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Oz

Riizgar hizi, yenilenebilir riizgar enerjisine yatirim yapilmasi ve planlanmasinda riizgar hizinin tahmin edilmesi
hayati 6nem tagimaktadir. Ayrica mevcut riizgar santrallerinin iiretimi ve iletim hatlarmin kapasitelerinin
artirilmasinda da riizgar hizinin tahmin edilmesi olduk¢a 6nem arz etmektedir. Fakat riizgar hizinin aralikli ve
stokastik dalgalanmalari, yiiksek kaliteli riizgar hizi tahmini i¢in 6nemli bir sorun olusturmaktadir. Bu ¢aligmada,
rizgar santrallerinin planlanmasi ve uygulanabilirlik ¢alismalart i¢in riizgar hiz tahminini daha kolay
saglayabilecek derin 6grenme temelli bir yaklagim onerilmistir. Bu yaklagimda oncelikle riizgar hiz zaman verileri
stirekli dalgacik doniisiimii ile renkli goriintiiye donistiiriildii. Elde edilen goriintiiler, dnceden egitilmis AlexNet
CNN modeline uygulanarak rizgar hiz tahmini gergeklestirilmektedir. Calisma, Elazig meteoroloji bolge
miidirliiginden alinan 2018-2019 yillar1 arasindaki saatlik hiz verileri kullanilmigtir. Yapilan deneysel
caligmalarda, 1-saat, 2-saat ve 3-saat olmak iizere ii¢ farkli ileri ufuk tahmini yapilmistir. Onerilen tahmin
modelinin modelin performans degerlendirilmesi i¢in ortalama mutlak hata (MAE), ortalama karekok hatasi
(RMSE) ve korelasyon katsayist (R) metrikleri kullanilmigtir. Deneysel ¢alismalarda, tiim veri seti goriintiileri
transfer 6grenimi icin rastgele bir sekilde sirastyla %70, %10 ve %20 oranlarinda egitim, dogrulama ve test olmak
tizere ii¢ boliime ayrilmigtir. 1-saat ileri tahminde RMSE, MAE ve R metrikleri igin sirasiyla 0,0335, 0,0275 ve
0,9517 deneysel sonuglar ile en iyi riizgar iz tahmini gergeklestirilmistir. Bu bakimdan 6nerilen AlexNet
modelinde, 1 saat ileri tahmininde, daha giivenilir ve dogru tahmin gerceklestirdiginden riizgar hiz tahmininde
etkili bir model oldugunu gostermektedir.
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Abstract

Wind speed forecasting is crucial for planning and investing in renewable wind energy. In addition, Wind speed
forecasting is essential for planning renewable wind energy, optimizing wind power production, and enhancing
transmission line capacities. However, intermittent and stochastic fluctuations of wind speed pose a significant problem
for high quality wind speed forecasting. In this study, a deep learning-based approach is proposed for wind power plant
planning and feasibility studies that can provide wind speed prediction more easily. In this approach, firstly, wind speed
time data were converted into color images using continuous wavelet transform. The obtained images were applied to
the pre-trained AlexNet CNN model and wind speed prediction was performed. In the study, hourly speed data from the
Elazig meteorology regional directorate between 2018-2019 were used. In the experimental studies, three different
horizon forecasts were made: 1-hour, 2-hour and 3-hour. Metrics like correlation coefficient (R), mean absolute error
(MAE), and root means square error (RMSE) were utilized to assess the proposed forecasting models performance. In
the experimental studies, the whole dataset images were randomly divided into three parts as training, validation and test
at the rates of 70%, 10% and 20% respectively for transfer learning. In the 1-hour horizon forecast, the best wind speed
prediction was achieved with experimental results of 0.0335, 0.0275 and 0.9517 for RMSE, MAE and R metrics,
respectively. In this respect, the proposed AlexNet model shows that it is an effective model in wind speed forecast since
the 1-hour horizon forecast is more reliable and accurate.
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1. Introduction

Global energy consumption is rising significantly due to population growth and technological and economic
developments. With the increase in energy demands and the overuse of existing fossil resources, serious
environmental problems such as global warming and climate change have been searched for new energy
sources [1].

Electrical energy is the most used type of energy in daily life. Among low-carbon generation technologies,
wind energy is one of the most important Renewable Energy Sources (RES) in many countries [2]. In this
environment, the installed capacity of wind energy is growing annually on a global scale, reaching 650 GW
in 2019 [3]. However, wind speed represents a significant variable in the reliability of the electricity grid [4].
Accurate and efficient forecasting of wind energy is of great importance in ensuring the safe and efficient
operation of the electricity grid.

Many approaches to wind energy forecasting have been suggested and applied, initially traditional statistical
models, physical models and more recently machine learning based models [5]. In wind energy forecasting
with physical models, atmospheric flow is simulated using numerical weather forecasts for several locations
in each geographical region. Despite the high computational cost, this model demonstrates satisfactory
performance in medium- period and long-period wind forecasting. In contrast, traditional-statistical models
refer to the data matching among the historical-data and the output of the wind farm. It is a time series
approach where traditional statistical models are generally effective in short-term forecasting.

Advances in computer technology has facilitated the wider adoption of machine learning-based methods in
the field of wind forecasting [6]. In the literature, there are many works using various deep learning
approaches for wind forecasting.

Yildiz et al. [5] improved an enhanced residual-based convolutional neural network for the prediction of
wind energy. Although the developed network is less complex and requires less computational resources, it
is important to note that some features in the data may be lost due to the residual connection approach. Azimi
et al. [7] proposed an approach for feature extraction that combines discrete wavelet transform, harmonic
time series analysis, and k-means. For feature extraction, they adopted the decomposition of historical air
temperature, wind speed and power data. They then trained a Multi-layer Perceptron Neural Network (MLN)
with these extracted features to perform wind forecasting.

Jaseena and Kovoor [8], empirical model decomposition (EMD), ensemble-EMD, wavelet transform (WT)
and empirical wavelet transform (EWT) methods combined the features obtained in data decomposition.
They then applied these features to a Bidirectional Long-Sort Time Memory (Bi-LSTM) deep learning model
for wind speed forecasting. They tested the performance evaluation of the proposed hybrid model with the
Dhanushkodi and Melamandai dataset. The experimental results demonstrated that it outperforms other data
decomposed-based models in terms of accuracy and stability. Li et al. [9] examined the effect of time
resolution in wind energy forecasting. To minimize these effects, they proposed an artificial neural network
(ANN)-based wind forecasting model.

Noman et al. [10] proposed the use of multivariate exogenous input variables to improve model performance
in wind forecasting. Using the suggested approach features, eight transfer learning techniques, and four
neural networks, they were able to predict the wind. They conducted experimental studies with two years of
wind speed data averaging over 10-minute intervals. Experimental outcomes showed that the nonlinear auto-
regressive exogenous model is more performant than other methods. Zameer et al. [11] developed a genetic
programming-based ANN model for short-term wind power forecasting. This developed model was tested
with data from five different wind farms. They showed that the model has higher performance than some
artificial intelligence-based models. Altan et al. [12] developed a non-linear hybrid model based on gray wolf
optimizer decomposition and LSTM deep learning for more accurate and reliable wind speed prediction.
With this model, the features obtained from the combination of parsing and LSTM model were combined.
They then improved the performance of the wind speed prediction model by optimizing the weighted
coefficients of the intrinsic mode function output with gray wolf optimization. Emeksiz and Tan [13]
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proposed a method based on combining deep learning and mode separation approaches for wind speed
estimation. In the proposed model, the signals obtained from adaptive noise reduction and EMD methods are
converted into images by continuous wavelet transform in the pre-processing of the data. These images have
been applied to various CNN models for effective wind speed forecasting. A multistep wind speed prediction
model based on a transformer is proposed, and the multistep wind speed prediction problem is recognized as
a sequence-to-sequence mapping problem [14].

In this work, a two-stage transfer learning-based model is proposed for wind speed prediction. In the first
stage, hourly wind speed data were converted into images with Continuous Wavelet Transform (CWT).
Then, these images were applied to the pre-trained AlexNet model and wind speed prediction was performed.
Experimental studies were carried out with hourly wind speed data of Elazig center for the years 2018-2019.
The study's contributions are assessed in the manner listed below.

e Toovercome the stochastic and unstable features of wind data and reach higher accuracy capacity, RGB
color space image sensitive to CWT changes of wind data is provided,

e With the color images derived from wind speed data, the training reliability of the pre-trained
convolutional neural network (CNN) improved, and wind forecasting performance is increased.

2. Material and Methods

In this study, a CNN-based model for wind speed forecasting was proposed, and its structure is shown in
Figure 1. First, in the suggested model, hourly wind speed data were converted into a two-dimensional image
by CWT transformation and then colored and converted into a 3D image. Then, the image size was resized
from 368x160 to 227x227 for the input of the AlexNet model. In the final stage, the classification layer of
the pre-trained ESA model AlexNet was replaced with a regression layer to predict deep features, enabling
automatic wind speed forecasting.
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Figure 1. Proposed model chart
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2.1. Dataset

The experimental studies used hourly wind direction and speed data (2018-2019) from the Meteorology
Directorate's Central/Elazig station (No. 17201). The details of the dataset used in the experimental studies
are presented in Figure 2. As seen in figure 2, the columns show the hourly time changes, and the rows show
the changes in wind speeds (m/s) against the hourly changes during the day. There is a total of 17448 hours
of wind data in the dataset for two years.

Date 00000 1:00:00 220000 3:00:00 4:00:00 5:00:00 60000 T:00:00 8:00:00 S:00:00 10:00:00
January 1, 2018 Z5 1.4 21 3 43 50 4.4 36 33 33 T
Januany Z, 2018 .7 0.3 .7 (-] o7 1.4 0.8 1.5 4.0 52 52
Januany 3, 2018 1.8 1.9 1.8 18 1.5 1.3 0.9 1.0 1.8 ZZ 20
Januany 4, 2018 5.5 4.z 18 4.4 4.6 4.0 4.4 8.0 a.0 6.9 52
Januany 5, 2018 5.4 43 56 5T 8.3 L 4.8 50 6.1 5.0 3.0
January §, 2018 18 1.8 16 16 1.8 1.7 1.2 [+X.] 16 18 2.3
Januany T, 2018 z3 1.8 0.9 1.5 4 20 L] 0.9 a7 1.5 z32
January 8 2018 1.8 1.6 0 16 1.5 1.5 [ K] 0.4 1.2 20 1.7
Januany 3, 2018 1.7 0.1 1.5 0.8 1.2 1.2 o7 o7 16 ZZ 1.9
Januany 10, 2018 26 2T ] ] .z 16 12 [ -] 0.8 2.1 22
January 11, 2018 0.2 0.2 0.2 0.2 0.5 1.0 o7 [+X.] 18 13 16
Januany 12, 2018 1.4 0.8 0.3 1.0 [ -] 1.3 1.2 1.0 0.8 z3 4
Januany 13, 2018 0.8 .7 1.5 1.0 0.5 [ X:] [ 16 1.1 18 0
Januany 14, 2018 0.9 Z.5 1.5 1.6 38 1.0 16 3z 4.0 50 4.4
Januany 15, 2018 0.5 0.6 18 19 0 20 0 19 1.2 12

Figure 2. Dataset details

2.2. Continuous wavelets transform

The Continuous Wavelet Transform (CWT) is one of the most advanced signal processing techniques
available for analyzing time-series data due to its ability to handle non-stationary signals, which are
common in real-world applications such as weather patterns, financial data, and physiological signals
[13]. CWT allows for the simultaneous analysis of both time and frequency content of a signal, which
is particularly important for non-stationary time series where the frequency characteristics change over
time. In contrast, traditional methods like the Fourier Transform provide only frequency information
and fail to capture the temporal variations within the signal [13-15] Furthermore, CWT enables the
signal to be analyzed at multiple scales, providing insights into different frequency components at
various time points. This multi-scale analysis offers significant advantages in detecting patterns such as
peaks, trends, or anomalies at different resolutions [14, 15].

The basic principle of CWT is based on decomposing a continuous-time function into a set of wavelet
functions. The wavelets are derived by applying a shift and scaling operation to the mother wavelet
function. Accordingly, CWT can be defined by Equation 1.

1 —
Wiy (e, = [F@ e = 2= [ 1w ()t e >0 ®

Where, 1 is the main wavelet function, a is the scale factor of the wavelet and expands the wavelet
length and frequency, t is the delay factor and controls the delay position on the time axis, and i*is the
complex conjugate of the wavelet master function. A should be chosen small for the high-frequency
features of the signal in the given time series, and a should be chosen large for the low-frequency features
of the signal.
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Scalograms, which visualize the output of the wavelet transform, show the intensity of different
frequencies over time. When displayed in grayscale, it can be difficult to perceive important details
[16,17]. Therefore, gray images are often converted to color images to enhance clarity. The choice of
color mapping in these images is critical, as it influences how well human observers can detect important
patterns, anomalies, or features. For instance, a heat map-style color scheme with a gradient from cool
to warm colors (blue to red), such as the "jet" color map, can clearly distinguish between low- and high-
energy regions. This clear contrast between low- and high-energy areas makes it easier to identify
significant features in the data, such as spikes or frequency shifts [18].

2.3. AlexNet

The AlexNet CNN model was introduced by Alex Krizhevesky at all. in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) competition to contribute to image classification problems
[19]. This CNN model broke new ground in computer vision applications, surpassing all previous
techniques [20]. AlexNet is a complex neural network consisting of 60 million parameters and trained
with more than 1.2 million high-resolution images to classify 1000 different objects, and unlike previous
models, it uses the ReL U activation function [21, 22]. As can be seen in the architecture in Figure 3, it
consists of 5 convolution layers (Conv), three pooling layers (Max pool) and three fully connected layers
(FC). There is also a ReLU activation layer after each convolution layer [23]. In the experimental
studies, AlexNet was preferred due to its lighter weights compared to other popular CNN models such
as GooglLeNet, VGG, and ResNet.

Lo o [} s
S S 2 2 ®
Conv S Max pool X Conv % Max pool % Conv x
= 96xllxll =>[G=>  3x3  —p [F=p 256x5%5 =D =s  3x3 = l=> 384233 = =
stride 4 :; stride 2 X pad 2 x stride 2 % pad 1 x
2 —
<n - S W e
w o [
=7 I o
= =) W
Conv X Conv x Max pool = 'y o —
38433 == = =P 25Gx3x3  mbp || 3x3 —>;—>-—>%—>.—>%—p-—>8
pad 1 x pad1 5 stride 2 = =3 Ll <
o [ =%
U w

Figure 3. AlexNet architecture

Transfer learning is the reuse of any pre-trained machine learning model with different data with some fine-
tuning [24]. The fine-tuning approach is based on optimizing certain parameters of a pre-trained model with
a small subset of target data. Its widespread use by researchers is due to its advantages such as simplicity,
ease of implementation and efficient use of computational resources [25].

In addition to exploiting prior knowledge in the source domain, this approach allows for more adaptive results
by making localized adjustments for target domain-specific tasks. The main aim of transfer learning is to
save training time and provide better performance without requiring too much data [26]. AlexNet transfer
learning, which will be used in experimental studies, is shown in Figure 4. In experimental studies, the
classifier layer connected to the last FC layer of the AlexNet model, details of which are given in Figure 3,
was replaced with a regression layer.
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Figure 4. The schematic of AlexNet with transfer learning
2.4. Performance evaluation metrics

Three quantitative evaluation criteria were selected to assess the performance of the proposed method. These
are the correlation coefficient (R), the mean absolute error (MAE), and the root mean square error (RMSE).

¢ RMSE indicates the amount of error between the values predicted by a model and the observed
results. A smaller RMSE indicates better performance of the prediction model.

e MAE is a widely used measure for assessing the accuracy of a forecasted model. It is particularly
used in regression analysis and determines the average magnitude of errors in predictions. A smaller
MAE means higher prediction accuracy.

e Risameasure of the relationship between inputs and outputs [6].

Equations (2-4) of these metrics are given below [27].

1 n
RMSE = \/r_lzk=1(yk — x)2 @

1 n
MAE = — E |y — xil ©))
n k=1

Y1t — X)) Ve — yk)

R =
\[zzzlm — 302 S0k — V,)?

(4)

Where n is the total number of test data, x;, is the actual data values, y;, represent the anticipated data values
and y, , xare the mean values of the data.

3. Experimental Studies and Results

This section presents a concise overview of the experimental setup, and the results obtained in the prediction
of wind speed. The experimental studies were conducted on a computer with the following specifications:
MATLAB (2021b) installed, quad-core Intel i7 processor, NVIDIA GTX 850M GPU, and 16GB memory.

In the first stage of the experimental studies, time series were converted into images with CWT. For this
purpose, the time series signals containing hourly wind speeds between 2018-2019 were first converted into
a grey image with dimensions of 168x360 as shown in Figure 5. Subsequently, the changes in pixel
brightness and contrast values within the grey image were assigned a jet128 color map of uniform
distribution, resulting in a 168x360x3 color scalogram image. This image was then resized to 227x227x3 in
accordance with the proposed AlexNet model input. All images were also normalized by mean subtraction.
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In the first stage of the experimental studies, the whole dataset was randomly divided into three parts, namely
training, validation and test, with 70%, 10% and 20% of the images, respectively, for transfer learning. The
training dataset was used in the learning process of the proposed model, while the validation dataset was used
as a part of the training set to build the model. The model parameters were also modified using the validation
dataset. The performance evaluation was conducted using the test dataset.

The experiments were repeated several times to determine the best parameters of the model during the
AlexNet training process. In the initial stages of the training process, the learning rate was adjusted to 0.0001,
the mini-batch size was adjusted to 32, and the maximum number of epochs was adjusted to 40, with a drop
factor of 0.5 applied every 10 epochs. Moreover, the adaptive moment prediction (Adam) algorithm was
used to optimize the whole cost function for the AlexNet model to eliminate convolutional kernels during
the back-propagation phase.

Time-series data (daily wind speed) Scalogram (168x360)

st

4r 1 «
Continuous
3} :> Wavelet Transform |:>
|
2 1 1

(CWT)

1+ 1
b =L ﬂ
2 4 6 10 12 14 16 4

Gray to RGB I
227x227x3

lu!@&]@ vl'

168%360%3

Figure 5. Convert to scalogram images from time series
The experiments were grouped by different forecast horizons to assess the proposed methods precision. The
R, MAE and RMSE values for the one-hour, two-hour, and three-hour horizon forecasts of the suggested
AlexNet model are presented in Table 1.

Table 1. Performance metrics of 1-hour, 2-hour and 3-hour horizon forecasting for AlexNet

. Metrics
Method Horizon RMSE MAE R
1-hour 0.0335 0.0275 0.9517
AlexNet 2-hour 0.0443 0.0357 0.8908
3-hour 0.0505 0.0346 0.8365

The proposed AlexNet model has R, MAE and RMSE values of 0.0335, 0.0275 and 0.9517 for 1-hour
horizon forecasts, respectively. Similarly, RMSE, MAE and R values for 2-hour horizon forecasts are 0.0443,
0.0357 and 0.8908, respectively. For 3-hour horizon forecasts, RMSE is 0.0505, MAE is 0.0346 and R is
0.8365.

The proposed model performs best for one-hour horizon wind speed forecasting. Therefore, in the proposed
The AlexNet model, when utilized in conjunction with a one-hour forecast, can be regarded as a highly
effective tool for the generation of more reliable and accurate forecast responses.

In addition, the visualization of certain time intervals to show the validity of the actual and normalized results
of the one-hour, two-hour and three-hour horizon forecasts are shown in Figure 6 respectively. As can be
seen from the graphs in Figure 6, the wind speed is better predicted in the actual and normalized curves of
the 1-hour forecast.
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Figure 6. Wind speed forecasting results for 1-hour, 2-hour and 3-hour horizon

4. Conclusions

This study aims to develop a wind speed forecast model based on deep learning. This method involves first
converting the wind speed data into scalogram images, which are then used to extract features from the
AlexNet convolutional neural network model based on transfer learning to predict wind speed.

The results demonstrate that the proposed AlexNet model performs exceptionally well for shorter forecast
periods. Specifically, the RMSE, MAE and R values for 3-hour horizon forecasts have performance values
of 0.0505, 0.0346 and 0.8365, respectively. The 2-hour horizon forecasts show a slight increase in
performance with RMSE, MAE and R values of 0.0443, 0.0357 and 0.8908, respectively. For the 1-hour
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horizon forecasts, the model reaches RMSE, MAE and R values of 0.0335, 0.0275 and 0.9517, respectively,
and it is observed that its performance is further improved, and it has a high level of accuracy and reliability.

The experimental results show that the 1-hour horizon forecast is the most effective and reliable for wind
speed forecasting. Similarly, the actual and normalized speed forecast plots also support this conclusion. For
the 1-hour horizon forecast, the actual and normalized results closely match the observed data, reinforcing
the effectiveness of the model in short-term wind speed forecasting.

In future studies, the researchers will investigate the effects on CNN models by converting time-dependent
wind speed data into images with different approaches to further improve short-term wind speed prediction
accuracy.
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