya R., Semi-open sets and semi-continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems 79(1996)251-256.
[10] Ying M.S., A new approach for fuzzy topology (I), Fuzzy Sets and Systems 39 (1991), 302-321.
[11] Ying M.S. , A new approach for fuzzy topology (II), Fuzzy Sets and Systems 47 (1992), 221-232.
[12] Ying M.S., A new approach for fuzzy topology (III), Fuzzy Sets and Systems 55 (1993), 193-207.
[13] Zadeh, L.A., Fuzzy sets, Information and Control, 8(1965) 338-353.
[14] Zhang G. J. and Liu M. J. , On Properties of $\theta_{i, j}$-open sets in fuzzifying bitopological spaces, The J. Fuzzy Math., 11(1) (2003), 165-178.

[^0]: ${ }^{* *}$ Edited by Metin Akdağ (Area Editor) and Naim Çağman (Editor-in-Chief).

 * Corresponding Author.

